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Metastasis in cancer consists of multiple steps, including epithelial–mesenchymal-
transition (EMT), which is characterized by the loss of epithelial-like characteristics and
the gain of mesenchymal-like attributes including cell migration and invasion. It is clear that
the tumor microenvironment can promote the metastatic cascade and that intercellular
communication is necessary for this to occur. Exosomes are small membranous vesicles
secreted by most cell types into the extracellular environment and they are important
communicators in the tumor microenvironment. They promote angiogenesis, invasion,
and proliferation in recipient cells to support tumor growth and a prometastatic pheno-
type. Although it is clear that exosomes contribute to cancer cell plasticity, experimental
evidence to define exosome induced plasticity as EMT is only just coming to light. This
review will discuss recent research on exosomal regulation of the EMT process in the
tumor microenvironment.
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INTRODUCTION
Epithelial–mesenchymal-transition (EMT) is a process whereby
epithelial cells undergo a shift in plasticity and acquire the abil-
ity to disseminate, invade, and cause metastasis. Established as a
central process during the early stages of development, it is now
clear that EMT has implications on cancer progression by trigger-
ing the loss of cell–cell adhesion to facilitate tumor cell invasion
and remodeling of the extracellular matrix. While epithelial cells
express high levels of E-cadherin and are closely connected to each
other by tight junctions, mesenchymal cells express N-cadherin,
fibronectin, and vimentin, have a spindle-shaped morphology and
less tight junctions.

Intercellular crosstalk between neighboring and distant tumor
cells and immune and stromal cells in the tumor microenviron-
ment plays a large role in cancer development, the establishment of
the mesenchymal state, and metastasis. Intercellular crosstalk can
occur by direct cell to cell contact or via factors secreted into the
extracellular environment. Extracellular vesicles, called exosomes,
have become recognized as important in cellular communication
(1). Unlike soluble factors secreted by cells, exosomes carry a con-
centrated group of functional molecules, provide protection to the
transported molecules and serve as intercellular communicators
not only locally but also systemically.

Exosomes are formed from inward budding of the limiting
membrane of multi-vesicular bodies (MVB) and are released from
the cell into the extracellular environment upon fusion of the
MVB with the plasma membrane. Most prokaryotic and eukary-
otic cells release exosomes, including cancer cells such as colorectal
(2), lung, breast, glioblastoma (GBM), ovarian, and melanoma (3).
Exosomes from different cellular types contain a common set of
molecules, as well as cell type-specific components. For example,
exosomes derived from cancer cells contain proteins that reflect

the endosomal origin of exosomes as well as cellular oncogenic
drivers including receptor tyrosine kinases (RTKs), oncoproteins,
phosphorylated proteins, and miRNA (2, 4–6). After release into
the extracellular environment, exosomes act as discrete vesicles
trafficking to distant and proximal recipient cells where they alter
cell signaling and phenotype by transfer of bioactive molecules.
Exosomes transfer their messages in different ways. Firstly, they
can activate target cells through the transfer of ligands such as
fibroblast growth factor (FGF), hepatocyte growth factor (HGF),
vascular endothelial growth factor (VEGF) (7, 8), and epidermal
growth factor (EGF) (9). Secondly, they can transfer receptors
such as mutant EGFR (10) and HGFR (11) from one cell to
another by fusion with the plasma membrane of recipient cells
(10). This results in transfer of oncogenic activity via activation
of growth factor signaling pathways in recipient cells (11, 12). The
third mechanism of action involves endocytosis of the exosome
and subsequent transfer of molecules directly into the cytosol of
the recipient cell. These can include phosphorylated P13K, AKT,
mTOR, cyclins, and cyclin-dependent kinases (13, 14) and miRNA,
which can functionally repress target genes in the recipient cell
(15).

Over the last decade, a number of studies have demonstrated
that exosomes are mediators of the metastatic process. Exosomes
derived from both normal and cancer cells can promote angio-
genesis (16–19), invasion (20–23), and proliferation (24–26) in
recipient cells to support tumor growth.

CHANGES IN EXOSOME COMPOSITION ACCOMPANY THE
TRANSITION TO A MESENCHYMAL STATE
Epithelial–mesenchymal-transition entails morphological and
phenotypic changes to a cell. To assess the composition of
exosomes released from cells following these changes, several
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groups have induced EMT via transformation with oncogenic
proteins such as Ras or EGFR (27–29). Exosomes released from
Madin–Darby canine kidney (MDCK) cells transformed with
oncogenic H-Ras contained the EMT marker vimentin, in addition
to matrix metalloproteases (MMPs), integrins, and key and core
splicing complex components (29). Epithelial markers including
E-cadherin and EpCAM were downregulated relative to exosomes
from untransformed cells. It was postulated that exosomes from
the transformed cells were capable of inducing EMT in recipi-
ent cells although no functional experiments were performed to
validate this. Proteomic studies on EGFR (coupled with block-
ade of E-cadherin) induced EMT in A431 and DLD-1 epithelial
cancer cells, revealed coordinated loss of EGFR and tissue fac-
tor (TF) from the cells (27). This coincided with an increase in
exosome release, selective upregulation of TF in exosomes, and
expression of 30 additional proteins unique to the mesenchymal
cell-derived exosomes (28). The mesenchymal-like cells trans-
ferred TF to recipient endothelial cells via exosomes rendering the
recipient cells procoagulant, suggesting EMT promotes exosome
release and shedding of TF from cells via exosomes (27).

Jeppesen et al. studied the protein content of exosomes derived
from a human bladder carcinoma cell line without metastatic
capacity relatively to two isogenic derivate metastatic cell lines
formed in the lung and liver of mice. Although proteins associated
with EMT were found in exosomes derived from the metasta-
tic cells (30), no functional studies correlating changes in protein
content with alterations in exosome function were carried out,
so it is unclear in this case if exosomes from the metastatic cell
line had an increased metastatic potential. With that said, exo-
somes from a range of mesenchymal-like breast and ovarian cancer
cell lines differentially impacted on recipient cells compared to
epithelial-like cell lines (31). Exosomes from the mesenchymal-
like cell lines contained increased angiogenic molecules including
PDGF, IL-8, and angiogenin suggested to promote AKT phos-
phorylation and subsequent activation of recipient endothelial
cells (31).

EMT INDUCERS ARE ASSOCIATED WITH EXOSOMES
The protein composition of exosomes has been analyzed exten-
sively, predominantly by mass spectrometry to reveal a defined
subset of cellular proteins common to exosomes originating from
a variety sources and species (32–35). Inducers of EMT have been
found in association with exosomes including TGFβ (36), TNFα,
IL-6, TSG101, AKT, ILK1, β-catenin (37, 38), hepatoma-derived
growth factor, casein kinase II (CK2), annexin A2 (30), integrin
3 (39), caveolin-1 (40), and matrix metalloproteinases (41–44).
Functional studies to demonstrate that exosome associated EMT
inducers promote a prometastatic phenotype are outlined below.

The WNT signaling pathway participates in EMT by inhibit-
ing glycogen synthase kinase-3β (GSK3β) to stabilize β-catenin,
promoting a gene expression program that favors EMT (45). Exo-
somes released from human and Drosophila cells contain WNT
(46, 47), which can be transferred and activate WNT signal-
ing in recipient cells (48–50). Luga et al. observed that WNT
containing exosomes derived from cancer associated fibroblasts
(CAFS) promoted motility and metastasis by activating autocrine
WNT-planar cell polarity signaling in recipient breast cancer cells

(48). Similarly, mesenchymal stem cell (MSC) and macrophage-
derived exosomes (51) promoted migration and/or invasion of
breast cancer via activation of WNT signaling (49). In melanoma,
recombinant WNT5A induces the release of soluble mediators
including IL-6, IL-8, VEGF, and MMP2 in association with exo-
somes (52) suggesting that not only does exosomal WNT promote
EMT in recipient cells but it changes the composition of the
released exosome to promote further EMT. Kock et al. examined
the contribution of exosomes to cancer population equilibrium
and tumor heterogeneity (53). They showed that diffuse large B-
cell lymphomas possess a self-organized infrastructure comprising
two populations of cells, where transitions between clonogenic
states could be modulated by exosome-mediated WNT signaling
(53). This study goes some way in broadening our understanding
of the complex processes that maintain tumor cell heterogeneity
and highlights exosomes as key players in this process.

Hypoxia in the tumor environment can promote EMT and
several studies have provided evidence that hypoxia promotes
the release of exosomes from different tumor cell types includ-
ing breast, glioma, leukemia, and prostate (38, 54–57). Exosomes
released by prostate cancer cells under hypoxic conditions con-
tain more TGFβ IL-6, TNFα, and MMP, TSG101, AKT, ILK1,
and β-catenin (38), suggesting that they could differentially mod-
ulate recipient cells compared to exosomes from normal cells.
Indeed, exosomes released from A431 carcinoma (58), glioma cells
(55), and leukemia cells (54) promoted angiogenesis in recipi-
ent cells (16, 55). Similarly, exosomes derived from hypoxic GBM
cells promoted tumor cell survival by inducing angiogenesis both
in vitro and ex vivo through phenotypic modulation of endothe-
lial cells and increased autocrine, promigratory activation of GBM
cells (57).

Latent membrane protein 1 (LMP) of Epstein–Barr virus (EBV)
contributes to the metastatic phenotype of nasopharyngeal car-
cinoma (NPC) by inducing EMT. Aga et al. (22) investigated
if LMP1-positive exosomes could mediate EMT. They demon-
strated that LMP1 positive exosomes and exosomal HIF1α modu-
late expression of EMT markers in recipient cells (22). Following
treatment with LMP1-positive exosomes, recipient cells expressed
less E-cadherin and more N-cadherin along with morphological
spindle-like changes in cell shape indicative of EMT (22). Although
exosome concentration was not reported and downstream signal-
ing pathways associated with EMT were not examined, it is clear
that LMP1-positive exosomal transmission of HIF1α correlates
with EMT-associated changes in the cadherin expression profile
in recipient cells.

A growing number of miRNAs have been implicated in the
regulation of EMT-related pathways in cancer (59) and in recent
years exosomes have been reported to contain nucleic acid such
as DNA, RNA, non-coding RNA, and miRNA (60–62). MiR-223,
a miRNA specific for IL-4-activated macrophages, could be trans-
ported from macrophages to breast cancer cells via exosomes
(63) to promote breast cancer cell invasion via modulation of
the β-catenin pathway. Similarly, exosomes released from bone
marrow-derived mesenchymal cells promoted multiple myeloma
(MM) formation in an animal model by transfer of exosomal miR-
15a (64). Josson et al. recently performed one of the first studies
to show that transfer of stromal-derived exosomal miRNA results
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in morphologically and biochemically defined EMT in cancer cells
(65). Exosomes were isolated from normal prostate stromal cells
overexpressing miR-409. Exosome associated miR-409-3p and -5p
decreased the expression of target genes in prostate cancer cells and
increased proliferation. Interestingly,6 weeks after maintaining the
prostate cancer cells in stromal cell media, the prostate cancer cells
underwent EMT, which was biochemically defined by decreased
E-cadherin and increased vimentin mRNA expression. In vivo,
co-injection of prostate cancer cells and miR-409-overexpressing
stromal fibroblasts resulted in tumor cells expressing miR-409 and
enhance tumor growth suggesting that miR-409 was secreted out
of stromal fibroblasts and taken up by the adjacent tumor. Further
in vivo modeling however is required to conclude that stromal-
derived exosomes were responsible for transfer of miR-409 to
surrounding cancer epithelial cells and subsequent tumor growth.

EXOSOMES RELEASED FROM TUMOR CELLS PROMOTE
PHENOTYPE CHANGE IN STROMAL CELLS
The tumor microenvironment consists of a complex network con-
sisting of an extracellular matrix populated by CAFs, endothelial
cells, and immune cells. Exosomes derived from tumor cells com-
municate with stromal cells and vice-versa to promote tumor
growth. MSCs have multi-lineage potential and can differentiate
into a variety of cell types including tumor stromal cells, which
are pro-tumorigenic. One way they do this is by promoting differ-
entiation of MSCs, in some cases via mesenchymal-to-epithelial
transition (MET).

Ovarian cancer cell-derived exosomes can induce adipose
tissue-derived MSCs (ADSC) to exhibit the characteristics of
CAFs, by increasing expression of TGFβ and activation of Smad-
dependent and -independent pathways (9). Similarly, gastric can-
cer exosomes trigger differentiation of umbilical cord-derived
MSCs to CAFs through the TGFβ/Smad pathway (66) and breast
and prostate cancer-derived exosomes can induce a myofibroblas-
tic phenotype (67, 68). Together, these studies show that via activa-
tion of both Smad-dependent and -independent pathways, tumor-
derived exosomes can hijack MSCs to promote a prometastatic
environment. In some cases, this process appears dependent on
TGFβ1 expressed at the exosome surface in association with the
transmembrane proteoglycan betaglycan (67). Although existing
in a latent state, this complex was fully functional in eliciting Smad-
dependent signaling in recipient cells. Interestingly, myofibroblasts
generated using soluble TGFβ1 were not pro-angiogenic or tumor-
promoting, suggesting that exosomal TGFβ1 is required for the
formation of tumor-promoting stroma (36).

In an elegant series of experiments, Abd Elmageed et al.
demonstrated that tumor-tropic patient-derived ADSCs primed
with prostate cancer cell-derived exosomes undergo genetic insta-
bility, MET, oncogenic transformation, and develop prostate
tumors in vivo (69). Oncogenic transformation was associated
with down-regulation of tumor suppressors upon delivery of
prostate cancer-derived exosomal oncogenic H-ras and N-ras
transcripts, Rab proteins, and oncogenic miRNA.

CONCLUSION
Exosomes play an important role in the development and progres-
sion of cancer. The studies outlined above highlight their role in the

regulation of EMT-related pathways and suggest that tumor and
stromal cells can regulate the invasiveness of cancer cells through
exosome-mediated delivery of protein and miRNA. In the last
decade, there has been an exponential increase in the number
of studies aiming to understand the biology and composition of
exosomes. These studies established that exosome composition
changes upon transition to a mesenchymal state and that EMT
inducers are associated with exosomes. In the last 2 years, exper-
imental evidence has come to light defining exosome induced
plasticity in recipient cells as EMT. Future investigations should
further reveal how multiple cellular populations communicate via
exosomes to promote a premetastatic phenotype and how exo-
somes can be employed for diagnostic and prognostic purposes to
improve patient outcome.
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