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Enhanced sympathetic signaling, often associated with obesity and chronic stress, is
increasingly acknowledged as a contributor to cancer aggressiveness. In prostate cancer,
intact sympathetic nerves are critical for tumor formation, and sympathectomy induces
apoptosis and blocks tumor growth. Perineural invasion, involving enrichment of intra-
prostatic nerves, is frequently observed in prostate cancer and is associated with poor
prognosis. β2-adrenergic receptor (ADRB2), the most abundant receptor for sympathetic
signals in prostate luminal cells, has been shown to regulate trans-differentiation of can-
cer cells to neuroendocrine-like cells and to affect apoptosis, angiogenesis, epithelial–
mesenchymal transition, migration, and metastasis. Epidemiologic studies have shown
that use of β-blockers, inhibiting β-adrenergic receptor activity, is associated with reduced
prostate cancer-specific mortality. In this review, we aim to present an overview on how
β-adrenergic receptor and its downstream signaling cascade influence the development of
aggressive prostate cancer, primarily through regulating neuroendocrine differentiation.

Keywords:ADRB2, β-adrenergic receptor, prostate cancer, neuroendocrine differentiation, angiogenesis, apoptosis,
metastasis, β-blocker

INTRODUCTION
Most men die with and not from prostate cancer. Despite this,
prostate cancer was the primary cause of death in more than
300,000 men worldwide in 2012, with an estimated 630,000 deaths
to be expected in 2035 (1). Neuroendocrine prostate cancer, a
poorly defined clinical phenotype of aggressive disease, is pre-
dicted to cause approximately 10–25% of the prostate cancer-
specific deaths (2–4). Drugs targeting androgen receptor activity
promote development of a neuroendocrine prostate cancer phe-
notype (5) and increases the prevalence of neuroendocrine cells
(6), and as more drugs in this category reach the clinic the occur-
rence is expected to rise. Neuroendocrine-like cancer cells are
differentiated to a varying extent and may express luminal, mes-
enchymal, and/or stem cell markers in addition to neuroendocrine
markers (7–11). This reflects the high plasticity of these cells.
Although the molecular mechanisms underlying neuroendocrine
differentiation in vivo are poorly understood, inflammation (12),
androgen deprivation (13), ionizing radiation therapy (14), and
activation of the β-adrenergic receptor (ADRB) have been shown
to induce trans-differentiation of prostate cancer cell lines to
neuroendocrine-like cells in vitro.

Over the last decade, epidemiologic studies have indicated that
use of β-blockers may have beneficial effects on cancer progres-
sion, metastasis, and mortality (15–24). β-blockers form a group
of commonly prescribed drugs used as treatment for hyperten-
sion, cardiac heart failure, and arrhythmias, as well as for migraine
prophylaxis. In two Norwegian cohorts of patients with aggres-
sive prostate cancer, it was reported that use of β-blocker was
associated with reduced prostate cancer-specific mortality (21,
22). In contrast, a nested case-control study of prostate cancer
patients in the UK Clinical Practice Research Datalink cohort
did not observe an effect of β-blocker usage after diagnosis on
prostate cancer-specific deaths (25). However, use of β-blocker

has been reported to be inversely associated with progression
of breast, ovarian, and non-small cell lung cancer (23). More-
over, β-blocker use has been associated with longer relapse-free
survival (15) and lower risk of tumor recurrence (17), distant
metastasis (17), and cancer-specific mortality (16, 17) in breast
cancer patients. Indeed, pre-clinical and epidemiological evidence
have led to the initiation of clinical phase II studies evaluating
the effect of administering the β-blocker propranolol to ovar-
ian, cervix, colorectal, and breast cancer patients (ClinicalTri-
als.gov identifiers: NCT01504126, NCT01308944, NCT01902966,
NCT00888797, and NCT01847001). Together this indicates that
more studies on prostate cancer cohorts are needed.

In this review, we will focus on how β-adrenergic activity,
primarily via the β2-adrenergic receptor (ADRB2) and the sub-
sequent cyclic AMP (cAMP) signaling pathway, affects devel-
opment of aggressive prostate cancer by regulating neuroen-
docrine differentiation, metastasis, angiogenesis, and apoptosis-
resistance.

ADRENERGIC RECEPTOR’S FUNCTIONAL ROLE IN THE
PROSTATE
The β-adrenergic receptors (ADRBs) are part of the sympathetic
nervous system, the general role of which is to ensure that the
body responds fast and targeted upon danger, as well as to regulate
the whole body energy expenditure. The receptors are activated
by catecholamines; norepinephrine released by adrenergic nerves,
innervating most major organs, and epinephrine produced by
chromaffin cells (26). Chromaffin cells are most highly abundant
in the adrenal medulla, but paraganglia has also been observed
in proximity to sympathetic nerves within the prostate (27, 28).
Macrophages, aside from exerting an immunosuppressive activity
following catecholamine stimulation (29), also have the capac-
ity to produce catecholamines themselves to a minor extent (30).
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Interestingly, infiltration of macrophages has been reported to be
associated with prostate cancer aggressiveness (31, 32).

The prostate is highly innervated (33), and the nerves are
required for formation of the prostate during embryogenesis, mat-
uration during puberty, and maintenance of the adult phenotype
(34). Thus, like androgen stimulation, sympathetic stimuli con-
tribute to prostatic differentiation in vivo (35). Interestingly, most
prostate cancers originate from the peripheral zone, which is part
of the posterior region where the majority of nerves are located
(36). Whereas, parasympathetic nerves are uniformly spread from
the base to the apex and innervate the epithelium, sympathetic
nerves are slightly enriched toward the base and are in close
contact with the smooth muscle cells (36–39). The adrenergic
nerves fire during ejaculation, promoting contraction of smooth
muscle cells expressing α-adrenergic receptors (40). In addition,
adrenergic stimulation facilitates secretion from the luminal cells
predominately expressing β-adrenergic receptors (41).

The interplay between nerves and cancer cells is an emerging
field in prostate cancer research. Intact sympathetic nerves were
recently shown to be essential for tumor formation as sympa-
thectomy induced apoptosis and blocked prostatic intraepithelial
neoplasia formation and tumor growth in a mouse model (42).
Furthermore, perineural invasion is a phenomenon whereby can-
cer cells are frequently observed to surround or track the nerve
fiber (43). An increasing number of studies conclude that per-
ineural invasion is a prognostic marker in prostate cancer (44, 45).
The nerve density is enriched in cancer areas and higher in pro-
static tissue from high-risk compared to low-risk prostate cancer
patients (42, 46), indicating that neurogenesis may occur during
cancer development (47).

Prostate cancer cells proximal to areas of perineural invasion
have been shown to exhibit reduced apoptosis and increased pro-
liferation compared to distant cancer cells (47). In a prostate cancer
case study, increased frequency of neuroendocrine-like cells was
observed in the proximity to perineural invasion (48). Interest-
ingly, in a pancreatic cancer study, catecholamine exposure from
co-cultured dorsal root ganglia was shown to promote perineural
invasion both in vitro and in animal experiments (49). A possi-
ble mechanism explaining this observation is that norepinephrine
secreted by the sympathetic nerves acts as a chemoattractant,
promoting cancer cell migration toward innervated areas (49),
with subsequent metastasis through the perineural space. Stud-
ies are wanted to unravel whether this mechanism is involved in
stress-induced metastatic prostate cancer.

ADRB2 REGULATION AND DOWNSTREAM SIGNALING IN
PROSTATE CANCER
The prostate is highly enriched in β-adrenergic receptors with
ADRB2 being the dominating isoform in luminal cells [ADRB1:
(50, 51); ADRB2: (41, 51–53); and ADRB3: (54)]. More than
95% of the β-adrenergic receptor binding activity in PC-3 cells
is mediated through ADRB2 (51), and the main ADRB isoform
in LNCaP cells is the β2 subtype (52). β2- and β3-adrenergic
receptors have been observed in stromal cells (55, 56), although
immunohistochemical staining using ADRB2 antibodies showed
predominantly epithelial localization in both benign and malig-
nant prostate tissue (57, 58). In the first immunohistochemical

staining report of β2-adrenergic receptor in human prostate,
ADRB2 was only observed in malignant tissue (59). Most gene
expression profiles show up-regulation of ADRB2 mRNA in pro-
static adenocarcinomas (57, 60), and the general consensus in the
literature is that the protein expression level of ADRB2 is increased
in prostate cancer cells compared to benign prostate cells (57,
58). Following castration in mice and during androgen depriva-
tion therapy of prostate cancer patients, low β-adrenergic activity,
and down-regulation of ADRB2 mRNA, respectively, has been
reported (57, 61). Although ADRB2 is up-regulated in malignant
cells, the expression level seems to decrease during progression as
ADRB2 is inversely correlated with PSA recurrence-free survival
(58). In metastatic prostate cancer, the situation is more com-
plex as both high and low levels of ADRB2 have been observed
(57, 58). ADRB2 is assumed to be up-regulated in castration-
resistant prostate cancer to support sensitization of the androgen
receptor, but it is down-regulated in the androgen independent
sub-line LNCaP-abl at the mRNA-level (62), and at the pro-
tein level in LNCaP-Rf (57), both compared to the parental
LNCaP cell line. Amplification of ADRB2 has, however, been
reported in 3 out of 28 cases in a cohort of castrated metastatic
prostate cancer patients (60). More data are needed to test whether
ADRB2 is involved in development of castration-resistant prostate
cancer.

Besides being regulated by thyroid hormones in LNCaP cells
(57), ADRB2 has been shown to be an androgen receptor tar-
get gene (35, 63–65). Interestingly, ADRB2 is also a target gene
of two important markers in prostate cancer that are involved in
transcriptional regulation; v-ets avian erythroblastosis virus E26
oncogene homolog (ERG) (66) and Enhancer of zeste homolog
2 (EZH2) (58). Both ERG and EZH2 exert repressive action on
ADRB2 transcription in vitro, through direct binding and epige-
netic silencing, respectively (66). Furthermore, ERG up-regulates
the expression of EZH2 (66). This suggests that ERG and EZH2
antagonize the stimulatory effect of androgen on ADRB2 expres-
sion. The overall effect, however, based on analysis of data from
cBioPortal is that ADRB2 as well as ERG and EZH2 are either up-
regulated or unaltered at the mRNA level in malignant compared
to benign prostate tissue (60). This does not rule out the possibility
that ERG and/or EZH2 exert a more dominating effect on ADRB2
expression, as suggested by Yu et al. (58, 66), in advanced diseases.
ERG was recently shown to inhibit luminal and neuroendocrine
differentiation in a transgenic prostate cancer mouse model (67),
suggesting that ERG can be linked to de-differentiation of cancer
cells. This would fit into the hypothesis that ADRB2 is positively
and ERG negatively correlated with a differentiated phenotype.
Although the prognostic value of TMPRSS2-ERG is controversial,
this hypothesis would also support a role of ERG as prognostic
marker (67–69).

An overview of known ADRB2 downstream signaling pathways
in prostate cancer cell lines is summarized in Figure 1. ADRB2
is a seven-trans membrane G-protein coupled receptor primar-
ily acting through the cAMP-signaling pathway. Ligand binding
to ADRB2 stimulates adenylyl cyclase activity and cAMP pro-
duction via Gαs. Induction of cAMP in response to adrenergic
stimulation has been shown in a number of prostate cancer cell
lines (70–73). Most effects of cAMP are mediated through the
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FIGURE 1 |The ADRB2 signaling pathways in prostate cancer. Ligand
binding to ADRB2 increases the intracellular level of cAMP, which activates
cAMP-dependent protein kinase (PKA). PKA may either directly or through
PAK4 stimulate CREB activity and thereby induce the expression of ENO2
and BCL2. PKA can also directly or indirectly via PAK4 or Rap1 inhibit RhoA
and ROCK activities and thereby induce neurite outgrowth. Finally, VEGF
expression is up-regulated by adrenergic stimulation via PI3K/AKT/p70S6K
mediated activation of HIF-1α.

cAMP-dependent protein kinase (PKA), and among other pro-
teins regulated by cAMP are exchange proteins activated by cAMP
(EPAC) and cyclic nucleotide-gated ion channels. It is not known
whether these are activated in response to adrenergic stimulation
of prostate cancer cells, but activation of EPAC, using an EPAC-
specific cAMP analog, affects the MAP kinase, RhoA (74), and
AKT-p70S6K signaling pathways in prostatic epithelial cells (75,
76). These pathways are also regulated by adrenergic activation in
prostate epithelial cells as described below. Noteworthy, treatment
of LNCaP cells with an EPAC analog indicated that PKA is the
dominating mediator of neuroendocrine differentiation in these
cells (77).

Cyclic AMP produced in response to adrenergic stimulation
binds the regulatory subunit of PKA and the activated catalytic
subunit is released. The catalytic subunit may translocate to the
nucleus and phosphorylate cAMP responsive element binding
protein (CREB), which induces the expression of e.g., neuron spe-
cific enolase/enolase 2 (ENO2, a neuroendocrine marker), and
B-cell CLL/lymphoma 2 (BCL2, encoding an anti-apoptotic pro-
tein) (78). PKA-induced phosphorylation of CREB may either
be direct or indirect through regulation of p21-activated protein
kinase 4 (PAK4) and/or ERK activity. Stress may also promote
apoptosis-resistance through PKA-dependent phosphorylation of
BCL2-associated agonist of cell death (BAD), as shown in Figure 1
(79). Furthermore, PKA may inhibit the ras homolog family mem-
ber A (RhoA) – Rho-associated PKA (ROCK) pathway leading to
neurite outgrowth either directly or mediated through either Rap1,
a member of the RAS oncogene family, or PAK4 (80). Rap1 is

also possibly involved in PKA-induced regulation of ERK activ-
ity (not shown in Figure 1). Finally, PKA-mediated effects of
adrenergic stimuli up-regulate vascular endothelial growth fac-
tor (VEGF) levels and HUVEC capillary tube formation via the
PI3K/AKT/p70S6K/HIF-1α pathway (81).

Besides regulating the transcription factor activity of CREB
and HIF-1α, the ADRB2/cAMP/PKA signaling pathway has been
shown to stimulate the androgen receptor responsive gene tran-
scription (57, 72). The putative molecular mechanisms involved
in ADRB2/PKA-mediated regulation of androgen receptor activ-
ity have been thoroughly described in a review by Merkle and
Hoffmann (82).

Much is still to be learned about the ADRB2 signaling pathway
in prostatic luminal cells. β-arrestin is instrumental in the desensi-
tization and internalization/sequestration of β-adrenergic recep-
tors (83). One study reported increased formation of a β-arrestin-
SRC complex following ADRB2 stimulation in LNCaP cells over-
expressing β-arrestin2 (73). How this affects the functional effects
of adrenergic signaling is unknown.

ADRENERGIC REGULATION OF NEUROENDOCRINE
DIFFERENTIATION
β-adrenergic stimulation is a well-known inducer of neuroen-
docrine differentiation of prostatic adenocarcinoma cell lines
(70, 84–86). Data linking sympathetic stimuli to neuroendocrine
differentiation in vivo, however, are currently lacking. Cox and
co-workers reported in a series of publications that the ADRB2
agonists epinephrine and isoproterenol caused a rise in the intra-
cellular cAMP levels, followed by increased activity of cAMP-
dependent PKA and a higher number of neuroendocrine-like
cancer cells (70, 84). cAMP has been shown to induce neu-
roendocrine differentiation to various extent in multiple prostate
cancer cell lines; namely LNCaP, PC-3, and PC-3-M (70, 85, 87–
89). Furthermore, neuroendocrine differentiation of LNCaP cells
was observed when the cells were transfected with a plasmid
expressing a constitutive active PKA catalytic subunit (84). The
induction of a neuroendocrine-like morphology was inhibited
after transfection of the LNCaP cells with a PKA regulatory subunit
containing mutations that rendered the PKA holoenzyme com-
plex in an inactive state despite increased cAMP levels. Moreover,
cAMP-signaling has been reported to up-regulate neuropeptides
like PTHrP and neurotensin in LNCaP cells (70).

Interestingly, the first evidence of different substrate specificity
between the various isoforms of the catalytic subunit of PKA was
observed in prostate cancer cells (90). Prostate cancer cells express
both the ubiquitously expressed Cα subunit and the cell-type spe-
cific Cβ isoforms (Cβ1, Cβ2, Cβ3, and Cβ4) of PKA (91). The PKA
Cβ2 subunit has previously been shown to be up-regulated in the
more proliferating prostate epithelial cells present in malignant
compared to benign prostate tissue (90). Up-regulation of MYC
is an early event during prostate tumorigenesis and PKA Cβ2 has
been shown to be a MYC target gene and to participate in a positive
feedback loop whereby MYC is stabilized (90). Prolonged activa-
tion of PKA Cα, however, represses MYC transcription and may
thereby promote growth arrest and neuroendocrine differentia-
tion. In contrast, the PKA Cβ2 splice variant has only a minor
effect on MYC transcription and is supposed to be linked to
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the growth stimulatory effect of MYC. Although it is unknown
whether any specific PKA isoforms act downstream of ADRB2, the
overall effect of adrenergic stimulation of LNCaP cells is inhibi-
tion of proliferation; indicating that Cα is mediating the effect (70,
92). Similarly, growth arrest was observed after cAMP treatment
in PC-3-M cells, suggesting that Cα plays a dominating role (85).
Generally, the anti-mitogenic effect of ADRB stimulation involv-
ing cAMP is in agreement with the non-mitotic characteristic of
most neuroendocrine cells.

Neurite outgrowth,a dynamic process in which actin rearrange-
ments cause the cells to obtain a more neuronal phenotype,
can be observed in LNCaP cells after 3–5 days of incubation in
charcoal-stripped serum (mimicking androgen deprivation) (93).
These morphological changes occur simultaneously with a rise
in cAMP (6), linking neurite outgrowth to the before-mentioned
cAMP-induced neuroendocrine differentiation. Upon adrenergic
stimulation, neurite outgrowth is observed as early as after 1 hour
(70). Activation of ADRB has been shown to induce an immediate
increase in cAMP, which could explain the more rapid appearance
of a neuronal phenotype (70) as compared to the delayed increase
following androgen-depletion.

Cytoskeletal rearrangements are essential in the process of
neurite outgrowth, and are regulated by small Rho GTPases
like CDC42, Rac1, and RhoA, each controlling distinct mor-
phogenic pathways. Inactivation of RhoA promotes neurite out-
growth in neuronal cells (94, 95). One possible mechanism by
which ADRB/cAMP/PKA regulate these cytoskeletal rearrange-
ments involved in neurite outgrowth is through direct inactivation
of RhoA (80, 94), as illustrated in Figure 1. In LNCaP cells,
the RhoA inhibitor C3 transferase was reported to induce trans-
differentiation to neuroendocrine-like cells (77, 96). Furthermore,
inhibition of the RhoA downstream effector ROCK has been
shown to induce neurite outgrowth in PC-3 cells and to a lesser
extent also in LNCaP cells (97). A similar effect is seen through
PAK4-induced activation of RhoA as shown in Figure 1 (80).
PAK4 may also mediate the effect of ADRB2/cAMP/PKA on neu-
roendocrine differentiation in prostate cancer cells by regulating
the activity of the transcription factor CREB (78). PKA has been
shown to activate PAK4 through phosphorylation, which induced
the transcriptional activity of CREB and thereby the expression of
NSE/ENO2.

In general, assembly of stress fibers plays an important role
in adhesion and motility of eukaryotic cells and loss of stress
fibers is associated with neurite outgrowth and reduced migra-
tory capacity (98). Upon destabilization of stress fibers, the cell
experiences cytoskeletal alterations and loss of focal adhesions,
both required for the cell to migrate. Maintenance of stress
fiber integrity is ensured through inhibition of actin filament
depolymerization and is regulated by the RhoA/ROCK pathway
(99). In addition, PKA has been shown to phosphorylate actin
monomers directly, thereby destabilizing the stress fibers (100).
These mechanisms have not been explored in prostate cancer
models.

ADRB2 EXPRESSION AND EFFECTS ON METASTASIS
Most prostate cancer metastases are detected in bone, lymph
nodes, lung, and liver (101). Metastasis is a complex multi-step

process involving the ability of cancer cells to detach from the pri-
mary tumor site, degrade extracellular matrix, migrate to other
parts of the body, and to invade and settle at the metasta-
tic site (102). The requirement for different properties is con-
stantly changing during the metastatic process, favoring cells
with high plasticity. Whereas, de-differentiation like epithelial–
mesenchymal transition (EMT) promotes detachment and migra-
tion, re-differentiation, or mesenchymal–epithelial transition
favors homing to metastatic sites.

In the work by Yu and colleagues, it was shown that the
expression level of ADRB2 changes during the metastatic process
in prostate cancer (58). Although up-regulation of ADRB2 is
observed in malignant compared to benign prostate tissue (57), a
decrease in ADRB2 expression is observed in aggressive relative to
indolent prostate cancer (58). Interestingly, knockdown of ADRB2
was shown to induce EMT of transformed prostatic epithelial
cells (RWPE-1). Expressional analyses revealed that the ADRB2
knockdown cells acquired an increased expression of vimentin
(VIM ) and N-cadherin (CDH2), as well as lowered expression of
β-catenin (CTNNB1) and integrin β4 (ITGB4) suggesting that the
cells harbor a mesenchymal-like phenotype. The ADRB2 knock-
down cells, as well as cells treated with an ADRB2 antagonist (ICI
118,551), showed increased ability to migrate and invade. Con-
versely, treatment with an ADRB agonist, isoproterenol, reduced
invasion in these cells as well as in DU145 cells (58).

In a PC-3 xenograft mouse model, however, norepinephrine
promoted metastasis (59). This might be due to increased migra-
tion, as suggested in a study by Lang et al. where increased migra-
tory activity in PC-3 cells was observed upon norepinephrine
stimulation (103). The effect was partially inhibited by treating
the cells with the β1-specific β-blocker atenolol, and fully inhib-
ited with the β2-specific blocker ICI 118,551. Furthermore, in
a xenograft model using ADRB2 and ADRB3 double knockout
mice (ADRB2−/−, ADRB3−/−), lowered human tumor cell dis-
semination to lymph nodes and distant organs was observed (42).
Whether stromal ADRB2 and ADRB3 affect the metastatic process
could not be addressed in this model system as tumor development
was severely compromised in ADRB2−/−, ADRB3−/− mice.

The ADRB2 expression level affects the phenotype of the
prostate cells and thereby their ability to migrate and invade (58),
and probably also their ability to settle at the metastatic site,
which would indicate a role of ADRB2 in the whole metastatic
process. Low expression of ADRB2 in prostatic epithelial cells is
associated with a mesenchymal-like phenotype (58). These cells
may have the potential to re-differentiate into epithelial cells
adapted to the microenvironment at the metastatic site. To what
extent this involves up-regulation of ADRB2 and development
of neuroendocrine-like tumors at the metastatic site is currently
not known. Interestingly, adrenergic stimulation has been linked
to pro-angiogenic processes in different cancer models (81, 104),
and may thus aid in providing the cancer cells with another mean
to escape the primary tumor site.

STRESS-INDUCED REGULATION OF ANGIOGENESIS
Neuroendocrine cells are the primary site of VEGF production
within the prostate (105). It is therefore compelling that the
number of neuroendocrine cells present in high-grade prostatic
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carcinoma correlates with the degree of neovascularization (106,
107). Studies have shown that neuroendocrine cells promote
growth of neighboring cancer cells through secretion of neuropep-
tides (108–111), and consequently an increased energy supply
through the blood stream is required by the tumor. The fact
that several factors are involved in both angiogenesis and neu-
roendocrine differentiation is intriguing, and points at a possible
linkage between the two processes.

Chronic stress has been reported to increase tissue norepi-
nephrine levels in an ovarian carcinoma mouse model, resulting
in the formation of new blood vessels, and increased expres-
sion of the pro-angiogenic VEGF (104). Similar observations
have been reported in the androgen-sensitive LNCaP cell line,
where VEGF-expression increased in a dose-dependent man-
ner upon ADRB2-mediated epinephrine stimulation (112). Fur-
thermore, in androgen-insensitive PC-3 cells, norepinephrine,
and isoproterenol stimulation induced VEGF expression through
increased activity of the cAMP/PKA pathway (81). Interleukin
6 (IL6), a well-known inducer of neuroendocrine differentia-
tion, and a putative downstream target of adrenergic signaling,
also functions as a pro-angiogenic factor (92, 113, 114). More-
over, conditioned media from norepinephrine stimulated PC-3
cells induced HUVEC capillary tube formation in an in vitro
angiogenesis assay (81). In concordance with the adrenergic stim-
ulatory effects on VEGF and capillary tube formation, treat-
ment of rats with propranolol resulted in a reduction in ven-
tral prostate blood vessel volume (115). Hassan and colleagues
were, however, not able to detect a significant up-regulation of
plasma-VEGF levels in stressed compared to calm mice (116).
They also measured the micro-vessel density in Hi-Myc mice
after stress-induced adrenergic stimulation, and also here they did
not observe any significant difference between calm and stressed
Hi-Myc mice.

Although there are very few studies that have addressed the
effects of ADRB stimulation on angiogenesis in prostate cancer,
the strong evidence from other model systems (117–119) warrants
further investigation into this field in different prostate cancer
models.

ADRENERGIC REGULATION OF APOPTOSIS
Stress has been reported to reduce apoptotic activity (116, 120),
whereas sympathectomy increases apoptosis in mouse prostate
cancer models (42). Thus, prolonged elevation of catecholamines
may promote prostate cancer progression by inducing resistance
to apoptosis. This is in agreement with the observation that epi-
nephrine protects LNCaP and C4-2 cells from apoptosis induced
by the PI3K inhibitor LY294002, and thapsigargin (79).

Adrenergic signaling regulates apoptotic activity by multiple
mechanisms as indicated in Figure 1. The best characterized
mechanism in prostate cancer cells is the PKA-mediated phospho-
rylation of BAD on Ser112 and Ser155 (79, 121, 122). Increased
phosphorylation of BAD at Ser112 was also observed in mice, and
may explain the stress-induced resistance to apoptosis observed in
mouse models (116). PAK4 has also been shown to phosphorylate
BAD on Ser112 in HeLa cells over-expressing PAK4 (123). Further-
more, PKA induces apoptosis-resistance by directly or indirectly
activating CREB and thereby up-regulating the level of BCL2 (78).

The anti-apoptotic BCL2 protein acts downstream of ADRB2 in
pancreatic cancer cells (124).

Repeated immobilization stress, which elevates the plasma
level of epinephrine and inhibits apoptosis, has been shown to
accelerate cancer development in mice through stimulation of β-
adrenergic receptors (116). Prolonged elevation of catecholamines
is also observed in obese (125, 126) and chronically stressed (127,
128) individuals, and may represent one mechanism by which
obesity, and perhaps stress, promote development of aggressive
prostate cancer (129–131). As a negative feedback mechanism,
enhanced levels of catecholamines may lead to down-regulation
of ADRB2. Interestingly, expression of ADRB2 in prostatectomy
specimens is inversely correlated with biochemical recurrence
(BCR) (58), suggesting that chronic stress and low levels of ADRB2
are associated with disease progression. Studies are needed to
enlighten this hypothesis.

CONTROVERSIES, CLINICAL IMPLICATIONS, AND
CONCLUSIONS
In normal prostate physiology, the sympathetic nervous system
regulates prostate differentiation and secretory activity of luminal
cells, predominantly through ADRB2 (34, 35, 40, 41). We know
from in vitro and in vivo prostate cancer models that chronic
elevation of ADRB activity by exposing mice to repeated stress
or by adding ADRB agonists promotes neuroendocrine differ-
entiation (70, 84–86), metastasis (58, 103), angiogenesis (78, 81,
112, 115), and apoptosis-resistance (116, 120); together indicating
that adrenergic signaling promotes prostate cancer progression
(Figure 2).

There are, however, several controversies in the field that chal-
lenge this hypothetical model. To begin with, the collective evi-
dence fails to point in any obvious direction in terms of whether
adrenergic signaling is beneficial or disadvantageous for prostate
cancer patients. Both stimulatory and inhibitory effects of adren-
ergic stimulation on proliferation have been observed in cell line
studies (70, 73, 85, 92). The majority of publications involv-
ing prostate cancer cell lines, however, claim that elevated β-
adrenergic receptor activity induces growth arrest in vitro and
has no effect in mouse models, alongside undergoing neuroen-
docrine differentiation in cell lines (116). Furthermore, adrener-
gic signaling up-regulates VEGF expression (112) and promotes
HUVEC capillary tube formation in cell line experiments (81).
Induction of anti-apoptotic mechanisms through ADRB2 stim-
ulation has been seen in both cell lines and in prostate cancer
xenograft models (116). To what extent these mechanisms are
involved in development of human prostate cancer is unknown,
but reduced apoptotic activity and stimulation of angiogene-
sis may be consequences of up-regulated ADRB2 levels, which
are seen in malignant compared to benign prostatic epithelial
cells (Figure 3).

The mechanisms described above cannot explain why low
rather than high level of ADRB2 is associated with disease progres-
sion measured as BCR. The inverse correlation between ADRB2
and BCR may relate to the observation that, whereas high ADRB2
activity induces neuroendocrine differentiation, low ADRB2 activ-
ity/level promotes EMT in prostate cell lines (Figure 3). Cancer
cells expressing low levels of ADRB2 have a mesenchymal-like
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FIGURE 2 | Hypothetical model of how β2-adrenergic signaling may
promote progression of prostate cancer. In summary, we hypothesize
that ADRB2s expressed on luminal cells are activated by catecholamines,
which are secreted by nerves and transported through blood vessels in
response to stress. Catecholamines are possibly also secreted by proximal
chromaffin-like cells and macrophages (not shown) that also can produce
epinephrine and norepinephrine, respectively. In addition, ADRB2s
expressed on stromal cells are activated by sympathetic stimuli. Upon
ligand-binding, the expression of anti-apoptotic and pro-angiogenic factors is

increased and a number of cancer cells undergo trans-differentiation to
neuroendocrine-like cells. Together this will favor tumor growth.
Angiogenesis and neurogenesis are closely linked (132) and sympathetic
activation may stimulate perineural invasion through chemotaxis. In general,
chronic ADRB2 activation down-regulates the ADRB2-level, leading to
de-differentiation and epithelial–mesenchymal transition, with a subsequent
increase in the migratory and invasive potential of the cells. Cancer cells
expressing low levels of ADRB2 will thereby follow the nerves and blood
vessels to metastatic sites.

FIGURE 3 | Effects of ADRB2 on tumor characteristics in cell lines, mouse models, and human prostate cancer. The effects of β-blockers on the different
characteristics in each model system is also shown.

phenotype and have a higher probability of being in the circula-
tion at time of prostate removal (radical prostatectomy). These
cells may also have a higher degree of plasticity and will therefore

more easily adapt to environmental changes and thereby produce
recurrent tumors in both humans and mice. The fact that reduc-
tion in adrenergic activity induces EMT in prostatic epithelial cells
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gives rise to another conflicting observation, since adrenergic stim-
ulation promoted metastasis in a PC-3 xenograft model (59). A
plausible explanation to this is that circulating tumor cells are
already present in the xenograft model due to the mesenchymal-
like phenotype of PC-3 cells and that binding of ligand to ADRB
promotes mesenchymal to epithelial transition (MET) and hom-
ing to metastatic sites. Along the same line, we may explain the
β-blocker paradox. In cell line experiments, β-blockers have been
shown to promote EMT (58) whereas use of β-blocker is associated
with reduced mortality in prostate cancer patients (21, 22). Again,
inhibition of MET by β-blockers is one hypothesis that needs to
be unraveled.

The reports on effects of β-blockers on mortality in other cancer
types brings forth an important question: are the in vivo effects
of β-blockers mediated by common tissue specific/non-specific
attributes, or are the effects indirect (i.e., systemic or neural effects
facilitated by other local or distant tissue expressing ADRBs)? β-
blockers probably have an effect on immune responses, hormone
levels, angiogenesis, neurogenesis, and at the metastatic niche. In
the prostate, stromal cells proximal to tumor tissue express ADRBs,
and may exert the effect, which may also explain the discrepancy
between cell line results and in vivo data. It is also worth noting
that the majority of β-blockers are targeting β1-adrenergic recep-
tors or both β1- and β2-adrenergic receptors, whereas ADRB2 has
been the receptor mediating the effects on cancer cells. Another
plausible explanation lies in the antagonistic mechanism of action.
Propranolol, for example, a commonly used antagonist in vitro, has
been shown to function as an inverse agonist (133), and can thus
lower the β-adrenergic receptor’s activity below its’ basal level. In
clinical practice, however, numerous β-blockers are used, and their
mechanisms of action vary. Furthermore, the differences observed
could be dose-dependent, as it is difficult to measure the dose
in patient tissue, whereas this parameter can be controlled in cell
lines and animal models. We anticipate that ADRB antagonists will
reduce the development of neuroendocrine prostate cancers, but
this has not yet been addressed in any publications. More studies
are needed to unravel whether β-blockers can play a role in future
tailored prostate cancer therapy.

ADRB2 may play a role both as a prognostic and as a pre-
dictive biomarker in prostate cancer. We do not know, however,
whether the expression level of ADRB2 is a driver of progres-
sion. Still, it is plausible to hypothesize that the receptor may
be involved in maintenance of a differentiated phenotype, an
attribute that is lost when the cells gain plasticity and metasta-
size, and the disease reaches an incurable stage. We know that
ADRB2 is inversely correlated with time to BCR and that it
acts independently of Gleason score, surgical margin status and
preoperative PSA as a prognostic marker (58). Actually, ADRB2
was the strongest predictor of clinical failure in the study by
Yu et al. Validation studies also addressing a potential associa-
tion with metastasis, development of castration resistance, and
survival is warranted to determine whether ADRB2 is a clin-
ically relevant prognostic marker in prostate cancer. The fact
that β-adrenergic signaling induces neuroendocrine differenti-
ation and apoptosis-resistance of prostate cancer cells suggest
that ADRB2 could play a role in predicting responsiveness to
pro-apoptotic drugs.
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