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Epigenetic modifications such as histone post-transcriptional modifications, DNA methy-
lation, and non-protein-coding RNAs organize the DNA in the nucleus of eukaryotic cells
and are critical for the spatio-temporal regulation of gene expression. These epigenetic
modifications are reversible and precisely regulated by epigenetic enzymes. In addition to
genetic mutations, epigenetic modifications are highly disrupted in cancer relative to nor-
mal tissues. Many epigenetic alterations (epi-mutations) are associated with aberrations
in the expression and/or activity of epigenetic enzymes. Thus, epigenetic regulators have
emerged as prime targets for cancer therapy. Currently, several inhibitors of epigenetic
enzymes (epi-drugs) have been approved for use in the clinic to treat cancer patients with
hematological malignancies. However, one potential disadvantage of epi-drugs is their lack
of locus-selective specificity, which may result in the over-expression of undesirable parts of
the genome.The emerging and rapidly growing field of epigenome engineering has opened
new grounds for improving epigenetic therapy in view of reducing the genome-wide “off-
target” effects of the treatment. In the current review, we will first describe the language
of epigenetic modifications and their involvement in cancer. Next, we will overview the cur-
rent strategies for engineering of artificial DNA-binding domains in order to manipulate and
ultimately normalize the aberrant landscape of the cancer epigenome (epigenome engi-
neering). Lastly, the potential clinical applications of these emerging genome-engineering
approaches will be discussed.

Keywords: epigenetics, epigenome editing, genome editing, histone modifications, DNA methylation, zinc finger
proteins,TALEs, CRISPR/dCas9

INTRODUCTION
Epigenetic mechanisms including histone modifications, DNA
methylation, and non-coding RNAs (ncRNAs) are essential for
the mitotic maintenance of gene expression. Indeed, aberrant epi-
genetic regulation is associated with several pathological processes
such as cancer. While for many decades much focus has been placed
on genetic mutations as primary cause of cancer and cancer pro-
gression, the discovery of reversible epigenetic alterations in cancer
has illuminated novel and exciting therapeutic avenues (1).

One primary function of the epigenetic processes is purely
structural: packaging the genetic information in the nucleus of
eukaryotic cells. The human genome contains approximately 3
billion base pairs (bps) of DNA, which are organized in 23 chromo-
somes. Each diploid cell with 46 chromosomes contains 6 billion
bps of DNA. As each base measures 0.34 nm, approximately 2 m of
DNA must be condensed in the nucleus of each diploid cell. His-
tone proteins are key players responsible for organizing the long
fibers of DNA within the nucleus and the complex of DNA with
histones is referred as chromatin.

Abbreviations: ac, acetylation; ChIP, chromatin immunoprecipitation; ChIP-Seq,
ChIP sequencing; epi-drugs, epigenetic drugs; epi-enzymes, epigenetic modify-
ing enzymes; me, methylation; P, phosphorylation; SUMO, SUMOylation; ubi,
ubiquitination; ZFP, zinc finger protein.

Histone proteins H1, H2A, H2B, H3, and H4 are small and pos-
itively charged molecules involved in DNA compaction. Approxi-
mately 147 bps of superhelical DNA is wrapped around dimers of
histones H2A, H2B, H3, and H4 composing the nucleosome core
particle (2). The protruding N-terminal tails of histones undergo
post-translational chemical modifications including but not lim-
ited to acetylation (ac), methylation (me), phosphorylation (P),
ubiquitination (ubi), and SUMOylation (SUMO) (3, 4). Accord-
ing to the nomenclature describing histone modifications, first
the histone is named, followed by the modified amino acid residue
along with its position in the protein and lastly the type of chemi-
cal modification is included (for instance, H3K9me3 designates 3
methylation groups on lysine 9 in the histone H3 tail) (5). Argi-
nine (R) and/or lysine (K) residues in H3 are commonly found
acetylated or methylated (4).

Histone post-transcriptional modifications are of reversible
nature and are incorporated or removed by a broad range of
epigenetic modifier enzymes (epi-enzymes) (6). These chemi-
cal modifications (“marks”) confer very important biochemical
roles to their histone substrates (7). Notably, histone proteins
with different covalent modifications can be associated with
either repressive or active forms of chromatin and thus they
control gene expression status (4, 8). In general, H3K9me2/3
and H3K27me3 are accompanied with gene repression, whereas
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H3K4me3 and H3/H4 acetylation are often associated with active
gene expression (9).

In addition to histone post-transcriptional modifications, chro-
matin structure and function is regulated by DNA methylation.
Indeed, DNA methylation was the first identified epigenetic mark
(10). DNA methylation is catalyzed by DNA methyltransferase
enzymes (DNMTs) and mainly occurs at the 5′-carbon of a cyto-
sine base that is generally preceding guanine (CpG). This mark
is often referred to as the fifth DNA base (in addition to A, T, C,
and G), and it plays a pivotal role in gene expression regulation,
for example, by preventing transcription factors to bind and/or by
recruiting repressive protein complexes to the DNA (11). Although
DNA methylation is relatively more stable than the histone post-
transcriptional modifications, it is also of reversible nature and
can be removed by either passive (e.g., during DNA replication)
or active processes [e.g., catalytically removed by specific enzymes
including 10–11 translocation (TET), thymidine DNA glycosylase
(TDG), or by activation-induced deaminase (AID) families (12–
14)]. Both active and passive DNA demethylation mechanisms
are crucial for normal development and cellular differentiation in
mammalians (13, 15).

Non-coding RNAs (ncRNAs) have emerged as important epi-
genetic regulators in crucial biological processes such as differen-
tiation and development (16). ncRNAs comprise several types of
short ncRNAs, including microRNAs (miRNAs), short interfering
RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs). In addi-
tion to small ncRNAs, long ncRNAs (lncRNAs) of 200 nucleotides
or more in length, are also implicated in chromatin organiza-
tion and in the control of gene expression (17). For example,
the lncRNA HOTAIR (HOX antisense intergenic RNA) regulates
the HoxD loci and is found overexpressed in primary breast
tumors and metastases. Thus, the level of HOTAIR expression
represents a useful biomarker to predict metastatic disease. Impor-
tantly, HOTAIR expression is associated with changes in histone
post-transcriptional modifications that are mediated by recruit-
ment of histone modifier enzymes such as the polycomb repres-
sive complex (PRC2), which is a histone H3 lysine 27 (H3K27)
methylase (18).

In addition to histone modifiers, ncRNAs have been reported
to mediate the recruitment of DNA methyltransferases, promot-
ing de novo DNA methylation and transcriptional silencing. A
recent report has demonstrated that ectopic expression of a pro-
moter associated non-coding RNA (pRNA) induced DNA methy-
lation, heterochromatin formation, and silencing of a ribosomal
RNA gene promoter by recruitment of DNMT3b. Along with
an increased DNA methylation, an induction of inactive his-
tone modifications, and a concomitant decrease of active histone
modifications were observed (19).

Another class of ncRNAs regulating DNA and histone methyla-
tion is referred as “piRNAs,” which interact with Piwi-containing
proteins. piRNAs regulate the expression of amplified genomic
sequences such as transposons (e.g., LINE-1 elements) preventing
their expression in the germinal line (20, 21). Proteins belong-
ing to the argonaute (Ago) family are small RNA and DNA-
guided endonucleases involved in host-defense mechanisms that
are highly conserved across kingdoms, from archaea to eukary-
otes. In the cytoplasm, Ago proteins are critical for processing of

miRNAs and for post-transcriptional gene silencing in complex
with RNA induced silencing complex, RISC. In addition, an
emerging function of nuclear Ago proteins involves the epigenetic
control of gene expression via the recruitment of chromatin mod-
ifiers (e.g., H3K9 and H3K4 methytransferases), resulting in either
repression or activation of gene expression (22).

In the following sections, we will overview the role of epigenetic
modifications (DNA methylation and histone modifications) in
cancer and describe novel technologies for genome engineering in
cancer cells.

EPIGENETICS IN CANCER
Genome-wide maps of epigenetic modifications in normal and
cancerous cells have provided insights into the involvement of
specific epigenetic processes in cancer initiation and progression.
Epigenetic enzymes are frequently deregulated in cancer relative to
the normal tissue and the resulting epigenetic patterns associated
with abnormally altered expression of genes involved in various
cellular pathways including cell proliferation, cell differentiation,
and DNA repair (23).

The altered status of histone methylation and acetylation, the
global loss or low levels of acetylation of histones H3 and H4
(H3K9ac, H3K18ac, and H4K12ac) and methylation of histones
H3 and H4 (H3K4me2 and H4K20me3) are among the most
outstanding features in cancer (24, 25). In addition, the cell-
specific pattern of DNA methylation is severely disrupted in can-
cer. It has been determined that the cancer genome is globally
hypomethylated, which is associated with chromatin instability. In
contrast, the promoters of several silenced tumor suppressor genes
in cancer are hypermethylated, which is consistent with the role
of DNA methylation in gene silencing in these promoter contexts
(2, 26, 27). The tight correlation between the disrupted epigenome
and deregulated gene expression in cancer suggests that epigenome
editing can be a potential novel approach for normalizing the gene
expression profile of cancerous cells.

EPIGENETIC MODIFIERS AS EMERGING TARGETS FOR
CANCER THERAPY
Epigenetic modifications are catalyzed and maintained by epi-
genetic modifier enzymes (epi-enzymes). In principle, the inhi-
bition of specific epi-enzymes that are overactive in cancer cells
can potentially reverse the incorporation of epigenetic mutations
making epi-enzymes very attractive targets for cancer therapy.

There is a growing list of epigenetic drugs (epi-drugs) that
have been developed for the specific inhibition of epi-enzymes.
Epi-drugs comprise mainly DNA methyltransferase inhibitors
(DNMTis) and histone deacetylase inhibitors (HDACis). How-
ever, new epi-drugs including histone methyltransferase inhibitors
(HMTis) and a second-generation of DNMTis are being developed
and tested for the mixed lineage rearranged leukemia (HMTis),
advanced hepatocellular carcinoma, ovarian cancer, myelodys-
plastic syndrome, and acute myeloid leukemia (DNMTis) (28).
Several DNMTis (e.g., azacitidine and decitabine) and HDACis
(e.g., vorinostat and romidepsin) are FDA-approved and have been
used in clinical trials for several years for treatment of hematologi-
cal malignancies (29) and not until recently used for the treatment
of solid tumors (23, 28, 30).
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The efficacy of particular epi-drugs has highly improved in
form of combinatorial treatments with other epi-drugs or with
other forms of therapy such as hormonal therapy and chemother-
apy. In these cases, the epi-drugs are anticipated to sensitize
resistant types of cancer to their current therapies. For example,
by demethylating and re-expressing estrogen receptors, specific
epi-drugs are expected to sensitize resistant breast cancer cells to
hormonal therapy (23). The molecular mechanisms of most epi-
drugs are based on the inhibition of specific epi-enzymes that
either remove acetyl groups from histones or add methylation
groups (to histones or DNA), resulting in gene up-regulation. In
this regard, tumor suppressor genes that are silenced by epige-
netic mechanisms are anticipated to reactivate their expression
upon epi-drug exposure. However, because of the lack of tar-
get selectivity, epi-drugs can cause genome-wide effects such as
up-regulation of prometastatic genes (31, 32) and disruption of
multiple cellular pathways due to unwanted effects of epi-drugs on
some proteins such as P53, nuclear factor-κB, nuclear receptors,
c-Myc, heat-shock protein-90, and so on. For example, acety-
lation of transcription factor P53 by histone acetyltransferase
P300 can lead to activation of P53 and thus may result in a
change in expression of the genes, which are regulated by P53
(33, 34). In order to improve the specificity and efficiency of
epigenetic therapy, epigenetic reprograming in a gene-targeted
manner (epigenome editing) represents an exciting alternative
option.

GENOME-EDITING APPROACHES
Gene therapy is becoming more and more attractive in can-
cer research as it might represent an alternative treatment for
several difficult to treat cancers that suffer from resistance to
the current therapies, including hormone therapy. Historically,
however, the gene therapy field has experienced ups and downs
due to the undesirable effects of the therapy, which even led
to the death of patients and to the development of leukemia-
like symptoms during the trials. However, since the early 2000s
and by developing safer and more efficient gene delivery tech-
nologies, gene therapy has been successfully implemented for the
treatment of patients with different diseases including metastatic
melanoma (35).

By means of gene therapy, critical genes can be introduced in the
genome or their expression regulated in order to inhibit cancer cell
growth. In some classic gene therapy approaches, the target gene
is either knocked-down using interfering ncRNAs, e.g., siRNAs or
is expressed by introducing ectopic cDNAs into the cells. These
approaches have their own limitations, for instance, the continual
administration of ncRNAs or cDNA is necessary. In addition, one
specific ncRNA or cDNA might not be sufficient for the repression
or up-regulation of all possible various isoforms of a gene. Finally,
the lack of an inefficient delivery system is the major obstacle that
remains to be addressed. In order to solve the problem of the tran-
sient effect of ncRNA or cDNA, targeting a gene directly at the
DNA level is a promising new emerging strategy. To target a given
gene, DNA-binding domains must be developed with ideally sin-
gle locus selectivity, and these domains are next utilized in several
genome-editing approaches.

DNA-BINDING DOMAINS AND THEIR SPECIFICITY TO THEIR
TARGETS
Genome targeting tools are the essential components of the
genome correction approaches. To date, several types of
DNA-binding proteins have been developed to target specific
loci in the genome. Zinc finger proteins (ZFPs), transcription
activator-like effectors (TALEs), and clustered regularly inter-
spaced short palindromic repeats (CRISPRs) are the most com-
monly exploited DNA-binding proteins, which are engineered to
target a genomic sequence of interest (Figure 1).

Cys2–His2 ZFPs are made of modular zinc finger (ZF) domains
where each finger domain is composed of one α-helix and two β-
sheets coordinated by a zinc ion with two residues of cysteine and
two residues of histidine. The α-helix of each finger domain is
designed to recognize 3-bps of DNA. By exchanging the specific
amino acid residues of the α-helix that make essential contacts
with 3-bps of DNA ZFPs are then capable to bind a different DNA
sequence. To recognize more specifically a target DNA sequence,
finger domains can be linked together; for instance, a 6-ZFP pro-
tein (composed of 6 ZF domains) can recognize 18 bps of DNA,
which mathematically represents a unique address in the genome
(36) (Figures 1A and 2A).

One of the advantages of ZFPs is their modular architecture and
small size (each ZFP motif is composed of 30 amino acid residues),
which simplifies the production of the proteins and potentially
their delivery into the cells (Table 1). In addition, the structure of
artificial ZFPs is similar to the naturally occurring human ZFP
transcription factors; therefore, their introduction into human
cells is not anticipated to raise adverse immune responses. Our
laboratory has demonstrated that engineered ZFPs are able to reac-
tivate epigenetically silent genes such as class II tumor suppressor
genes, which suggest that the ZFPs are able to reach the compact
chromatin structure of silent genes (37–39). However, the up-
regulation of hypermethylated tumor suppressor genes by artificial
ZFPs (also commonly referred as artificial transcription factors,
ATFs) is highly synergistic with combinations of epi-drugs (par-
ticularly the combination of decitabine, a DNMT3A inhibitor and
vorinostat, a HDAC inhibitor), indicating that compact chromatin
structure, indeed, represents a partial blockade for ZFPs (40, 41).

The preference of ZFPs to their target sequences has been
extensively studied since the early 2000s. For example, the ZFP
targeting ErbB2 gene from the Her-family specifically regulate the
expression of ErbB2 gene without altering the expression of other
genes from the same family with similar sequences (ErbB1, ErbB3)
(42). In addition, a study evaluating the effect of a ZFP target-
ing checkpoint kinase 2 gene on the expression of 16,000 genes
showed that the effect of the studied ZFP was specific to its tar-
get gene (43). The ErbB2-ZFP binding selectivity was analyzed
using genome-wide ChIP-seq (chromatin immunoprecipitation
sequencing). This study confirmed that the ZFP had the highest
preference to the ErbB2 gene among the other annotated genes
(44). Despite the affinity of ZFPs to their preferred target genes,
they might have off-targets too. In fact, the individual fingers of
a ZFP might influence each other’s specificity (45), which brings
up the need for more specific DNA-binding domains. In a recent
study of engineered 6-ZFP proteins targeting the oncogene SOX2
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FIGURE 1 | Schematic figure of genome-editing tools composed of an
effector domain (ED) fused to a DNA-binding domain: (A) ZFP,
(B)TALEs, and (C) CRISPRs. The double-strand DNA is shown as two
parallel blue lines, the vertical small lines connecting the two strands of
DNA are representing the hydrogen bonds between nucleotides. The small
green circles in (A) are presenting 6-finger ZFP. The colorful thin ovals in

(B) are representing tandem repeats of TALEs. In (C), the pink large circle
represents dCas9 protein. X D10A and X H840A are two mutations
deactivating endonuclease activity of dCas9. The guide RNA is shown in
black. The target binding site of guide RNA is located upstream of PAM. The
small vertical lines between guide RNA and the target region of DNA are
showing the hydrogen bonds.

linked to the Krüppel associated box (KRAB) repressor domain,
it was found that while the DNA-binding domain can poten-
tially bind thousands of promoters in the cell, the ZFP was still
capable of regulating a more limited subset of targets (46). This
work suggested that the capacity of the ZFP proteins to regu-
late target genes was highly context-dependent. Hence, most of
ZFP binding events were not associated with the target regula-
tion. Interestingly, the ZFPs linked to the KRAB domain resulted
in transcriptional repression of some genes, whereas for other loci
binding was associated with target gene activation and with pro-
moter demethylation. In sum, the physiological capacity of ZFPs to
regulate target genes appear to be highly dependent on the chro-
matin context of the targeted region, including the presence of
co-activator or co-repressors in that particular genomic address
bound by the DNA-binding domain (46, 47).

In an effort toward the engineering of highly specific DNA-
binding domains, transactivation like effector (TALEs), derived
from the plant pathogen bacterial genus Xanthomonas were devel-
oped as novel modular DNA-binding proteins. TALEs act as
transcription factors, which can bind to the promoters of dis-
ease resistance-related genes in plants, regulate their expression
and cause infection in plant hosts (48). TALEs consist of a series
of tandems repeats (33–35 amino acids), in which each repeat or
module recognizes a single base pair (bp) of DNA (49) (Figures 1B
and 2B). However, TALEs have their limitations including suscep-
tibility to DNA rearrangements as consequence of their repetitive
nature, and also their big size, which limits their delivery into the
cells and target tissues (49, 50). In addition, it has been shown
that a TALE targeting the EGFP gene fused to a DNA demethylase
was not capable of demethylating the KLF4 intron in a reporter
plasmid (51). This might confirm the sensitivity of TALEs binding

to methylated DNA. While one potential advantage of TALEs over
the ZFPs is their higher structural complexity and their capacity to
discriminate between closely related DNA sequences, one poten-
tial limitation is their lack of activity in certain genomic contexts
(Table 1). In particular, TALEs are highly sensitive to DNA methy-
lation, although re-engineering of the hypervariable DNA-binding
regions might help to overcome this limitation (52).

In early 2013, another breakthrough technology, CRISPR–
Cas (CRISPRs–CRISPR associated proteins), was introduced as a
genome-engineering tool and has drawn great interest as an essen-
tial tool in molecular biology. The CRISPR–Cas system is a natural
defensive molecular pathway in bacteria and archaea, which acts
like an adaptive immune system against viral genome attacks.
However, more than two decades of investigation was required
to reasonably understand the molecular function of CRISPR–Cas.
In 1987, it was first reported that Escherichia coli K12’s genome
contains repetitive sequences adjacent to the alkaline phosphatase
gene (53). In 2002, the CRISPR–Cas system was reported as the
immune system of bacteria and archaea (54, 55). The CRISPR–Cas
system can be classified into three types. The type II CRISPR–Cas9
is the simplest design and it is composed of one single endonucle-
ase protein, Cas9, which is guided to a particular DNA sequence by
small RNAs. This type II CRISPR–Cas9 (hereafter called CRISPRs)
has been engineered and evolved as the framework for a new gen-
eration of DNA-binding domains (56). In essence, CRISPR is a
RNA-dependent DNA-binding protein in which the information
to bind the target gene is provided by a single synthetic 100-bp
“guide” RNA. Guide RNAs recognize a target genomic sequence
of approximately 20 bps upstream of a tri-nucleotide 5′-NGG-3′

protospacer adjacent motif (PAM) that is vital for recognition and
specificity of guide RNAs. Guide RNAs form a complex with the
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FIGURE 2 | Molecular representation of DNA-binding proteins used in
genome engineering (A) 6-finger ZFP (PDB ID: 2I13). The individual ZF
domains are shown in color and the DNA in space filled mode in dark blue
and magenta. (B) TALEs (PDB: 3V6T). DNA strands are shown in dark blue
and magenta. Each repeat is indicated with a different color. (C) CRISPR
interacting with guide RNA (yellow) and target DNA (turquoise) (PDB:
4UN5). Some of the domains of the protein are indicated (topoisomerase
domain in green and nuclease domain in purple). Residues interacting with
the PAM sequence are shown in space filled mode.

endonuclease Cas9 protein, which induces DNA double-strand
breaks. In fact, guide RNAs can direct the Cas9 protein to the tar-
get loci in the genome (Figures 1C and 2C). CRISPR technology
is a flexible and cost-effective system for genome editing, which
can be easily used to target multiple loci in a host genome. Impor-
tantly, CRISPRs seem to not be hampered by DNA methylation
(57). In addition, it has been shown that the number of off-targets
of CRISPRs in the human genome varies between 10 and <1000,
and that the design of the guide RNA is essential in determin-
ing specificity (58). Interestingly, reducing the length of guide
RNAs to 17–18 nucleotides increased the specificity of guide RNAs.
These shorter guides showed similar or even higher efficacy than
full-length guide RNAs (59). In order to increase the specificity
of CRISPRs, dimeric RNA-guided FokI nucleases (RFNs) were
recently introduced. In this system, two split units of dCAs9-FokI
nuclease and two guide RNAs re-constitute a functional nuclease,

and thus RFNs cleavage function is highly dependent on binding
of two guide RNAs to the target DNA (60).

EFFECTOR DOMAINS FOR GENOME MANIPULATION
For genome-editing purposes, DNA-binding domains such as
ZFPs and TALEs are linked with nucleases (so called ZFNs and
TALENs, respectively) and the resulting fusions are able to induce
double-strand breaks in the targeted sequence in the genome.
The breaks can eventually be exposed to the cellular repair sys-
tem resulting in several insertions and deletions. The induced
double-strand breaks using ZFNs and TALENs are associated
with inheritable gene disruption, as it has been demonstrated in
worms (61). Likewise, CRISPRs containing Cas9 nuclease facili-
tate double-strand cleavage at specific locations, which triggers the
DNA repair program. Several genes of different organisms have
been corrected or disrupted using ZFN, TALENs, and CRISPR
technologies (50).

In order to modulate gene expression without altering the DNA
sequence, both ZFPs and TALEs are exploited in the absence of a
nuclease catalytically active domain. Instead, the proteinaceous
DNA-binding domain is linked to an effector domain (ED), with
either a transcriptional regulatory or epigenetic modifying effect.
Similarly, to generate CRISPRs suitable for genome-engineering
applications other than targeted double-strand DNA breaks, Cas9
is inactivated in its DNA cleavage domain by two mutations, D10A
and H841A (62). The mutant or defective Cas9 (dCas9) with no
endonuclease activity is directly linked to transcriptional or epige-
netic modifying domains. We refer the CRISPRs system containing
dCas9 as CRISPR–dCas9.

REGULATING THE EXPRESSION OF THE CANCER GENOME
By taking advantage of artificial DNA-binding technology, several
cancer drivers have been targeted and transcriptionally modulated
(Table 2). A wide range of EDs has been linked to ZFPs to up-
or down-regulate the targeted genes. DNA-binding domains have
been engineered with either transcriptional repressor domains
(e.g., the Krueppel associated box (KRAB) domain) or tran-
scription activator domains [e.g., the tetramer of herpes simplex
virus protein VP16 (VP64)]. Transcriptional modulation of sev-
eral tumor suppressor genes and oncogenes including MASPIN,
Her2/neu, SOX2, OCT4, EpCAM, ICAM-I, and C13Orf18 by ZFPs
linked to the VP64 or KRAB domain have been reported in breast,
ovarian,and lung cancer models. In these studies,down-regulation
of overexpressed oncogenes and up-regulation of silent tumor
suppressor genes using ZFPs fused to KRAB andVP64, respectively,
resulted in reduced growth of cancer cells both in vitro and mouse
models (39, 44, 47, 63–68). Likewise, TALEs and CRISPRs–dCas9
have demonstrated target gene modulation when linked to VP64
(51, 69) or KRAB (70, 71). Although each individual DNA-binding
domain has been shown to be effective in up- or down-regulation,
they act highly synergistically in combination. For example, the
epigenetically silent OCT4 gene has been very efficiently activated
when different regions of its promoter are targeted by multiple
TALE–VP64 molecules or by a CRISPRs–dCas9–VP64 in com-
bination with several guide RNAs (72). Effective regulation has
been achieved by targeting both core promoters and enhancer
sequences (66).
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Table 1 | Comparison of DNA-binding backbones for genome engineering.

ZFPs TALEs CRISPRs

Advantages Disadvantages Advantages Disadvantages Advantages Disadvantages

Small size: efficient

delivery into the cells

Many off-targets High specificity to the

target

Sensitive to DNA

methylation of the

targeted region

Highly specific to the

binding site and highly

effective

Cost and time effective

synthesis

Successfully used in

combination with the

catalytic domain of many

enzymes

Time consuming and

more elaborate synthesis

DNA-binding domain is

independent from

effector domain

Engineered from human

proteins might be less

susceptible to adverse

immunoreactions

Engineered from

bacterial backbones

might elicit

immunoresponses

Cost and time effective

synthesis

Engineered from

bacterial backbones

might elicit

immunoresponses

Successfully used in

combination with

catalytic domain of

multiple enzymes

Big size might

complicate delivery

Being used in

combination with

catalytic domain of any

enzyme

Big size might

complicate delivery

Successfully

implemented in clinical

trials

Susceptibility to DNA

rearrangements

In contrast with ZFPs and TALEs, in which the DNA-binding
domain is directly linked in frame with an ED, in the CRISPRs
system the gene targeting activity is mediated by the guide RNA
and the ED is linked to the dCas9 protein. Therefore, the guide
RNAs and the dCas9-effector fusions are typically independently
delivered into the cells. As a consequence, altering the targeted
specificity of the CRISPRs does not require de novo protein engi-
neering but just delivery of specific short guide RNAs. In addition,
in order to enhance the efficiency of CRISPRs in regulating gene
expression, several guide RNAs can be easily and quickly syn-
thesized and combined with dCas9–ED fusions (73). The easy
synthesis of guide RNAs facilitates construction of guide RNAs
libraries for identifying the role of targeted genes in diseases or
specific phenotypes. For example, a recent study used a library of
87,897 guide RNAs targeting 19,150 genes to introduce mutations
using CRISPRs in the mice genome, which uncovered novel genes
in the mouse genome modulating toxin susceptibility (74).

The relatively small number of off-targets of CRISPRs sys-
tem makes it a unique research tool for genome manipulation. In
addition, CRISPRs facilitates the simultaneous targeting of mul-
tiple loci, in a fast and economical manner for any laboratory
today. Moreover, the choice of the particular class of DNA-binding
domain is highly dependent on the ultimate research application
and the nature of the targeted region in the genome. For example,
a recent study compared the TALEs and CRISPRs–dCas9 targeting
the enhancers of two pluripotency genes, OCT4 and NANOG, for
their efficiency in regulating the endogenous gene expression and
in inducing cellular reprograming (75). Interestingly, TALEs were
more efficient than CRISPRs–dCas9 in up-regulating these genes.
Furthermore, CRISPRs–dCas9 was far less potent than TALEs

targeting a similar genomic region in reprograming differentiated
mouse embryonic fibroblasts into iPS (induced pluripotent) cells.
In contrast, in the same study, CRISPRs–dCas9 were more effi-
cient than TALEs in repressing the enhancer of these target genes.
This study implies that the genomic region and the chromatin
context are key factors in determining the binding efficiency of
the artificial DNA-binding domains and also their effect in up- or
down-regulation.

RE-WIRING THE EPIGENOME: A NEW APPROACH IN
GENOME ENGINEERING
The precise reversion of epigenetic modifications in a targeted
and gene-specific manner (epigenome editing) has opened new
and exciting avenues for cancer therapy. Indeed, the dynamic and
reversible nature of epigenetic modifications offers the possibility
to reprogram the pathology of the disease. Such epigenome repro-
graming can be potentially tailored to a specific subset of genes
or patient groups. In addition, epigenome engineering allows for
the modification or correction of gene expression patterns ide-
ally in a durable and long-lasting manner, since some epigenetic
modifications are mitotically transmitted from the mother cell to
daughter cells. Lastly, targeting gene expression directly facilitates
reactivation of tumor suppressor genes or the inhibition of elusive
cancer drivers, for which no drug is currently available, such as
transcription factors (e.g., MYC) and small GTPases (e.g., RAS).

The first epi-enzymes linked to artificial DNA-binding domains
were the catalytic domains of DNA methyltransferases including
DNMT3A and DNMT3B, which catalyze the de novo methy-
lation of DNA, as well as prokaryotic DNA methyltransferases
including M.SssI, M.HhaI, and M.HpaII (76–82). More recently,

Frontiers in Oncology | Molecular and Cellular Oncology February 2015 | Volume 5 | Article 22 | 6

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Falahi et al. Epigenome engineering in cancer

Table 2 | Epigenome editing using catalytic domains of epigenetic enzymes fused to DBDs.

DBD Effector domain Enzymatic function Target gene/site Epigenetic modification Regulated

expression

Reference

ZFP DNMT3A DNMT SOX2 DNA methylation Yes (83)

ZFP DNMT3A DNMT EpCAM DNA methylation Yes (84)

ZFP Dnmt3a-3L DNMT VEGF-A DNA methylation Yes (104)

Dnmt3a-C DNMT VEGF-A Moderate methylation Yes (moderate)

TALEs Tet1 DNA demethylase KLF4/RHOXF2 DNA demethylation Not assessed/yes (51)

ZFP Tet2 DNA demethylase ICAM-I DNA demethylation Yes (15)

TALEs LSD1 Histone demethylase 40 active enhancer Reduced of H3K4me2 On some (86)

ZFPs G9a HMT Her2/neu, VEGF-A Increased H3K9me2 Yes (44, 85)

ZFPs Suvar39H1 HMT VEGF-A Increased H3K9me3 Yes (85)

TALEs Sirt3, NcoR HDAC Neurog2 Reduced H3K9ac Yes (69)

PHF19 HMT-binding activity Neurog2 Increased H3K27me3 Yes (69)

KYP HMT Grm2 Increased H3K9me1 Yes (69)

SID4X Sin3 HDAC1 interaction domains Grm2 Reduced H3K9ac Yes (69)

TgSET8 HMT Grm2 Increased H4K20me3 Yes (69)

NUE HMT Grm2 Increased H3K27me3 Yes (69)

HDAC8 Histone deacetylation Grm2 Reduced H4K8ac Yes (69)

RPD3 HDAC Grm2 Reduced H4K8ac Yes (69)

Sir2a HDAC Grm2 Reduced h4Kac Yes (69)

Sin3a HDAC1 interaction Grm2 Reduced H3K9ac Yes (69)

DBD, DNA-binding domain; DNMT, DNA methyltransferase; HMT, histone methyltransferase; HDAC, histone deacetylase; me, methylation; ac, acetylation.

6-ZFP fusions linked to DNMT3A were shown to promote tar-
geted methylation on SOX2, MASPIN (83), and EpCAM gene
promoters (84). Interestingly, DNA methylation was associated
with gene repression and in an oncogenic context resulted in can-
cer cell growth inhibition. In contrast, 6-ZFPs linked to DNMT3A
targeting a tumor suppressor gene promoter resulted in enhanced
tumor cell growth (83).

Recently, great attention has been placed on DNA demethyla-
tion mechanisms, including the characterization of many enzymes
able to deaminate and remove the methylated cytosine (12, 14).
The DNA demethylase Tet1 was engineered with TALEs targeting
the RHOXF2 gene, which led to the identification of the specific
CpGs playing a role in gene expression (51). In another study, the
DNA demethylase Tet2 fused to a ZFP was able to demethylate the
ICAM-1 gene (15), which was associated with gene up-regulation
(Table 2). These studies indicate that epigenome editing can pro-
vide fundamental information on the role of specific epigenetic
modifications in the control of gene expression in both normal
and diseased cells.

Although DNA methylation plays an essential role in main-
taining inactive chromatin, a complex language of histone post-
transcriptional modifications re-enforce the effect of DNA methy-
lation in gene silencing. The repressive histone modifications
H3K9me2 and H3K9me3 were first targeted in the VEGF-A gene in
HEK293 cells in 2002 (85) and more recently in the Her2/neu gene

in breast cancer cells (44). In these studies, the catalytic domain
of histone methyltransferase G9a or SUVAR-39-H1 were fused
to 6-ZFP domains. Similarly, a more recent report demonstrated
effective targeting of enhancers by lysine-specific demethylase 1
(LSD1) engineered with TALEs in order to identify the function of
several enhancers and their chromatin state (86). Finally, a com-
prehensive set of 32 and 24 histone modifiers were fused to TALEs
targeting the Neurog2 and Grm2 genes, respectively, to assess the
role of the histone marks on regulation of gene expression [Ref.
(69), Table 2]. These studies support the role of specific histone
post-transcriptional modifications in gene expression regulation.

IMAGING OF HUMAN LOCI USING CRISPRs
The human genome is dynamically and is spatially organized
inside the nucleus and its spatio-temporal structure is critical in the
regulation of gene expression. Heterochromatin and euchromatin
positioning are obvious examples demonstrating that the higher-
order of chromatin structure and nuclear organization underlie
gene expression status. Fluorescently in situ DNA hybridization
(FISH) is a powerful technique to image the location of a gene or
fragment of the genome for genome analyses, although it is not
applicable in living cells. In order to unravel the role of genome
organization in gene expression, the DNA sequences in living
cells can be chased and imaged using fluorescent DNA-binding
domains. In 2013, the CRISPR–dCas9 system was successfully
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deployed to image repetitive elements in telomeres as well as in
MUCIN genes (87). In this strategy, CRISPR–dCas9 is composed
of guide RNAs binding specifically to the target loci and the dCas9
protein is fused to the green fluorescent protein (GFP) gene. By
visualization of GFP, the expression of the CRISPR–dCas9 and its
binding to the target locus in the genome was monitored in liv-
ing cells. These applications of CRISPR technology open up new
avenues for unraveling the mechanisms by which the higher order
chromatin and the spatial organization of genome control gene
expression.

POTENTIAL OF (EPI)GENOME ENGINEERING FOR THERAPY
AND DISEASE: A PATH TO THE CLINIC
After extensive proof of concept of their efficiency in cell lines and
animal models, ZFNs were qualified for clinical applications. For
instance, ZFPs are being used for treatment of diabetic neuropa-
thy and glioblastoma. ZFPs targeting HIV co-receptor CCR5 are
in phase 1 clinical trials for the treatment of HIV/AIDS (88, 89).

In addition to ZFPs, TALENs are being used for introducing
insertions/deletions in a targeted manner in animal, plant, and
worm models (90), although their big size makes their delivery
into the cells and tissues more problematic than ZFPs. Recently,
CRISPRs have been shown to be highly efficient in gene correction
in both human cell lines and animal models (91). For example,
CRISPRs have been used to repair the metabolic enzyme gene
Fah in hepatocytes, thereby correcting the disease phenotype in
a mouse model (92). In another preclinical study, CRISPRs tar-
geting and disrupting two genes (Ppar-y and Rag1) were injected
into one-cell-stage monkey embryos. The engineered mutations
in the two genes were confirmed in the genetically modified mon-
keys (93). Although CRISPRs have been shown to be excellent
research tools for gene correction, to enter clinical trials issues
such as human immune responses to the bacterial CRISPRs and
targeted delivery should be carefully addressed. In this regard, there
is an ongoing effort to alter some amino acid sequences of the Cas9
protein in order to decrease its size and decrease immune response
in human cells.

A very recent preclinical study attempted the delivery of
CRISPRs into mice liver. To deliver CRISPRs, a DNA vector encod-
ing CRISPRs (the Cas9 and the guide RNA) were transferred into
the blood via tail-vein injection, by which about 20% of hepato-
cytes are anticipated to receive the DNA. In this study, two tumor
suppressor genes, Pten and P53, were targeted and mutated in
the mice livers and, therefore, a cancer mouse model mimicking
liver tumorigenesis was created. In the same study, the mice were
injected with the CRISPRs targeting and correcting the mutant
β-catenin gene, which is frequently mutated in liver cancer (94).

In another recent report, CRISPRs were able to target and
destroy of Epstein–Barr virus (EBV) in patient-derived cells from
a Burkitt’s lymphoma with EBV infection and the tumor cells
showed reduced proliferation upon receiving the CRISPRs tar-
geting EBV (95). In addition, CRISPRs could target and destroy
human papillomavirus E6 or E7 oncogenes,which are integrated in
the genome of cervical carcinoma cells. The E6 and E7 oncogenes
induce the degradation of the tumor suppressor gene P53 and the
destabilization of retinoblastoma protein (Rb), respectively, and
cause cells to develop different types of cancer. The knockout of

E6 and E7 by CRISPRs were associated with increased levels of P53
and Rb protein and increased cancer cell death (96, 97).

As mentioned above, CRISPRs’s natural function in bacteria
and archaea is to destroy viral genomes. Similarly, CRISPRs have
also been exploited to disrupt viral genomes, including the inte-
grated HIV provirus (98, 99) and the hepatitis B virus (HBV)
genome both in vitro and in vivo (100).

Clustered regularly interspaced short palindromic repeats were
recently utilized to develop a rat model for Duchenne muscu-
lar dystrophy disease. Toward this aim, the DMD gene, which
is located on the X chromosome and encodes dystrophin, was
targeted and mutated using CRISPR–Cas9 (101). In this study,
guide RNAs and Cas9 were co-injected into the zygote and the
model carrying the intended mutation was developed. Impor-
tantly, CRISPRs were able to correct the mutant DMD gene in
the germ line of a mouse model of Duchenne muscular dystro-
phy. This approach generated animals with 2–100% correction of
the DMD gene, which was associated with a corrected phenotype
(102). These models inducing directed mutations or corrected
mutations in the targeted gene provide an excellent source of
information for unraveling the mechanisms underlying disease
progression.

The aforementioned preclinical and clinical studies suggest
that targeted genome-editing tools are fast developing toward
being translated into the clinic. One exciting possibility for such
technology is the combination of (epi)genome engineering tech-
nology with current epigenetic (epi-drug) therapies. Epi-drugs are
already approved for the treatment of patients with myelodysplas-
tic syndrome, cutaneous T-cell lymphoma, and peripheral T-cell
lymphoma. Recently, patients with solid tumors are also being
recruited for treatment with epi-drugs and particularly with the
combination of epigenetic inhibitors with hormone therapies or
chemotherapy (23). However, an actual limitation of these treat-
ments is the side effects of epi-drugs, which are, to some extent,
due to their genome-wide effects. Thus, a goal of epigenome engi-
neering technology is to improve the specificity of and potency
of the epi-drugs while decreasing their dose and potential toxicity.
For example, in in vitro studies, epigenetic enzymes or KRAB fused
to the ZFP targeting Her2/neu gene showed synergistic effect with
lapatanib in cell growth suppression of ovarian cancer cells (44).

Toward application of (epi)genome engineering technology in
the clinic, one important challenge is the delivery of the chimeric
DNA-binding proteins to target exactly the tumor in the patient’s
body. To this aim, identifying the tumor subtype is a critical
first step. Detecting tumor specific cellular receptors and inves-
tigating their mechanisms of action are of critical importance.
Some types of receptors, like Her2/neu tyrosine kinase receptor,
can internalize upon binding to its ligands. This ligand-mediated
internalization is beneficial because it increases the level of drug
administered to the tumor cells. This is, indeed, the major mecha-
nism of function of trastuzumab, which can act as a ligand for this
receptor in Her2/neu positive breast cancer (103). Similarly, the
(epi)genome engineering tools could also be organized in a deliv-
ery package, e.g., via targeted nanoparticles coated with specific
antibodies, which could be detected by receptors overexpressed
on the surface of tumor cells of interest and thus, the unwanted
effects of (epi)genome engineering tools in non-tumor cells could
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be reduced. Liposomes targeting sigma receptor overexpressed in
ovarian cancer cells were able to effectively deliver an artificial-
ZFP targeting a tumor metastasis suppressor gene (68). As nan-
otechnology research progresses, together with the development
of quicker and cost-effective genomic sequencing, personalized
treatments to tailor the cancer genome via genome-engineering
approaches are becoming more than a fairytale but an exciting
reality for cancer treatment.

CONCLUSION
An aberrant landscape of epigenetic modifications is involved in
cancer initiation and progression. Several epi-drugs are being used
in clinical trials in order to reverse the disrupted epigenome of
cancerous cells and reprogram the epi-pathology of the disease.
However, epi-drugs have generalized genome-wide effects and
therefore they can result in off-target effects and toxicity. In order
to target epigenetic modifications at specific loci in the genome, the
catalytic domain of epi-enzymes is linked to the sequence-specific
DNA-binding domains by ZFPs, TALEs, and CRISPRs technol-
ogy. Indeed, it is feasible today to generate DNA-binding domains
to target virtually any sequence in the human genome. In addi-
tion to specific modulation of targeted loci, artificial DNA-binding
domains also facilitate the discovery of novel genes involved in a
phenotype or disease, and the imaging or detection of specific
loci in the chromosomes. Precise epigenome editing has proved
to be a successful research tool to ascertain the function of pro-
moters and enhancers in gene regulation. However, the advent of
genome sequencing has recently demonstrated that artificial DNA-
binding domains may have substantial off-target binding activities.
This limitation has rapidly forced the field to develop novel and
highly specific DNA-binding domains. CRISPRs/dCas9 is the lat-
est state of the art DNA-binding technology and it is associated
with a small number of off-targets. In cancer, the modulation of
gene expression by epigenome editing shows promising outcomes
for the normalization of the phenotype of cancer cells. In addi-
tion, long-lasting targeting “non-druggable” oncogenes such as
transcription factors is now possible by (epi)genome editing. In
sum, the recent in vitro, in vivo, and clinical studies suggest that
genome-engineering technology has begun to find its path toward
the clinic.
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