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The ability of cells to alter their phenotypic and morphological characteristics, known
as cellular plasticity, is critical in normal embryonic development and adult tissue repair
and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer.
The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This tran-
sition involves genetic and epigenetic changes as well as alterations in protein expression
and post-translational modifications. These changes result in reduced cell-cell adhesion,
enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskele-
ton and of cell polarity. Among these modifications, loss of cell polarity represents the
nearly invariable, distinguishing feature of EMT that frequently precedes the other traits
or might even occur in their absence. EMT transforms cell morphology and physiology,
and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and
endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-
resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently
identified thousands of changes in proteins involved in many cellular processes, including
cell proliferation and motility, DNA repair, and – unexpectedly – membrane trafficking (1).
These results have highlighted a picture of great complexity. First, the EMT transition is
not an all-or-none response but rather a gradual process that develops over time. Second,
EMT events are highly dynamic and frequently reversible, involving both cell-autonomous
and non-autonomous mechanisms. The net results is that EMT generates populations of
mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the
physiological as well as pathological cellular heterogeneity of some tissues. Endocytic
circuitries have emerged as complex connectivity infrastructures for numerous cellular
networks required for the execution of different biological processes, with a primary role
in the control of polarized functions. Thus, they may be relevant for controlling EMT or
certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how
endocytosis may be harnessed by the EMT process to promote dynamic changes in cellu-
lar identity, and to increase cellular flexibility and adaptation to micro-environmental cues,
ultimately impacting on physiological and pathological processes, first and foremost cancer
progression.

Keywords: endocytic pathway, epithelial junctions remodeling, endocytosis and EMT, EMT and cancer, WNT and
TGF-β signaling

INTRODUCTION
The epithelial-to-mesenchymal transition (EMT) is a fundamen-
tal process in embryonic development and tissue repair. EMT is key
also for the progression of diseases, including organ fibrosis and
cancer (2–4). The pioneering work in the 1980 of Elizabeth Hay
first described an “epithelial-mesenchymal transformation” using
a model of chick primitive streak formation (5). Subsequently,
the term “transformation” was replaced with “transition,” reflect-
ing in part the reversibility of the process and the fact that it is
distinct from neoplastic transformation (6, 7). The phenotypic
plasticity associated with EMT is revealed by the occurrence of

the reverse process, the mesenchymal-epithelial transition (MET),
which involves the conversion of mesenchymal cells to epithelial
derivatives.

Epithelial cells form polarized sheets that are held together by
various cell adhesion molecules. Beneath this cell layer, the base-
ment membrane anchors epithelial cells to the underlying matrix
and maintains apical-basal polarity. Adhesion to both the base-
ment membrane and adjacent cells is critical for maintaining the
epithelial phenotype (8).

During EMT, cells lose these epithelial characteristics, acquir-
ing instead an invasive and migratory mesenchymal phenotype,
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which allows them to leave the tissue parenchyma, undergo mor-
phogenetic programs, generate new tissues during development
or repair wounded ones, and to enter the blood circulation during
cancer metastasis (2, 4).

A number of distinct molecular and cellular processes are
engaged in order to initiate an EMT and to enable it to reach
completion. These include activation of transcription factors, such
as SNAIL, TWIST, ZEB, and others which are generally termed
EMT-TFs (9), expression of specific cell-surface proteins, reor-
ganization and expression of cytoskeletal proteins, production
of enzymes that can degrade the extracellular matrix, changes
in the expression of specific microRNAs, and – unexpectedly –
alterations in membrane trafficking. EMT factors can be used
as biomarkers to demonstrate the passage of a cell through
an EMT. Consistently, hallmarks of EMT include the loss of
expression or function of E-cadherin and reduced abundance of
tight junction proteins and cytokeratins, as well as concomitant
increase in abundance of mesenchymal markers, such as vimentin,
fibronectin, fibroblast-specific protein 1, α-smooth muscle actin,
and N-cadherin (10).

Epithelial-to-mesenchymal transitions are encountered in
three distinct biological settings that carry very different functional
consequences. Type-I EMT is typically associated with implanta-
tion, embryo formation, and organ development where the goal
is to generate diverse cell types that share common mesenchy-
mal phenotypes (11, 12). Importantly, this type of EMT does not
cause fibrosis or induce an invasive phenotype. The EMT associ-
ated with wound healing, tissue regeneration, and organ fibrosis
is classified as type-II EMT and it represents a program associated
with repair responses that generate fibroblasts and allow for tissue
reconstruction following trauma and inflammatory injury. Type-
II EMT is associated with acute and chronic inflammation and
frequently results in organ fibrosis. Finally, type-III EMT occurs
in neoplastic cells that have previously undergone genetic and
epigenetic changes, specifically in genes (oncogenes and tumor
suppressor genes) that favor clonal outgrowth and the develop-
ment of localized tumors. These latter changes cooperate with the
EMT regulatory circuitry to produce outcomes far different from
those observed in the other two types of EMT. While the actual
impact of type-III EMT in disease pathogenesis is still the object
of an on-going debate (13, 14), recent studies implicate EMT in
the generation of cancer stem cells within primary tumors that
may be prone to metastasizing (15). Additionally, the role of EMT
in stemness has become a topic of particular interest, since the
production of induced pluripotent stem cells requires an initial
MET (16, 17).

Epithelial-to-mesenchymal transition, and the reverse process
of MET, should not be thought of as simple binary states. Emerg-
ing evidence argues that EMT is better described as an analogical
spectrum of partial EMT states. These states are dynamically inter-
convertible, providing a degree of cellular plasticity that critical
contributes to cellular adaptation to intrinsic and extrinsic micro-
environmental cues. For example, in the embryo, multiple rounds
of EMT and MET are necessary to complete gastrulation and
primitive streak formation, highlighting the reversibility of this
process (3). An initial de-differentiation to a mesenchymal phe-
notype enables cells to migrate and then to undergo MET to give

rise to multiple different cell types in the notochord, somites, pri-
mordia of the urogenital system, and the splanchnopleura and
somatopleura (3). Similar oscillations between EMT and MET
may account for the ability of tumor cell to metastasize, whereby
cells acquire mesenchymal migratory features to detach from the
primary mass, to revert to an epithelial identity, similar to the
original tumors from which they arose, once they reach the final
metastatic niche (18).

The dynamic and reversible nature of the EMT programs, capa-
ble of responding to both cell-autonomous and non-autonomous
stimuli, may be caused, in addition to changes in the transcrip-
tional make-up of cells, also by the rewiring or the harnessing of
different cellular circuitries, including endocytic networks. Indeed,
endocytosis has emerged in recent years as a highly interconnected
infrastructure of various cellular circuitries that is essential for the
execution of different cellular programs (19), including those pro-
moting a canonical EMT program and relying on the activation
of WNT or TGF-β signaling. In general, signaling outputs are
rendered interpretable to the cell by the resolution of the signal,
in space and time, executed through endocytosis and membrane
trafficking (19–22). Accordingly, activated membrane receptors
are internalized and transported as cargoes onto endocytic vesi-
cles. Receptor-loaded endosomes may act either as specialized and
spatially confined signaling hubs or sorting station for the subse-
quent recycling of cargos back to the plasma membrane (PM) to
initiate a new round of signaling or for directing cargos to lysoso-
mal degradation to extinguish signals. This process ensures control
over signal duration, intensity, and ultimately has a major impact
on biological outputs. This concept is summarized in the term
“endocytic matrix,” which we coined a few years ago to indicate
the pervasiveness of endocytic control over virtually every aspect
of the life of a cell (19–21). The importance of endocytic wirings
in cell regulation is mirrored by the relevance of its subversion in
pathological processes, including cancer (23–26).

In this framework, it is not surprising that EMT might exploit
the diffuse interconnectivity of the “matrix” to execute part of its
program, with particular regard to the ability of a cell to perceive,
transduce, and adapt to soluble cues as well as spatial informa-
tion, ultimately affecting cell polarity, cell-cell and cell-matrix
interaction, motility, and invasiveness.

In this review, we will focus on a few examples, from an increas-
ing body of emerging literature, to illustrate the notion that EMT
programs in addition to relying on specific transcriptional factors
to change cellular identity, frequently harness endocytic networks
either to properly execute EMT signaling or to promote changes
leading to the emergence of mesenchymal properties.

INDUCERS OF EMT USE ENDOCYTIC NETWORKS FOR THE
EXECUTION OF THEIR SIGNALING PROGRAMS
It is well established that biochemical and biomechanical envi-
ronmental cues can trigger the onset of EMT. Among the soluble
cues, members of the TGF-β family of cytokines and WNT ligands
are potent inducer of this trans-differentiation program in various
physiological conditions, such as during embryonic development,
and in pathological contexts, including inflammation-induced
fibrosis, wound healing, and cancer progression (2, 4, 27). The bio-
chemistry of TGF-β and WNT pathways is the subject of a large
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body of literature and it is well characterized (28–30). In partic-
ular, and of relevance to the subject of this review, it is emerging
that the fine tuning of the signaling output is dependent on spatial
constraints (the subcellular compartments of localization of the
various members of the signaling cascade) and on the traffick-
ing routes that the receptors for TGF-β and WNT ligands utilize
following engagement by their ligands (31–36). We will utilize,
therefore, the exemplar cases of TGF-β and WNT signaling to pro-
vide a conceptual framework of how endocytic networks might be
used to modulate trans-differentiation programs.

TGF-β SIGNALING, EMT, AND ENDOCYTOSIS
TGF-β, and other members of the TGF-β superfamily of cytokines
such as BMP, signal to the cell by binding to cell-surface cognate
receptor(s) endowed with serine/threonine kinase activity. This
interaction triggers a signaling cascade relying on three classes
of proteins, globally referred to as SMAD(s) (30, 36–38). The
first class (R-SMADs for receptor-regulated SMADs) is directly
activated by phosphorylation and comprises SMAD2, 3, which
are directly activated by type-I TGF-β receptor, and SMAD1, 5,
8, which are substrates of activated BMP receptors. After phos-
phorylation, the R-SMADs associate with a common mediator
(Co-SMAD), the SMAD4 protein, forming oligomeric complexes
that translocate to the nucleus acting as transcription factors. The
third class of SMADs, including SMAD6 and 7, is constituted by
regulatory inhibitory (I-SMADs) proteins that recruit the SMURF
ubiquitin ligase, thereby controlling SMAD ubiquitination, and
therefore stability (39, 40).

The outcome of this relative simple signaling cascade is the
onset of a canonical transcriptional program that promotes
EMT. TGF-β is also known to trigger a non-canonical, SMAD-
independent signaling pathway that impinges on the activation of
ERK, AKT, and RHO-GTPases, which are thought to contribute
critically to the acquisition of certain mesenchymal morpholog-
ical features [for reviews of canonical and non-canonical TGF-β
signaling see Ref. (30, 36–38)].

Binding of TGF-β to its receptor, however, triggers also the
internalization of the latter and its accumulation into special-
ized endosomal stations (Figure 1). More importantly, both the
route of internalization and the ability to signal from endosomes
affect the amplitude and duration of TGF-β signaling, ultimately
impacting on the specificity of its biological outcome (35). For
example, it is well established that TGF-β receptors are endocy-
tosed through multiple internalization routes. The majority of the
receptor is rapidly internalized via clathrin-mediated endocytosis
(CME). TGF-β receptors, however, may also enter cells via non-
clathrin endocytosis (NCE) routes, which rely on cholesterol-rich
membrane micro-domains (lipid rafts/caveolae) (41–43). The par-
titioning on the PM,and hence the internalization routes,of TGF-β
receptors can be regulated: interleukin-6 (IL6), ADAM metal-
lopeptidase domain 12 (ADAM12), and the integrin-linked kinase
(ILK) were reported to shift the receptors to the non-raft fractions
(44–46), while cholesterol, heparan sulfate, and hyaluronan-CD44
promote the lipid raft/caveolae localization (47–49).

In other systems, such as the epidermal growth factor receptor
(EGFR), the two endocytic routes have been shown to be linked
to different fates of the internalized cargo, with CME leading to

recycling of receptors to the PM, and NCE being associated to
their routing to the lysosome for degradation (21). A similar situ-
ation is operational for TGF-β signaling, in which internalization
plays both a stimulatory and an inhibitory role. In particular, it
has been shown that CME into the EEA1-positive endosomes,
where the SMAD2 anchor, SMAD anchor for receptor activa-
tion (SARA) is enriched, promotes TGF-β signaling (41, 50). In
contrast, the lipid raft-caveolar internalization pathway contains
the SMAD7-SMURF2-bound receptor and is required for rapid
receptor turnover and termination of signaling (51, 52) (Figure 1).

The situation is however not as clear-cut as it may appear. In
particular, it remains uncertain whether and how CME regulates
SMAD2/3 phosphorylation in the receptor SARA-SMAD com-
plex, which is presumably assembled at the PM. SARA contains
both a SMAD-binding domain, which has been shown to interact
with SMAD2 and SMAD3 (55), and a C-terminal region, which
interacts with the receptor (50). Hence, SARA was proposed to
play a key role in presenting R-SMADs to the receptor for phos-
phorylation and the ensuing signal propagation. By using the GM-
CSFR-TGF-β-receptor fusion system in combination with endoge-
nous TGF-β receptors, it was found that SARA is indeed crucial
to bridge TGF-β receptors with SMAD2/3, and that the phospho-
rylation of receptors can take place even when CME is blocked;
conversely, the receptor-mediated phosphorylation, and thus acti-
vation of SMAD2/3, requires receptor internalization (56). In a
different system – constituted by human kidney mesangial cells –
however, inhibition of CME only slightly affected TGF-β-induced
SMAD2 phosphorylation and SMAD2-SMAD4 association, but
decreased the nuclear accumulation of SMAD2, and therefore
attenuated SMAD2-mediated transcriptional responses (57, 58).
One possibility to reconcile these disparate findings is that SARA,
at least in some cellular systems, may promote, but it is not essential
for, the phosphorylation at the PM of SMAD2/3, which, however,
would not be free to diffuse into the cytoplasm. Endocytosis may
then serve as a mean to physically separate the activated, phos-
phorylated SMADs complex from SARA, which accumulates via
internalization into endosomes, ultimately facilitating the nuclear
translocation and transcriptional activity of SMADs. Within this
context, inhibition of CME may aberrantly prolong the formation
of SARA-SMAD2 complex at the PM, delaying its translocation to
the nucleus.

A corollary of this scenario is that endosomal signaling should
be critical to modulate the biochemical and biological outcome
of TGF-β signaling. To this regard, it should be noted that
SARA also contains a FYVE (Fab1, YOTB/ZK632.12, Vac1, and
EEA1) domain. FYVE domains bind to phosphatidylinositol-3-
phosphate (PI3P), a lipid enriched in early endosomes, and medi-
ate the recruitment of FYVE-domain-containing proteins to early
endosomes (59), which are enriched in PI3P. The FYVE domain
has, consistently, been shown to be essential for the stimulatory
effects of SARA on TGF-β signaling (50, 60), strengthening the
notion that the localization in early endosomes is important to
fulfill the functions of SARA. Endosomes, in this framework, may
become important signaling centers, not only to regulate the life-
time of SARA-SMAD2/3 complexes but also for the assembly of
specific TGF-β-dependent multi-protein transducer complexes, as
supported by findings that several positive regulators of TGF-β
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FIGURE 1 | Endocytic regulation ofTGF-β and WNT pathways.
(Continued )

Frontiers in Oncology | Molecular and Cellular Oncology February 2015 | Volume 5 | Article 45 | 4

http://www.frontiersin.org/Molecular_and_Cellular_Oncology
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corallino et al. Endonetworks in epithelial-to-mesenchymal transition

FIGURE 1 | Continued
Top: endocytic regulation of TGF-β signaling. Left panel, upon ligand
stimulation, type-I and type-II TGF-β-receptors form a heterodimeric complex
(30, 36–38), which binds the SMAD2/3 and SARA proteins. Type-I
TGF-β-receptor directly phosphorylates SMAD2/3, an event that may be
promoted by the anchoring protein SARA (41–43, 50). SARA, in addition to
facilitate SMAD2/3 phosphorylation at the PM, may also retain these proteins
at this location retarding their release into the cytoplasm. Ligand-bound
TGF-β-receptor is also rapidly internalized via CME into early endosome (EE)
(41, 50). From this endocytic station, the receptor can be recycled back to the
plasma membrane for a new round of signaling. Early endosomes, where
SARA accumulates, may also serve as a mean to separate SARA from
activated SMAD2/3, which would then be free to be released into the
cytoplasm, where they form an oligomeric complex with SMAD4. The
SMAD2/3-SMAD4 complex translocates, then, into the nucleus where it acts
as a transcription factor ensuring execution of TGF-β signaling. Right panel,
activation of TGF-β receptor(s) may also occur in cholesterol-rich membranes
micro-domains (green membrane) (41, 50). This promotes the binding to the
receptors of the SMAD7-SMURF2 complex followed by internalization into

caveolae (51, 52). SMURF2 is an ubiquitin ligase that can ubiquitinate the
receptor promoting its targeting into multivesicular bodies and its subsequent
lysosomal degradation resulting in signal termination (51, 52). Bottom:
endocytic regulation of WNT signaling. Left panel, upon binding of the
antagonistic, WNT-like ligand, Dickkopf (DKK1), the low-density lipoprotein
receptor-related 6 (LPR6) receptor is internalized by CME, and primarily
transported through multivesicular body (MVB) to lysosomes for degradation,
hence terminating signaling (33, 35). Right panel, the binding of WNT to the
Frizzled (Fz) receptor, a seven-pass transmembrane receptor, promotes the
formation of complex between Fz and LPR6 on cholesterol-rich lipid domain
(green membrane). At this site, the cytoplasmic tail of LPR6 is
phosphorylated by casein kinase 1γ (CK1γ) and glycogen synthase kinase 3
(GSK3), thereby activating NCE of the receptors (53). The components of the
destruction complex – Axin, β-catenin, APC, and GSK3 – become bound to the
activated and internalized Fz-LRP6 complex in endosomes. The subsequent
transport of this assembly into MVBs may lead to the sequestration of the
destruction complex into the internal vesicles of the MVB. Newly synthesized
β-catenin may, thus, escape the destruction complex and accumulate into the
cytoplasm to translocate into the nucleus and activate gene transcription (54).

signaling are localized in endosomes. For instance, in addition to
SARA, there are two additional FYVE domain-containing (and
endosomally localized) proteins, endofin and hepatocyte growth
factor-regulated tyrosine kinase substrate (HRS/HGS), which have
all been suggested to promote signaling by TGF-β, as well as by
other members of the TGF-β superfamily, such as activin and
decapentaplegic (DPP) (50, 61–64).

Collectively this evidence points to an important regulatory role
of endocytic factors in mediating TGF-β signaling, with poten-
tial diverse impact on the ability of the latter to induce EMT
depending on the cellular context. Within this framework, it is
not surprising that SARA, which as indicated above seems to
have a prominent role in promoting TGF-beta signaling, may
act in some context as suppressor of mesenchymal properties
and markers (58). For example, while silencing of SARA has
been shown to impair TGF-β signaling (50, 60), its aberrant
expression may perturb endosomal trafficking, and impact on the
formation and stability of proficient signaling complexes. These
latter findings betray the fact that, while we have come to a
detailed understanding of individual TGF-β signaling axis, it is
still difficult to predict how perturbations of endocytic network
impact on transcriptional and non-transcriptional-dependent
TGF-β programs.

WNT SIGNALING, EMT, AND ENDOCYTOSIS
One additional signaling axis that potently induces an overt EMT
program is the WNT pathway (29). WNT signaling is initiated
by soluble ligands of the WNT family that bind to the seven-pass
transmembrane family of Frizzled (Fz) receptors and promote the
subsequent formation of a trimeric complex with low-density-
lipoprotein (LDL) receptor-related protein (LRP)6/5, single-span
transmembrane proteins that belong to a subfamily of LRPs. This
latter complex then recruits Axin, along with APC and GSK3β, the
core components of the β-catenin destruction complex (65–67).
The ensuing inactivation of the destruction complex results in the
accumulation of β-catenin and the activation of its transcriptional
target genes, which include a set of transcription factors such as
Snail, Slug, and Twist, that regulate many of the cellular changes
required for EMT (68–71).

Several mechanisms have been proposed for the inhibition of
the destruction complex. All models agree that WNT signaling
prevents GSK3β from phosphorylating existing or newly synthe-
sized β-catenin, consistent with the finding that genetic removal or
inhibition of GSK3β triggers signaling activity (16, 72, 73). How-
ever, the models differ in the mode of GSK3β inhibition, which
could occur by disruption (of the integrity of the Axin/GSK3β/β-
catenin), saturation (elevated expression of β-catenin may saturate
the available, soluble destruction complex so that newly synthe-
sized β-catenin molecules would be free to travel to the nucleus to
exert their transcriptional activity), or sequestration, in endosomal
lysosomal compartments, of the destruction complex (74, 75). In
this latter case, WNT is thought to trigger endocytosis and traffick-
ing of Fz and LRP6, along with associated GSK3β to the lumen of
multivesicular bodies (MVBs; Figure 1). As a result, GSK3β would
no longer have access to β-catenin and become unable to trigger
its degradation (74), resulting in signal augmentation. Although
the sequestration hypothesis has not been extensively tested, it
provides a simple explanation as to how endocytosis could con-
tribute to signaling since endocytosis is a prerequisite to MVB
targeting.

Evidence that endocytosis contributes to canonical WNT sig-
naling comes from experiments showing that pharmacological
(76, 77) or genetic (78) blockade of internalization, obtained
by impairing either the activity dynamin or by ablating CME,
prevents WNT-mediated increase in β-catenin levels (79–81).
Although this result argues that CME is required for WNT sig-
naling, other investigations have suggested that, instead, caveolae-
mediated endocytosis is key, perhaps by allowing LRP5/6 to
accumulate in a lipid environment that promotes its phospho-
rylation (82, 83) (see also below and Figure 1). The latter
suggestion is based on studies of Frizzled-5 (Fz-5), WNT3A,
and LRP6 in cell culture (82). It was shown that when Fz-5
alone is expressed, it is internalized through CME, upon engage-
ment by WNT3A. However, when both Fz-5 and LRP6 recep-
tors are expressed, WNT addition causes Fz-5 colocalization
with caveolin (Figure 1). Therefore, LRP6 may divert Fz/WNT
complexes from a signaling-deficient clathrin-based route to a
signaling-proficient caveolae-based pathway. The finding that
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Axin is recruited to the same vesicles corroborates the idea that
the caveolae-associated complex is functionally significant for
signaling. Furthermore, treatment with nystatin (a cholesterol-
sequestering drug) or silencing of caveolin-1 prevents the WNT-
dependent accumulation of β-catenin, while inhibition of CME
has marginal effects (82). Thus, at least in some circumstances,
CME may act to rapidly shut off WNT signaling, while caveolar
endocytosis and the generation of cholesterol-rich PM-based plat-
forms, may potentiate it: the opposite of what is seen with signaling
by TGF-β (41) and by some ligands of receptor tyrosine kinases
(84–87).

In addition to receptor levels also, the identity of the ligand
is important in determining the route of internalization and the
signaling outcome. It has been shown that WNT3A stimulates
receptor uptake into caveolae, where LRP6 is phosphorylated by
the kinase CK1γ. This modification primes LRP6 to promote the
stabilization of β-catenin, as described above. Conversely, another
WNT-like ligand,Dkk1,antagonizes this signaling route by trigger-
ing the internalization of the co-receptor via CME, a compartment
that lacks CK1γ and thus suppresses β-catenin signals (33, 88).

While all this evidence points to a role for endocytosis in WNT
signaling, it leaves the problem unresolved as to how (and how
much) the different internalization routes contribute to it. While
the discrepant results, relative to the importance of CME or cave-
olar endocytosis, might be ascribed to different cellular contexts,
additional findings cloud the interpretation of the results. First,
knockout mice for caveolin-1, 2, or 3 show no indication of WNT
signaling deficiency (89). In addition, activated LRP6 has also been
shown to form intracellular aggregates in response to WNT stim-
ulation (83). The aggregates do not co-localize with fluid phase
markers of endocytosis but do occasionally co-localize with cave-
olin. This implies that the formation of these aggregates may
not strictly require endocytosis, albeit it is conceivable that they
could form preferentially at the surface of caveolae, where spe-
cialized caveolin-based PM signaling platforms form. Within this
framework, caveolin would improve the efficiency of signaling, but
would not be absolutely necessary.

MORPHOLOGICAL AND FUNCTIONAL ALTERATIONS
UNDERLYING EMT HARNESS ENDOCYTIC ROUTES: THE
EXEMPLAR CASE OF E-CADHERIN
Reduced cell-cell adhesion, enhanced cell adhesion to the extra-
cellular matrix, and altered organization of the cytoskeleton and
of cell polarity, with ensuing changes in cell shape, are nearly
invariable features of early EMT. These changes frequently pre-
cede the full onset of genetic reprograming, albeit they may also
represent the biological end point of the transcriptional modula-
tion of genes directly involved in the above-mentioned processes.
A case in point is represented by the adherence junction (AJ)
proteins, E-cadherin and N-cadherin. Indeed, E-cadherin loss
and N-cadherin gain are frequent events underlying the disso-
lution of cell-cell contacts during EMT (90). E-cadherin (encoded
by the gene CDH1) loss, in most cases, is caused epigeneti-
cally by hyper-methylation of its promoter or, genetically, by
active repression exerted by EMT transcription factors, which
conversely induce N-cadherin upregulation (90). Notably, how-
ever, in addition to epigenetic and genetic downregulation, several

other post-transcriptional events regulate junction stability and
E-cadherin dynamics. A wealth of evidence points to a crucial role
of E-cadherin endocytosis and recycling in tissue morphogenesis
and EMT (91–96).

E-CADHERIN TRAFFICKING CONTROLS THE DYNAMICS OF AJs AND
THE PLASTICITY OF EPITHELIAL TISSUES
E-cadherins are characterized by long extracellular and cyto-
plasmic domains that are primarily responsible to establish
homophilic interactions between neighboring cells (97). In addi-
tion, the cytoplasmic tail associates with a variety of intracellular
proteins. These latter proteins link the process of cell-cell adhe-
sion to the actin-myosin network, to vesicle transport, and to
the cell polarity machinery. A key feature of AJs is that they are
dynamic. Indeed, the ability of individual AJs to be continually
assembled and disassembled is key for the preservation of epithelial
integrity, which must be maintained despite the constant changes
in cell packing that accompany changes in tissue organization, cell
division, cell death, and delamination (98–101).

As a result of this plasticity,AJ dynamics can release stresses that
have accumulated in an epithelium and accommodate morpho-
genetic movements. Importantly, the turnover of E-cadherin in
mature epithelial tissues is primarily the consequence of active
internalization and recycling processes (92, 101, 102). Studies
of epithelial cells in culture revealed that impairment of CME
blocks the recovery after photo-bleaching of fluorescently labeled
E-cadherin (101). Similarly in the Drosophila pupal notum,
dynamin- and actin-dependent endocytosis was shown to be
required to remove surface E-cadherin and to maintain the posi-
tion and stability of mature AJs (103, 104). This is consistent
with the finding that a dileucine motif, which is a binding site for
clathrin adaptors, is present in the cytoplasmic tail of E-cadherin
and is required for internalization (105). This motif is also the
binding site of p120catenin (p120CTN, not to be confused with β-
catenin), an Armadillo repeat-containing junctional protein that,
in polarized epithelia, prevents the access to clathrin adaptors,
thereby counteracting CME (105) (Figure 2A). Not surprisingly,
loss of p120CTN causes cell-cell junction disruption and is linked
to EMT and invasiveness (106).

An additional mechanism through which E-cadherin mem-
brane expression, and therefore cell-cell junction stability, can
be modulated is via Presenilin (PS1)-mediated cleavage of E-
cadherin. PS1, the catalytic subunit of γ-secretase, enters into an
E-cadherin complex by associating with both p120CTN and β-
catenin (111). Under physiological conditions, PS1 recruitment
to AJ stabilizes E-cadherin junctional complexes. However, Ca++

influx or apoptotic stimuli can induce the junctional-restricted,
proteolytic activity of the PS1/γ-secretase complex, which cleaves
E-cadherin releasing an E-Cad-C-terminal fragment-β-catenin
complex from the cytoskeleton that interferes with canonical
WNT signaling (112). How and whether membrane and endo-
somal localization of PS1, which are well-established site of
action of the proteolytic activity of the complex (113), partic-
ipates in processing E-cadherin remains unclear, but represent
another potential mechanisms though which membrane traffick-
ing might influence E-cadherin surface level and, hence, junctional
stability.
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FIGURE 2 | Clathrin-mediated endocytosis (CME) and endocytic
trafficking in the control of E-cadherin dynamics. (A) Binding of p120CTN
to the juxta-membrane region of the cytoplasmic tail of E-cadherin prevents
the recruitment of endocytic adaptors favoring the stabilization of E-cadherin
at the plasma membrane. Alternative recruitment of clathrin adaptors to the
same region promotes CME of E-cadherin (105). (B) The adaptor AP-2 induces
CME by displacement of p120CTN (105). (C,D) The endocytic protein NUMB
may also drive internalization by serving as a scaffold between E-cadherin (or
p120CTN) and the canonical endocytic adaptors, AP-2 and EPS15 (107, 108).
NUMB may act either by (C) bridging together p120 and endocytic adaptors,
thereby promoting the internalization of the entire E-cadherin/p120CTN
complex or by (D) binding directly to the NVYY motif in E-cadherin, thus
facilitating the internalization of p120-unbound E-cadherin, ultimately

opposing p120CTN-mediated suppression of endocytosis (107, 108).
(E) Activated SRC promotes the phosphorylation of E-cadherin enabling the
binding of the ubiquitin ligase HAKAI, which induces CME, and the
subsequent degradation of E-cadherin via the lysosomal route (98). Junctional
activation of SRC, dependent on the endocytic F-BAR-containing protein CIP4,
is also required to increase junctional tension across E-cadherin (not
depicted): an event that facilitates junction dismantling and E-cadherin
endocytosis (109). Following clathrin-coated vesicles (CCVs)-mediated
internalization, E-cadherin can traffic through different routes, regulated by a
diverse set of molecular determinants, which determine E-cadherin fate
either to lysosomal-mediated degradation or late endosomal recycling back to
the lateral junction, in a process that fuels AJ dynamics and the remodeling
necessary for epithelial tissues homeostasis (110).
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THE ENDOCYTIC PROTEIN NUMB IN THE CONTROL OF E-CADHERIN
TRAFFICKING, EMT PROGRAMS, AND POLARIZED FUNCTIONS
A key node in the regulation of E-cadherin trafficking is the
accessibility of cytoplasmic motives (e.g., dileucine and NVYY)
to p120CTN and endocytic adaptors. Among the latter, a promi-
nent function is exerted by NUMB that, through its PTB
domain, can dock directly to the NVYY motif of E-cadherin,
and also bind p120CTN through its proline-rich region (107,
108) (Figures 2B,C). Through these interactions, NUMB may
serve as a docking site for the recruitment of endocytic adap-
tors, including AP-2 and EPS15 that ultimately fine tune the rate
of E-cadherin internalization (22, 114–119). Within this frame-
work, NUMB may act on E-cadherin endocytosis in two ways:
(1) bridging together p120CTN and endocytic adaptors, thereby
promoting the internalization of the entire E-cadherin/p120CTN
complex; (2) binding directly to the NVYY motif in E-cadherin,
which is usually masked by p120CTN, and facilitating the inter-
nalization of p120CTN-unbound E-cadherin, ultimately opposing
p120CTN-mediated suppression of endocytosis (107, 108). As a
result of these roles, NUMB is emerging as a critical molecule in
the control E-cadherin dynamics. Consistently, loss of NUMB was
shown to promote EMT of MDCK cells (120), further suggest-
ing that the simple equation reduction of E-cadherin endocytosis
equals to decreased mesenchymal progression is not always valid.
This may be due to the fact that silencing of NUMB was also shown
to lead to (i) a lateral to apical translocation of E-cadherin and
β-catenin, (ii) active F-actin polymerization, followed by mislo-
calization of the PAR3 and aPKC polarity proteins, (iii) a decrease
in cell-cell adhesion and an increase in cell migration and pro-
liferation: all features that mark early steps of EMT (107, 121).
Furthermore, NUMB may also act at later steps of membrane
trafficking controlling recycling of cargos back to the PM. Con-
sistently, NUMB has also been implicated in the maintenance of
AJs through its recycling functions, which promote the proper
distribution of RAB11-endosomes containing E-cadherin in close
proximity to AJs (122) (Figure 2). In summary, NUMB appears to
control various critical steps (from endocytosis to recycling) in the
maintenance of a proper dynamics of E-cadherin, and further to
regulate the establishment of epithelial polarity. Not surprisingly,
therefore, disruption of NUMB lead to loss of proper cell-cell
junction, epithelial polarity, and the acquisition of mesenchymal,
morphological traits. These results highlight that AJ stability, regu-
lation of basal/apical polarity, and actin remodeling are intimately
intertwined processes, whose coordinated regulation is essential
for the maintenance of epithelial properties, whereas its subver-
sion critically influences the transition to a more mesenchymal
phenotype (123–127).

Mechanistically, NUMB with its pleiotropic functional roles
is a paradigmatic case that provides molecular insights into
how the coordination of diverse cellular polarized processes is
achieved. NUMB was originally identified as a cell-fate determi-
nant in Drosophila development, and underwent intense scrutiny
as an inhibitor of the NOTCH receptor signaling pathway (126–
138). However, NUMB does a lot more than simply regulate
Notch and E-cadherin internalization, as it has been implicated
in a variety of biochemical pathways connected with signaling,
including NOTCH, Hedgehog, and TP53 (130–132, 139–142). At

the phenotypic level, NUMB controls endocytosis (it is involved in
cargo internalization and recycling), determination of polarity (it
interacts with the PAR complex, and regulates adherens and tight
junctions), and ubiquitination (it exploits this mechanism to reg-
ulate protein function and stability) (107, 108, 117, 124, 143–146).
NUMB appears, therefore, to sit at the center of diverse cellular
phenotypes, including cell-fate developmental decisions, mainte-
nance of stem cell compartments, regulation of cell polarity and
adhesion, and migration (147, 148). However, rather than exert-
ing multiple and distinct biochemical functions, NUMB appears
to interconnect these processes by integrating them at the level
of endocytic network. In many respects, NUMB epitomizes the
concept of endocytosis as a key infrastructure connecting diverse,
necessary for the execution of polarized function. Indeed, at the
cellular level, the molecular workings of Numb all seem to converge
on the establishment of polarity, be this epithelial cell polarity,
execution of polarized functions such as migration, or establish-
ment of signaling directionality in asymmetric cell division. In this
context, NUMB might be one of the molecular determinants inte-
grating apparently distant polarized functions, including cell-fate
determination of normal and cancer stem cells and EMT, which
have indeed emerged as two faces of the same coin (15, 149).

Not surprisingly, considering its critical role in many cellular
processes, subversion of NUMB has been linked to highly rele-
vant human pathologies, including neurodegeneration and cancer
(121, 148, 150–152). In this latter context, genetic evidence in
Drosophila as well as in mouse model of lymphomagenesis indi-
cated that NUMB is a bona fide tumor suppressor (132, 153–155).
A similar role has also been demonstrated in human malignancy,
including breast cancer, where loss of NUMB correlates with a less
differentiated phenotype, expression of cancer stem cell traits and
poor prognosis, salivary gland tumors, and non-small cell lung
carcinomas (NSCLCs) (133, 142, 156–158).

INDUCERS OF EMT PROMOTE JUNCTIONAL REMODELING VIA
REGULATION OF E-CADHERIN TRAFFICKING
Endocytic removal of E-cadherin from the cell surface is frequently
and acutely induced by activation of receptor and non-receptor
tyrosine kinases, as well as by stimulation with TGF-β (159–161).
EMT-promoting stimuli, such as hepatocyte growth factor (HGF),
EGF, or SRC activation, invariably lead to the phosphorylation of
the NVYY motif of E-cadherin, impeding the interaction not only
with NUMB, but also with p120CTN, while promoting the asso-
ciation with the ubiquitin ligase HAKAI (98) (Figure 2E). HAKAI
induces E-cadherin ubiquitination and its subsequent internal-
ization and lysosomal degradation in a process that requires the
sequential activation of RAB5 and RAB7 (162) (Figure 2E). The
same stimuli also activate another GTPase, ARF6, which stim-
ulates E-cadherin endocytosis (163), in part by enhancing the
activity of the nucleotide diphosphatase NM23-H1, which was
recently shown to produce locally the GTP required by dynamins
to execute the scission of vesicles from the PM, thus promoting
internalization (164). Notably, ARF6 appears to act also at later
steps of membrane trafficking, whereby its activation impedes
recycling of E-cadherin (165), ensuring that cell-cell contacts will
not be reformed. In this context, a key function is exerted by the
RAC1 effector TBC/RABGAP, which physically links the RAC1 to
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ARF6 (165). Consistent with a key role exerted by ARF6 in pro-
moting EMT, expression of an ARF6-dominant negative mutant
impedes junction disassembly and prevents scattering induced
by HGF and SRC, while sustained ARF6 activation disrupts the
morphogenetic programs leading to the formation of glandu-
lar organization of mammary epithelial cells cultivated on 3D
basement membrane (166).

The maintenance of junctional stability is also critically
achieved by constant recycling of internalized AJ proteins, and of
E-cadherin specifically (167–169) (Figure 2). The AJ component
β-catenin was shown, for example, to interact directly with the
SEC10 exocyst subunit, suggesting the possibility that β-catenin
can direct the exocytosis of AJ components to specific sites on the
PM (94, 170–172). Additionally, in keeping with the need for con-
stant and polarized membrane recycling to support AJ dynamics,
Rab11 (a small GTPase required for recycling from late endosomal
vesicles) is also required to maintain epithelial integrity in the ven-
tral ectoderm (173). Within this context, Rho family GTPases, and
most notably CDC42, have emerged as critical molecular switches
that regulate not only the formation of AJs, but also their dynamic
remodeling during tissue rearrangement, by controlling multiple
steps of E-cadherin trafficking and affecting the activity of polarity
complexes (174, 175).

In the neuroectodermal epithelium of Drosophila, for exam-
ple, CDC42 and PAR proteins were shown to regulate primar-
ily the recycling of AJ components and apical polarity proteins,
by promoting their progression from early to late endosome in
order to maintain AJ stability in the face of cell rearrangements
(176). In the developing pupal notum or dorsal thorax of the fly,
CDC42 functions with PAR6/aPKC and CIP4/N-WASP (a mem-
brane deforming and an actin nucleation promoting complex,
respectively) to regulate early events in E-cadherin endocytosis,
mimicking the phenotype obtained upon loss-of-function of the
GTPase dynamin (103, 104). Notably, in most epithelial tissues
of the fly, the apical polarity complex CDC42–PAR6–aPKC seems
to induce the local activation of CIP4, the only member of the
F-BAR-containing, membrane-bending family proteins expressed
in Drosophila to drive dynamin-dependent CME of AJ material
and the recycling of E-cadherin complexes (103, 104). In mam-
mary epithelial cells, however, where three F-BAR family members
exists, we recently showed that CIP4 is fully dispensable for the
CDC42-mediated activation of N-WASP. CIP4 is, instead, essen-
tial for the formation of a macromolecular complex that includes
E-cadherin and SRC and the localized, junctional activation of
the latter protein (109) (Figure 2E). Activated SRC, in turn, may
enhance actomyosin-dependent contractility across E-cadherin
junctions: an event needed to dismantle AJ and associated with
the subsequent removal via internalization of E-cadherin (91, 102,
160, 177, 178). Consistent with this latter scenario, removal of CIP4
impedes the increase in junctional tensile stress that is required
to break junctions apart during growth factor-mediated scatter-
ing (109), adding to the emerging evidence of a tight interplay
between actomyosin contractility and E-cadherin endocytosis dur-
ing epithelial morphogenesis (179). Within this context, CIP4 may
serve as a molecular hub interconnecting the two processes, which
ultimately impact on epithelial cell cohesion,motility, and invasion
(180–182). Not surprisingly, CIP4 loss has profound effect of

epithelial plasticity since it increases cell compaction, delays mam-
mary epithelial scattering and invasion into 3D matrix, and the
conversion from in situ ductal carcinoma to invasive carcinoma in
a model of breast tumorigenesis. Conversely, CIP4 up regulation
in human breast cancer is associated with an aggressive phenotype
and poor survival (109).

ENDOCYTIC-DEPENDENT JUNCTIONAL TREADMILLING PROMOTES
MESENCHYMAL MOTILITY
The acquisition of a motile mesenchymal phenotype is an impor-
tant part of EMT. Also for this phenotype, endocytic circuitries
are instrumental to initiate and sustain a morphological transition
toward a mesenchymal migratory behavior of collective cell enti-
ties during physiological or pathological morphogenetic processes
(183–187). Collective migration of cohorts, sheets, groups, or
chains of cells has been commonly observed during developmen-
tal processes, in tissue renewal and in wound healing; and also it
is observed also during tumor spreading [reviewed in Ref. (188,
189)]. In all these cases, and in particular in tissues of epithelial
origin undergoing plastic remodeling or pathological dissemina-
tion, it is frequent to observe the emergence of cells, restricted
at the migratory or invasive front and acting as leader cells, that
undergo a morphological transition to mesenchymal traits. These
cells can either detach from the tissues of origin and adventure
into the surrounding stroma as individual mesenchymal entities
or maintain cell-cell interactions, and drag, as leaders with early
phenotypic mesenchymal features, an entire sheet of cells forward.

It has recently been shown that AJs holding together primary
astrocytes undergo continuous treadmilling along the lateral sides
of adjacent leading cells moving into a wound (190) (Figure 3).
The treadmilling is driven by a retrograde actin flow and supported
by polarized membrane trafficking of junctional N-cadherin.
Indeed, N-cadherin is internalized via CME that is spatially con-
fined to the junctions at the rear of cells, to be subsequently
delivered at the leading front. Perturbation of endo/exocytic cycles
arrests junctional treadmilling and impairs directional migration
(190). Similar situations have been reported for E-cadherin, which
undergoes apico-basal flow in epithelial cells and VE-cadherin,
which is subjected to treadmilling in endothelial cells (190, 191).
These findings highlight the particularly active dynamics of AJs
between motile cells. AJs remodeling is, indeed, critical for the
maintenance of epithelial identity, while providing a highly adapt-
able adhesive system when transition from a sessile to a motile
state is required (97). Clearly, these transitions do not require
the full genetic reprograming typically associated with complete,
canonical EMT. Nevertheless, alterations in junction dynamics and
composition remain a nearly invariable feature associated with the
onset of EMT. Within this context, it is conceivable that harnessing
endocytic networks may be a general mean to promote flexible and
dynamic identity changes of epithelial tissues that may precede or
accompany genetic and epigenetic reprograming.

CONCLUDING REMARKS
Endocytic circuitries control in addition to junction stability also
cell-ECM interaction, acting: (i) on the dynamic remodeling of the
adhesion receptors integrins, and of focal adhesions [see Ref. (183,
192) for details]; (ii) on the acquisition (or loss) of apico-basal
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FIGURE 3 | N-cadherin treadmilling sustains collective motility.
N-cadherin dynamic sustains cell migration by constantly cycling from the cell
rear, where it becomes internalized upon p120CTN phosphorylation mediated
by the GSK3 kinase, and the cell front to which internalized N-cadherin is
directed via endocytic recycling (190). At the cell front, N-cadherin undergoes
actin-dependent retrograde flow along the lateral edges of the cell, which is

driven by F-actin attachment to AJ complexes that include catenins (for
example, p120-, α-, and β-catenin) and N-cadherin. Arrows indicate the
direction of cadherin movement. Disruption of N-cadherin treadmilling impairs
collective locomotion of astrocytes providing evidence that the retrograde
movement of adherens junctions and the recycling of N-cadherin to the cell
front are keys for the acquisition of collective modes of locomotion.
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polarity,by regulating the appropriate spatial distribution of polar-
ity determinants (193–195); (iii) on the regulation of polarized
actin dynamics and actomyosin contractility (196,197). Mechanis-
tically, the impact of endocytosis on these processes, which we did
not cover in this review, can be rationalized within the same basic
principle that posits that the endocytic machinery defines a vast
program of intracellular communication that integrates different,
apparently distinct, territories of cell regulation, as according to
the concept of “endocytic matrix” (19). Within this framework, it
is not surprising that virtually all the key cellular processes spec-
ifying an epithelial vs. a mesenchymal identity use the endocytic
matrix for their proper execution and are integrated at the level of
membrane trafficking routes.

Congruently, these circuitries are frequently rewired in phys-
iological transitional states or hijacked by malignant cells to
obtain a degree of cell plasticity functional to the adaptation to
micro-environmental changes. Examples of this type of “endocytic
reprograming” are being documented. As discussed, TGF-β, when
promoting EMT, can induce a permanent loss of cell adhesion by
negatively regulating the transcription of the E-cadherin gene, but
also by augmenting dynamin-dependent E-cadherin endocytosis
(181, 182). In this latter case, it was shown that activin/nodal,
a member of the TGF-β superfamily of cytokines, can induce
the expression, among others, of two proteins regulating cell
adhesion during vertebrate gastrulation (a process where EMT
is necessary to complete development): (i) fibronectin leucine-
rich repeat transmembrane 3 (FLRT3), a type-I transmembrane
protein containing extracellular leucine-rich repeats, and (ii) Rho
family GTPase 1 (RND1), an atypical member of the Rho GTPase
(198), which is unable to hydrolyze GTP. These proteins inter-
act physically and modulate cell adhesion by controlling the
cell-surface levels of E-cadherin through a dynamin-dependent
endocytic pathway. In keeping with this notion, a time-resolved
analysis of the proteomic and phosphoproteomic changes of
cultured human keratinocytes undergoing EMT and cell cycle
arrest in response to stimulation with TGF-β revealed that – in
addition to the expected set of cytostatic, extracellular matrix
remodeling and epithelial de-differentiation gene products – a
number of membrane trafficking proteins were also upregulated
(1). These data reinforced the idea that biological responses to
TGF-β result from extensive cross talk of different signaling path-
ways. They further argue that harnessing those networks, such as
the endocytic matrix that integrates multiple cellular functions
is instrumental to achieve plasticity of cell identity, as typified
by EMT.

The identification of the various endocytic hubs at the basis of
cellular plasticity is, therefore, likely to illuminate on fundamental
principles on which cells and tissues are built. It will also provide
potential new insights into the molecular underpinning of the
development of cellular heterogeneity, which in tumor cell biol-
ogy is the emerging recognized feature inextricably linked to tumor
progression, dissemination, and resistance to targeted molecular
therapies.
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