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Distinct malignant behaviors of mouse myogenic tumors
induced by different oncogenetic lesions
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Rhabdomyosarcomas (RMS) are heterogeneous cancers with myogenic differentiation
features. The cytogenetic and mutational aberrations in RMS are diverse. This study exam-
ined differences in the malignant behavior of two genetically distinct and disease-relevant
mouse myogenic tumor models. Kras; p1619"“ myogenic tumors, initiated by expression
of oncogenic Kras in p16p19™" mouse satellite cells, were metastatic to the lungs of
the majority of tumorbearing animals and repopulated tumors in seven of nine secondary
recipients. In contrast, SmoM2 tumors, initiated by ubiquitous expression of a mutant
Smoothened allele, did not metastasize and repopulated tumors in 2 of 18 recipients only.
In summary, genetically distinct myogenic tumors in mice exhibit marked differences in
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malignant behavior.

INTRODUCTION

Rhabdomyosarcomas (RMS) are heterogeneous cancers with myo-
genic differentiation (1). Fusion-positive RMS tumors carry
exclusive chromosomal translocations at t(2;13)(q35;q14) or
t(1;13)(p36;q14) and exhibit aggressive clinical behavior (2, 3).
The remaining, fusion-negative spectrum of human RMS com-
prises a diverse group of tumors with frequent RAS pathway
activation (4,5) and variable mutations, including loss of heterozy-
gosityatthe PTCHIlocus (6, 7) in a subset of fusion-negative RMS.
PTCHLI serves as a Hedgehog (Hh) receptor, and loss of PTCH1
function results in de-repression of downstream Hh pathway sig-
naling. The contributions of RMS-relevant oncogenic pathways,
including RAS and Hh signaling, to myogenic tumor formation
were previously tested in mice (8, 9). This report highlights the
distinct phenotypes of two mouse myogenic tumor models —
those initiated by combined Cdkn2a (pl6p19) disruption and
Kras expression in transplanted mouse muscle satellite cells (10)
and those arising in the skeletal muscle of mice with activated
Hh signaling due to expression of a mutant, constitutively active
smoothened (SmoM2) allele (11, 12). We demonstrate signifi-
cant differences in tumor-repopulating activity and prevalence of
lung metastases between Kras-driven and Hh-driven myogenic
tumors in mice. These observations reveal marked differences in
malignant behavior between genetically distinct mouse myogenic
tumors, suggesting that an understanding of the distinct onco-
genetic underpinnings of tumors on the fusion-negative RMS
spectrum may be informative for clinical prognosis and treatment.

MATERIALS AND METHODS

MICE

R26-SmoM?2 (mixed genetic background including 129/Sv and
Swiss Webster as main components) (11), CAGGS-CreER (11),

Keywords: rhabdomyosarcoma, myogenic differentiation, metastasis, transplantation

and NOD.CB17-Prkdc®d/] (NOD.SCID) mice were purchased
from The Jackson Laboratory. p16p19"! mice (B6.129 back-
ground) were obtained from the NIH/Mouse Models of Human
Cancer Consortium. Mice were bred and maintained at the Joslin
Diabetes Center Animal Facility. All animal experiments were
approved by the Joslin Diabetes Center Institutional Animal Care
and Use Committee.

SARCOMA INDUCTION

Kras; p16p19™¥ myogenic tumors were initiated by fluorescence-
activated cell sorting of plep19™! satellite cells, followed
by lentiviral transduction to introduce oncogenic Kras(GI2v)
and implantation in the gastrocnemius muscles of NOD.SCID
mice as previously described (10). R26-SmoM2;CAGGS-CreER
were injected with Tamoxifen (1mg/40g) on postnatal day
10 to activate expression of CRE recombinase and SMOM2.
R26-SmoM2;CAGGS-CreER spontaneously developed multifocal
skeletal muscle tumors (SmoM?2 tumors) as previously described
(11, 12).

HISTOPATHOLOGY

Tumor tissue was dissected, fixed in 4% paraformaldehyde for 2 h,
and embedded in paraffin. Standard H&E stained sections were
prepared. Staining for Actin (Dako, M0635, 1:200), Desmin (Dako,
MO0760, 1:50), and Ki67 Ki67 (Vector Labs, VP-K451, 1:250) was
performed as previously described (10).

LUNG METASTASES

Tumor-bearing mice were monitored at least twice weekly for
health problems, and were sacrificed once tumors reached a vol-
ume of 1cm?® or were ill. Lungs were dissected, fixed in 4%
paraformaldehyde for 2h, and embedded in paraffin. Standard

www.frontiersin.org

February 2015 | Volume 5 | Article 50 | 1


http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00050/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00050/abstract
http://www.frontiersin.org/people/u/56549
mailto:simone.hettmer@uniklinik-freiburg.de
mailto:simone.hettmer@uniklinik-freiburg.de
http://www.frontiersin.org
http://www.frontiersin.org/Pediatric_Oncology/archive

Hettmer et al.

Malignant behavior of mouse myogenic tumors

H&E stained sections were prepared and evaluated for the presence
of metastases by Roderick T. Bronson.

TUMOR TRANSPLANTATION

Tumors were harvested, digested in DMEM + 0.2% collagenase
type II (Invitrogen) 4-0.05% dispase (Invitrogen) for 90 min at
37°C in a shaking waterbath, triturated to disrupt the remaining
tumor pieces, and filtered through a 70 mm cell strainer. Red blood
cells were lysed from tumor cell preparations by 3 min incubation
in 0.15M ammonium chloride, 0.01 M potassium bicarbonate
solution on ice. Defined numbers of tumor cells were resus-
pended in 10-15ml of HBSS with 2% FBS and injected into
the gastrocnemius muscles of 1- to 3-month-old, anesthetized
NOD.SCID mice using a transdermally inserted dental needle
attached to a Hamilton syringe via polyethylene tubing. Recipient
muscles were preinjured 24 h before cell implantation by injec-
tion of 25 ml of a 0.03 mg/ml solution of cardiotoxin (from Naja
mossambica, Sigma) in order to enhance cell engraftment. Mice
were screened once weekly for the development of tumors at the
injection sites.

STATISTICS

Differences between Kras; p16p19™! and SmoM2 mouse myogenic
tumors were evaluated by T-test (Ki67 indices), Fisher’s Exact
test (prevalence of lung metastases), and Kaplan—Meier analysis
(tumor-repopulating activity).

RESULTS

Kras; p16p19™" AND SmoM2 MOUSE TUMORS EXHIBIT A MYOGENIC
TUMOR PHENOTYPE

Kras; p16p19™! mouse myogenic tumors were induced by intra-
muscular implantation of Kras(G12v)-expressing p16p19™# mus-
cle satellite cells (10). In contrast, SmoM2 mouse myogenic tumors
were initiated by ubiquitous activation of a mutant, constitutively
active smoothened (SmoM2) allele in R26-SmoM2;CAGGS-CreER
mice (11, 12). The phenotypes of Kras; p16p19" and SmoM2
myogenic tumors were previously described (10-12). In brief,
Kras; pl6p19™! tumors contained bundles of cells with large,
atypical nuclei, frequent mitotic figures, and occasional multin-
ucleated giant cells. Subsets of cells (<50% of all tumor cells)
expressed terminal muscle differentiation markers such as desmin
and actin (Figure 1A), and the proliferative index as evidenced by
the percentage of Ki67-expressing nuclei was 41.6 =+ 12.5% (range
30.5-59.3%; four tumors evaluated) (Table 1). SmoM2 tumors
contained many multinucleated, elongated cells with abundant
cytoplasm interspersed with small round cells. SmoM2 tumors
lacked cellular atypia and diffusely expressed desmin and actin in
many tumor cells (more than 75% of all tumor cells; Figure 1B).
As previously reported (12), the Ki67 index of SmoM2 tumors was
19.1 +15.9% (range 3.4—41.8%; six tumors evaluated) and lower
than that observed in Kras; p16p19"! tumors (p = 0.05; Table 1).

Kras; p16p19™" AND SmoM2 MOUSE MYOGENIC TUMORS HAVE
DIFFERENT METASTATIC POTENTIAL

The lung is the primary organ affected by distant sarcoma metas-
tases in humans. To assess the metastatic potential of Kras;
pl16p19™ and SmoM2 tumors, random lung sections obtained
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FIGURE 1 | Terminal myogenic differentiation in Kras; p16p19™" and
SmoM2 mouse tumors. (A) Subsets of Kras; p16p19™" tumors cells
express terminal muscle differentiation markers, actin and desmin. (B) The
majority of SmoM2 tumor cells express actin and desmin. Images were
taken at 20x (scale bars indicate 100 um).

from tumor-bearing animals were screened for the presence of
metastases. Six of seven mice with Kras; p16p19" myogenic
tumors were found to have lung metastases at the time of
death (mice were sacrificed 17-28 days after detection of palpable
tumors) (Figure 2). In contrast, 0 of 8 mice with SmoM?2 myogenic
tumors had lung metastases at the time of death (mice were sacri-
ficed at 38-55 days of age and 5-21 days after detection of palpable
tumors). The prevalence of lung metastases in Kras; p16p19™ and
SmoM2 myogenic tumor-bearing mice was significantly different
(p=0.001).

Kras; p16p19™" AND SmoM2 MOUSE MYOGENIC TUMORS DIFFER IN
TUMOR-REPOPULATING ACTIVITY

Most malignant tumors contain cells that have the capacity to
repopulate secondary tumors when transplanted into a suscepti-
ble secondary environment, and this assay has been used as a test of
the malignancy of distinct tumors and tumor cell subsets (13). To
evaluate the tumor-repopulating activity of Kras; plep19™! and
SmoM2 mouse myogenic tumors, viable tumor cells were trans-
planted into the cardiotoxin-pre-injured gastrocnemius muscles
of NOD.SCID mice. The Kras; p16p19™¥ tumor cell pool contains
approximately 70% GFP+ cells and 30% GFP— cells (10). Because
tumor-repopulating activity in Kras; p16p19"! tumors resides
within the Kras-expressing, GFP+ subset of tumor cells descended
from virally infected satellite cells (Figure S1 in Supplementary
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Table 1 | Differences in the malignant behavior of Kras; p16p19™! and SmoM2 mouse tumors.

Kras; p16p19™" tumors

SmoM2 tumors

Terminal muscle differentiation
Ki67 index (p=0.05)
Metastases (p=0.001)
Transplantation (p < 0.001)

41.6+12.5%
7 of 9 mice with lung metastases

Actin/desmin expression in <60% of tumor cells

7 of 9 transplanted mice developed tumors (50 cells injected)

Actin/desmin expression in >75% of tumor cells
19.1+15.9%

0 of 10 mice with lung metastases

2 of 10 transplanted mice developed secondary
tumors (100-150k cells injected)

Kras; p16p19™" and SmoM2 mouse myogenic tumors exhibit profound differences in tumorrepopulating activity and metastatic behavior.
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FIGURE 2 | Kras; p16p19™" mouse myogenic tumors metastasize to
the lungs of tumor-bearing animals. Random lung sections from Kras;
p16p 19" tumor-bearing mice show metastases. Tumor cells invade lung
capillaries (top panel). Similar to primary tumors arising from GFP+
Kras-expressing; p16p19™" satellite cells, lung metastases are GFP+
(bottom right panel). Images were taken at 10x and 20x (scale bars
indicate 100 wm)

Material), Kras; p16p19™¥ tumor cells were sorted for transplan-
tation from two Kras; p16p19™! primary tumors as GFP+, Pi—,
Calcein+ cells. Seven of nine mice injected with only 50 GFP+,
Pi—, Calcein+ Kras; p16p19™! tumor cells developed secondary
tumors at the injection site 26—39 days after tumor cell injec-
tion. For SmoM2 tumors, viable tumor cells were sorted as PI—
Calcein+ cells from primary tumors obtained from four mice. Sur-
prisingly, despite significantly higher numbers of cells transplanted
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FIGURE 3 | Kras; p16p19™" tumor cells repopulate tumors in secondary
recipients more effectively than SmoM2 mouse tumor cells.
Pi-Ca*GFP* Kras; p16p19™" tumor cells were sorted independently from
two primary tumors and injected into the cardiotoxin-pre-injured
gastrocnemius muscles of NOD.SCID mice (50 cells per injection). Pi-Ca+
SmoM2 tumor cells were sorted independently from four primary tumors
and injected into the cardiotoxin-pre-injured gastrocnemius muscles of
NOD.SCID mice (100,000-150,000 cells per injection). Recipient mice were
monitored for the occurrence of secondary tumors at the injection site for
up to 4 months.

(100,000 to 150,000 PI—, Calcein+ SmoM2 tumor cells per recip-
ient), only 2 of 18 recipient mice developed secondary tumors,
which were detected 71 and 127 days after cell injection. These
experiments indicate marked differences in tumor-repopulating
activity of Kras; pl6p19™" and SmoM2 tumors (p < 0.001,
Figure 3), in terms of both the frequency of tumor-repopulating
cells and the latency of secondary tumor formation.

DISCUSSION

Our findings highlight differences in the malignant phenotype and
behavior of mouse myogenic tumors driven by activation of dis-
tinct RMS-relevant oncogenic pathways. Kras; p1619"“" myogenic
tumors were metastatic to the lungs of the majority of tumor-
bearing animals and contained high tumor-repopulating activity.
In contrast, SmoM2 tumors did not metastasize and were substan-
tially less effective in repopulating tumors in secondary recipients.
These observations indicate that genetically distinct myogenic
tumors in mice display marked differences in their malignant
behavior.
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The two model systems described in this study were induced
by different experimental methods. SmoM2 tumors originated
from Cre-mediated activation of a conditionally expressed trans-
gene. Kras; p16p19™" mouse tumors, on the other hand, were
initiated by viral transduction and intramuscular implantation of
target satellite cells. We note that Kras; Tp53~/~ mouse myogenic
tumors (14, 15), induced by Cre-mediated activation of oncogenic
hits instead of viral transduction, exhibit a phenotype that closely
resembles the Kras; p16p19™# mouse tumors described here. For
example, Kras; p16p19™ share their propensity to metastasize to
the lungs of tumor-bearing animals with Kras; Tp53~/~ mouse
tumors (14). Nevertheless, it is possible that differences in the
tumor induction strategy (such as off-target effects of viral trans-
duction) could contribute to the observed differences in malignant
behavior between SmoM2 and Kras; p16p19™/ mouse myogenic
tumors.

Similar to mouse myogenic tumors, human fusion-negative
RMS comprises a group of tumors with clear differences in histol-
ogy, myogenic differentiation state, oncogenic pathway activation,
and genetic background. In recent years, subsets of human RMS
tumors that exhibit a combination of specific genetic and phe-
notypic characteristics were distinguished. For example, a subset
of human fusion-negative RMS with spindle cell/sclerosing his-
tology was recently found to exhibit diffuse MyoD expression,
carry frequent somatic MyoD mutations, and portend a poor
prognosis (16, 17). Also, children with TP53 germline muta-
tions are predisposed to develop anaplastic RMS at a young
age (18), and germline mutations in DICERI were linked to
a genetic susceptibility to develop RMS of the genitourinary
tract (19). Future extended (epi-)genotype/phenotype correla-
tions might pinpoint clinically/biologically distinct subgroups of
human fusion-negative RMS and identify biomarkers to facilitate
prognostication and/or stratification of therapy.
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