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Traditionally, gene expression measurements were performed on “bulk” samples con-
taining populations of thousands of cells. Recent advances in genomic technology have
made it possible to measure gene expression in hundreds of individual cells at a time.
As a result, cellular properties that were previously masked in “bulk” measurements can
now be observed directly. In this review, we will survey emerging technologies for sin-
gle cell transcriptomics, and describe how they are used to study complex disease such
as cancer, as well as other biological phenomena such as tissue regeneration, embryonic
development, and immune response.
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INTRODUCTION
Since the late 1980s, the invention of PCR (1), the microarray (2,
3), and more recently, next generation RNA sequencing (4) has
provided enormous amounts of gene expression data. These tech-
nologies, along with the information revolution, have reshaped
biology as a quantitative and computationally intensive science,
and are expected to pave the way for personalized therapy of can-
cer, auto-immune disease, and other complex genetic conditions.
An early demonstration of the power of high throughput genomics
can be seen in the work of Sorlie et al. (5), who used gene expres-
sion microarrays and hierarchical clustering to group 85 breast
tissues and tumors into subtypes based on their gene expression
patterns. Each breast cancer subtype was found to have a distinct
“molecular portrait,” prognosis, and recommended treatment. In
another work, Whitfield et al. (6) used microarrays to measure
gene expression in synchronized HeLa cells over time, and found
>850 genes that were periodically expressed during the cell cycle.
By hierarchically clustering gene expression patterns, they identi-
fied co-expressed groups of genes known to be involved in various
cell cycle processes such as DNA replication and chromosome seg-
regation, along with genes of previously uncharacterized function.

To provide sensitive and reliable measurements, microarrays
typically require 1–2 µg of total RNA, which corresponds to a
“bulk” of ~100,000 cells. This requirement has limited genomic
studies to “whole tissue” measurements, providing an expres-
sion profile that was “averaged” over all the cells in that tissue.
However, multicellular organisms consist of different cell types,
each having a different role and a different corresponding tran-
scriptional profile. Furthermore, even cells in more homogeneous
systems such as a bacterial colony or a mammalian tissue culture
vary according to intrinsic stochastic variation (7–9) and extrin-
sic variation governed by differences in the cell cycle stage or
their local environment (10). Thus, “bulk” measurements often

“average out” information that is critical to proper understanding
of fundamental biological phenomena and complex disease.

In the last decade, rapid advances in genomics have led to
the development of high throughput technologies that allow for
hundreds – or even thousands of genes – to be measured simul-
taneously in hundreds of individual cells. To date, single cell
transcriptomic technologies have been used to characterize rare
cell populations like circulating tumor cells (11), cancer stem cells
in solid tumors (12, 13), and embryonic stem cells (ESCs) in
mammalian blastocysts (14). Furthermore, single cell technolo-
gies allowed direct measurement of gene expression variability
originating from the stochastic nature of gene expression (7, 9, 15,
16) or from other more extrinsic sources such as the cell cycle (17)
or the circadian rhythm (18).

In this manuscript, we will briefly review some of the lat-
est developments in single cell transcriptomic analysis and their
applications to biology and medicine.

METHODS FOR SINGLE CELL TRANSCRIPTOMICS
We will describe three methods that are widely used for measur-
ing single cell gene expression: mRNA in situ hybridization, single
cell quantitative PCR (qPCR), and single cell RNA sequencing
(Figure 1).

SINGLE MOLECULE mRNA FLUORESCENCE IN SITU HYBRIDIZATION
ALLOWS TO COUNT SINGLE TRANSCRIPTS IN INDIVIDUAL CELLS
WITHIN AN INTACT TISSUE
Single molecule mRNA–FISH is a technology for fluorescently
labeling and counting mRNA molecules in fixed cells or tissues.
In the first step, probes are designed to target specific mRNA
molecules. The probes are oligonucleotides that are covalently
bound to fluorochromes and whose sequence complements the
sequence of the target mRNA transcript. When the probes are
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FIGURE 1 | A sketch of three methods for measuring single cell gene expression that were described in this manuscript: mRNA fluorescence in situ
hybridization (mRNA–FISH), single cell qPCR, and single cell RNA sequencing.

mixed with a chemically fixed cell or tissue sample, they hybridize
to the target mRNA molecules inside it. By proper image analy-
sis, individual mRNA molecules can be visualized as fluorescent
spots under a microscope and the number of transcripts can be
automatically determined by counting (19). Multiple sets of spec-
trally separated fluorochromes can be combined in order to count
two to three mRNA species (i.e., genes) simultaneously (20). The
main limitation of mRNA–FISH is the relatively small number
of genes than can be simultaneously measured. However, super-
resolution microscopy can used to increase the detection capacity
to 32 genes simultaneously (21),or even more by sequential rounds
of hybridization and washing (22). Since mRNA–FISH is based on
imaging, it also provides spatial information regarding the sub-
cellular localization and distribution of the transcripts (23). For
example, transcription sites can be identified as enlarged spots
and the number of nascent mRNA molecules can be estimated
(24). Furthermore, when implementing mRNA–FISH on tissues,
it is possible to obtain single cell gene expression along with the
original tissue microstructure (25) such as colon crypts (26) and
nephrons (27).

MICROFLUIDIC SINGLE CELL qPCR IS A SENSITIVE TOOL FOR
MEASURING THE EXPRESSION OF MULTIPLE GENES IN
HUNDREDS OF INDIVIDUAL CELLS
Quantitative PCR is widely used to measure gene expression.
Following cell lysis, RNA purification, and reverse transcription,

copies of chosen transcripts – as defined by specific primers – are
repeatedly replicated and their quantity is monitored over time by
a fluorescent reporter dye. The primers are short oligonucleotides
specifically designed to bind the target transcript at the 5′ and 3′

ends, thus enabling the DNA polymerase to initiate reverse tran-
scription and replication. Since qPCR is based on amplification, it
highly sensitive and can detect even single molecules (28). Sin-
gle cell measurements typically require thousands of reactions
per experiment (e.g., 100 cells× 100 genes= 10,000 reactions).
In order to overcome this limitation, microfluidic single cell qPCR
uses PDMS microfluidic chips with matrix-like architecture to
combinatorially mix up to 96 individual cells and 96 primer pairs
into 9,216 independent qPCR reactions on a single chip (29, 30).
Single cell isolation is typically done by flow cytometry or micro-
manipulation (31). In contrast to “bulk” qPCR, in single cell qPCR
no purification steps are possible due to the low amount of starting
material (32). Thus, all steps following single cell sorting such as
cell lysis, reverse transcription, and target transcript amplification
must be performed sequentially in a single tube.

From our experience, the main limitation of single cell qPCR
is the need to choose in advance which genes to measure – which
limits our ability to discover novel biomarkers without some prior
knowledge, and the fact that spatial information of the tissue struc-
ture is lost. On the other hand, those ~100 genes that are chosen
can be measured in hundreds – or even thousands – of individual
cells in a relatively high dynamic range (5–7 orders of magnitude
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for most genes), provided that the primers are chosen carefully to
account for varying reverse transcription efficiencies.

SEQUENCING ALL mRNA MOLECULES IN A SINGLE CELL ENABLES US
TO MEASURE THOUSANDS OF GENES SIMULTANEOUSLY AND TO
DISCOVER NOVEL BIOMARKERS
The first steps in RNA sequencing are cell capture and lysis,
followed by reverse transcription, whole transcriptome ampli-
fication, and next generation sequencing. The expression levels
of a gene can be inferred from the number of sequencing reads
that align to the genome in the location of that gene. A variety
of priming methods exist, the majority of which use either ran-
dom or poly-A primers. Likewise, different amplification schemes
are available based on PCR or linear amplification. Recent devel-
opments include “barcoding” of individual samples (cells) with
unique sequences in the priming step, which allows the barcoded
cDNA to be pooled, amplified, and sequenced in a single sequencer
run. Later, each read is in silico attributed to its original cell accord-
ing to its barcode (33–37). Similar barcoding can be done on single
transcripts allowing for direct counting of molecules (38–40).

A major challenge in the field of single cell genomics is to
develop sensitive, precise, and reliable technologies for sequencing
the whole transcriptome from hundreds – or even thousands – of
individual cells. At present, RNA sequencing is still too expensive
and work-intensive for high throughput single cell measurements.
Furthermore, the amplification step introduces large measure-
ment noise and uncharacterized bias, especially in low abundance
transcripts (41). Two remarkable technologies are emerging for
automated isolation, lysis, and whole transcriptome amplifica-
tion from individual cells at high capacity. The first approach uses
automated microfluidic chips (42, 43) with nano-liter chambers
for 96 individual cells. The use of nano-liter volumes has been
shown to result in more accurate measurements and decreased
amplification bias when compared to tube-based preparations
of single cells. The second approach uses droplet microfluidics
(44) for ultra-fast (~1 kHz) isolation of single cells in separate
sub pico-liter drops immersed in oil. Each drop is then fur-
ther processed automatically through the next steps that include
cell lysis, whole transcriptome amplification, and barcoding. The
emulsion can then be broken, sequenced, and individual cells
can later be de-multiplexed computationally according to their
barcode.

APPLICATIONS OF SINGLE CELL TRANSCRIPTOMICS
CHARACTERIZATION OF THE CELL SUB-POPULATION REPERTOIRE OF
TISSUES AND TUMORS IS ESSENTIAL FOR UNDERSTANDING HOW
TISSUES REGENERATE AND FOR DESIGNING NEW TARGETED
THERAPIES FOR CANCER
Many tissues in the human body such as the skin, the inner lining
of the intestine, and the blood and immune systems are con-
stantly regenerating. These tissues are dynamic systems composed
of different cell types including stem cells, progenitors, and dif-
ferentiated cells of various phenotypes. The stem cells are long
lived cells that maintain the regenerative potential of the tissue.
Some of their progeny become progenitors, cells that rapidly divide
and proliferate. These in turn differentiate into cells with more
and more specialized functions. Turnover times range from 4 to

5 days in the intestinal epithelium (45) to a few months in the
blood (46). Abnormalities in this process presumably result in
tumors. For example, it was found that many tumors have a small
sub-population of “cancer stem cells,” i.e., cells with tumorigenic
potential that can regenerate a new tumor when transplanted into
an immune-deficient mouse (12, 47, 48).

Since the stem cell population is a small minority (<1%), single
cell analysis is required in order to identify, isolate, and molecu-
larly characterize them. Transcriptional profiling of the various cell
types in tissues and their corresponding tumors will allow for bet-
ter understanding of the process of tissue regeneration and tumor
formation. Furthermore, molecular characterization of the stem
cell population will enable design of more efficient anti-cancer
drugs that will specifically target the stem cells of the tumor while
leaving all other cells viable.

EXAMPLE: REGENERATION IN THE INTESTINAL EPITHELIAL CRYPT
The epithelial lining of the mammalian small intestine and colon is
organized into glands called the crypts of Lieberkühn. Each crypt is
a regenerating unit in which the stem cells reside at the bottom, and
their progeny migrate upwards as they proliferate and differentiate
(see Figure 2). In the colon, there are two main cell lineages: ente-
rocytes, which reabsorb fluids and electrolytes, and goblet cells,
which secrete protective mucus and other growth factors (45).
Although studied for decades, the gene circuits that govern the
regeneration of the intestinal crypt, as well as the distortions that
lead to colon cancer, are not well understood.

In order to better characterize the repertoire of cell sub-
populations in intestinal tissues and tumors, we used a

FIGURE 2 | Each crypt in the mammalian small intestine or colon is an
independently regenerating unit. The stem cells reside at the bottom and
their progeny migrate upwards as they proliferate and differentiate. In the
colon, there are two main cell lineages: absorptive enterocytes and
secretory goblet cells.
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combination of flow cytometry and microfluidic single cell qPCR
to molecularly profile the cellular composition of primary human
colon cancer epithelia (13), and showed that human colon can-
cer tissues contain distinct cell populations whose transcriptional
identities mirror those of the different cellular lineages of normal
colon. We also showed that single cells from human xenografts
implanted in immune-deficient mice can regenerate a similar but
distorted cell population repertoire of the parent tumor. In another
work (49), we applied similar methods to the mouse colon epithe-
lium and found a previously unknown sub-population of goblet
cells that were interdigitated with the Lgr5(+) stem cells and which
secrete growth factors that maintain stem cell homeostasis, similar
to Paneth cells in the small intestine.

Although single cell qPCR can measure up to 96 genes simul-
taneously, it is limited by the fact that all information regarding
tissue microstructure is lost. To overcome this, mRNA–FISH can
be used to study spatio-temporal processes in tissue regeneration.
Itzkovitz et al. (26) applied three color single molecule mRNA–
FISH to follow the expression level of a set of putative stem cell
markers in the intestinal crypt. They revealed that all the mark-
ers overlapped in the bottom of the crypt and co-expressed with
Lgr5(+) cells. These results support the hypothesis of the exis-
tence of only one stem cell population residing at the crypt base.
In a later study (50), the authors used a combination of lineage
tracing and single molecule mRNA–FISH to study the design prin-
ciples of crypt formation in the small intestine of infant mice, and
found that in the first stages of development, there is a surge of
symmetric stem cell divisions, which are later followed by a tran-
sition to asymmetric stem cell divisions as the crypts continued
to grow.

A DETAILED PICTURE OF THE EARLY STAGES OF EMBRYONIC
DEVELOPMENT EMERGES FROM TRANSCRIPTIONAL
CHARACTERIZATION AT THE SINGLE CELL LEVEL
Embryogenesis involves complex growth and differentiation
events by which new tissues and organs are formed. Subtle but
essential differences in gene expression between seemingly homo-
geneous cells at early stages can have a dramatic long-term effect
on their fate and that of the organism as a whole. Often, sharp
boundaries are formed by direct interaction between adjacent cells
(51). In order to understand the regulatory changes that govern
this process, and in particular, the failsafe mechanisms that ensure
normal embryogenesis under varying and “noisy” conditions (52),
transcriptional profiling of individual cells is required, rather than
whole embryos or whole tissues (53).

In early human embryogenesis following fertilization, the single
cell zygote undergoes early cleavage divisions to form the morula –
an apparently non-differentiated mass of 8–16 cells (see Figure 3).
The morula then differentiates into two cells types: the outer
layer, also called the trophoblast or trophectoderm (TE), which
is responsible for implantation of the embryo into the wall of the
maternal uterus and which will later develop into the placenta,
and the inner cell mass (ICM), from which ESCs are derived. The
resulting structure is called the blastocyst and consists of 32–64
cells. The ICM then further differentiates into two additional lay-
ers: the primitive endoderm (PE), which provides developmental
cues to the embryo, and the epiblast (EPI), which will become the
embryo itself (54).

In order characterize the transcriptional changes during this
process, Kurimoto et al. (55) used single cell qPCR and whole
transcriptome amplification followed by microarray analysis to

FIGURE 3 | A sketch of the early stages of mammalian embryonic development starting from zygote, through morula (8–16 cells), to blastocyst
(32–64 cells). TE, trophectoderm; ICM, inner cell mass; PE, primitive endoderm; EPI, epiblast (53).
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measure single cell gene expression in a mouse blastocyst. They
isolated ~20 single cells from the ICM, a population of undiffer-
entiated pluripotent cells that give rise to all embryonic lineages
and which is also the source of ESCs, and found that even in rather
early stages of the blastocyst (E3.5, ~32 cells), where the cells are
morphologically homogeneous, two populations of cells could be
discerned: one with PE-like gene expression and the other with
pluripotent EPI-like gene expression. The genes that were differ-
entially expressed between these two populations were found to
be preserved in the morphologically differentiated PE and EPI in
the embryos 1 day later (E4.5).

Guo et al. (14, 53) used microfluidic single cell qPCR to measure
the expression level of 48 genes in parallel from >500 individual
cells from different stages of mouse pre-implantation develop-
ment, from the 1-celled zygote through to the 64-celled blastocyst.
They found that even at the 16-cell stage morula, the inversely cor-
related genes Id2 and Sox2 could discern between the inner part
of the morula (Id2low/Sox2high), which further develops into the
ICM, and the outer part that develops into the TE and that could
be specifically stained by a cell-membrane labeling fluorescent
dye prior to embryo dissociation. They also observed expres-
sion heterogeneity within the early ICM of the 32-cell blastocyst,
for example, in the anti-correlated ligand–receptor pair Fgf4 and
Frfr2. Later on at the 64-cell ICM, Fgf4 becomes restricted to the
EPI and Fgfr2 to the PE.

Tang et al. (56) studied the process by which cells from the
ICM, cultured in vitro, transform into ESCs and obtain infi-
nite capacity for self-renewal and pluripotency. By performing
single cell qPCR and single cell RNA sequencing at different
time points, they were able to identify clusters of genes and
microRNA’s whose expression increased or decreased during this
process, as well as genes that gradually lost cell–cell heterogene-
ity (e.g., c-Myc) and genes whose splicing was modified. Xue
et al. (57) used single cell RNA sequencing and weighted gene
co-expression network analysis (WGCNA) to study cross correla-
tions between genes during development from oocyte to morula
in mammals. They were able to identify 25 distinct modules
of co-expressed genes, each with a defined function. Nine of
these modules were found to be stage specific, indicating that
transcriptional changes occur in step-wise fashion throughout
development. Furthermore, they found that these modules were
similar in human and mouse, but diverged in their time of
activation.

Similar works were done in other organisms. Recently,
Hashimshony et al. (37) used single cell RNA sequencing to char-
acterize lineage specific gene expression in the very first stages of
development of a C. elegans embryo. By learning to identify dif-
ferential gene expression among sister cells (blastomeres) during
cleavage, they produced a classifier based on a small set of key
informative genes that could distinguish between closely related
sister cells. Later stages of development in specific tissues were
also studied at the single cell level. For example, Treutlein et al.
(58) used microfluidic single cell mRNA sequencing to follow the
development of lung alveolar epithelial cells in a mouse embryo.
Using unsupervised clustering, they were able to identify and char-
acterize five epithelial cell types, four of which were associated with
previously reported cell types. Based on the expression of specific

marker genes, they reconstructed the differentiation pathway of
progenitor cells into separate alveolar cell lineages.

SINGLE CELL MEASUREMENTS CAN REVEAL NEW DIMENSIONS OF
HETEROGENEITY AS WELL AS TRANSCRIPTOME-WIDE RELATIONS
BETWEEN GENES
According to the central dogma of molecular biology, formulated
by Francis Crick in 1970s (59), the transcription of genes from
DNA to RNA is the first stage of information flow in the cell.
However, it was recently realized that transcription is an inher-
ently “noisy” process (15). Due to the relatively small number of
molecules involved (DNA, RNA polymerase, etc.), even geneti-
cally identical cells will have different expression levels of the same
gene (60). This “randomness” has an essential role in key cellular
activities (61) as well as implications on gene expression measure-
ments, whereby single cell measurements yield a more detailed
and deeper understanding of many intra-cellular processes that
were masked or “averaged out” by traditional “bulk” techniques.
For instance, new cell states and cell types in tissues can be resolved
by identifying groups of individual cells having distinct expression
profiles (62). Furthermore, due to the inherent variability between
cells, every cell for which we measure the expression of multi-
ple genes is essentially a different “experiment” that reveals new
information about the relations between different genes (63, 64).
Thus, measuring the expression of multiple genes simultaneously
in hundreds of individual cells can be used to identify pairwise
correlations between them and to reconstruct transcription reg-
ulation networks (65). Comparison between these networks in
normal and disease states can provide deeper mechanistic insight
to the underlying effects of disease (66).

Gandhi et al. (67) explored the degree of gene expression
coordination between genes in individual cells of Saccharomyces
cerevisiae. They used multicolor FISH labels to measure expression
levels of related and unrelated pairs of genes and found very high
coordination between functionally related genes that were tem-
porally induced by the sugar galactose (GAL). In contrast, other
more constitutive genes – even those that were functionally related
or that had identical promoters – were found to have low cor-
relation to each other, most likely due to stochastic fluctuations
independently affecting individual genes.

Shalek et al. (68) used single cell RNA sequencing and mRNA–
FISH to provide a more accurate and detailed description to
the response of a seemingly homogeneous population of cells to
external stimuli. They examined the response of mouse bone-
marrow-derived dendritic cells (BMDCs) to lipopolysaccharide
(LPS), a toxin found in the outer membrane of Gram-negative
bacteria that elicits a strong immune response, and found that 185
of the 241 most variable genes had bimodal expression patterns.
They also found that many key genes involved in the immune
response that are highly expressed at the population level actu-
ally exhibit a bimodal expression pattern at the single cell level. In
addition, they found cell to cell heterogeneity in splicing patterns,
whereby genes that had multiple splicing isoforms at the popula-
tion level exhibited predominantly only one pattern in any specific
individual cell.

Another dimension of heterogeneity was revealed by Hansen
et al. (69), who studied allele-specific gene expression in single
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cells by using mRNA–FISH probes that were designed to dis-
tinguish between different alleles (paternal vs. maternal) of the
same gene according to their single-nucleotide variants (SNVs).
Using this method, allelic expression imbalance of the genes Nanog
and Chd4 was measured in a mouse ESC line. For example, they
found that although under certain conditions (such as changing
the growth medium to 2i medium – a medium with minimal
requirements for self-renewal) the total number of expressed
transcripts increased, the proportion of cells exhibiting mono-
allelic expression remained the same. A more transcriptome-wide
approach was taken by Deng et al. (70), who used single cell RNA
sequencing to measure allele-specific expression in mouse pre-
implantation embryos of mixed background. They showed that
a large fraction (~25%) of all autosomal genes was expressed
in mono-allelic fashion, which appeared to be stochastic and
independent.

The effect of variations in the DNA on gene expression was fur-
ther investigated by Weinstein et al. (71), who devised a method
combining single cell qPCR and Sanger sequencing for simultane-
ously measuring gene expression profiles in hundreds of individual
B-cells as well as the mutations in genes coding for their anti-
body heavy and light-chains. By measuring both expression and
mutations in B-cells of mice following immunization, they were
able to probe the relation between B-cell activation, proliferation,
and differentiation and antibody mutation during “affinity mat-
uration” – the process by which B-cells are stimulated to divide
and hyper-mutate in order to increase their affinity for a specific
antigen. A different aspect of the relation between the genome
and transcriptome was investigated by Wills et al. (72), who used
microfluidic single cell qPCR to associate single-nucleotide poly-
morphisms (SNPs) with gene expression phenotypes. By measur-
ing the expression levels of specific genes from the Wnt pathway
along with their associated SNPs in hundreds of single cells derived
from 15 individuals, they were able to show that SNP’s have
considerable effect on the expression level statistics of each indi-
vidual. This feature can only be observed at the single cell level,
and is “masked out” in bulk experiments where many cells are
averaged.

MEASURING THE SPATIAL DISTRIBUTION OF mRNA MOLECULES
WITHIN A CELL UNCOVERS FUNDAMENTAL MECHANISMS INVOLVED
IN CELL MOTILITY AND DEVELOPMENT
Sub-cellular localization of mRNA provides a mechanism to spa-
tially control gene expression and protein distribution within the
cell. Differential localization was observed in mRNA transcripts
encoding cytoskeletal proteins (73) and embryonic morphogens
(74). In a more recent study, Lécuyer et al. used mRNA–FISH
to perform comprehensive analysis of mRNA localization in
early Drosophila embryos (75). Their observations showed that
a high fraction of genes – 71% out of 3,370 genes analyzed –
were expressed in spatially distinct patterns. Furthermore, they
found a strong correlation between mRNA distribution and subse-
quent protein localization and function. Taken together, transcript
abundance measurements along with spatial information and
patterning over many cells will provide a richer description of tran-
script properties as well as better understanding of the functional
interactions between genes (23).

OUTLOOK
Single cell transcriptomic technologies are still developing and we
believe that they have not yet reached their full potential. One
intriguing development is the ability to perform transcriptomic
measurements while preserving the tissue context and sub-cellular
localizations, for example, by cryo-sectioning tissues into thin
slices and sequencing the whole transcriptome in each slice inde-
pendently (76, 77), or even by sequencing every single transcript in
primary tissue under a microscope while maintaining spatial infor-
mation as to the location of each transcript within each individual
cell (78). Another challenge is to increase the number of single
cells that can be analyzed: many thousands of cells are required
to gain thorough understanding of complex biological processes
such as cancer or the development of an embryo (62, 79). Simi-
lar capabilities have recently been developed to quantify proteins
by combining mass spectrometry and flow cytometry (80). In the
next few years, we expect all these novel technologies to provide a
new wealth of data. Parallel progress will be required to develop
computational tools to visualize and analyze this data and deduce
testable hypotheses (81–85).
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