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Cell death can occur through different mechanisms, defined by their nature and physiolog-
ical implications. Correct assessment of cell death is crucial for cancer therapy success.
Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among
cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promis-
ing in other fields, regulated necrosis and other cell death circumstances (as so-called
“autophagic cell death” or “mitotic catastrophe”) have not been yet properly addressed
in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most
cases the precise sequence of events remains poorly characterized. In this review, our
main objective is to put into context the most recent sarcoma cell death findings in the
more general landscape of different cell death modalities.

Keywords: cell death mechanisms, sarcoma, translocation-bearing sarcomas, apoptosis, necrosis, autophagic cell
death, mitotic catastrophe

INTRODUCTION
FACTS
• Sarcomas are a highly heterogeneous group of mesenchymal

tumors.
• Among cell death mechanisms, only apoptosis has been exten-

sively studied in sarcomas.
• Fusion proteins, actors of translocation-derived sarcomagenesis,

play an anti-apoptotic role in sarcomas.
• Proper and deeper assessment of cell death in sarcomas is

mandatory.

CHALLENGES
• Can we improve the current therapeutic protocols in sarcomas

through a better knowledge of cell death mechanisms?

Abbreviations: AIF, apoptosis inducing factor; Akt, protein kinase B; Apaf-
1, apoptotic protease activating factor 1; Bak, Bcl-2 homologous antago-
nist/killer; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; Bcl-
xL, B-cell lymphoma-extra large; BubR1, mitotic checkpoint serine/threonine-
protein kinase BUB1 beta protein; CD133, prominin-1; CD99, cluster of
differentiation 99 protein; cFLIP, cellular FLICE inhibitory protein; Chk1,
checkpoint kinase 1; c-Myc, cellular avian myelocytomatosis viral onco-
gene homolog; DAPI, 4′,6-diamidino-2-phenylindole; DRAL, downregulated
in rhabdomyosarcoma LIM protein; ERG, protein encoded by erythroblast
transformation-specific related gene; ERK, extracellular signal-regulated pro-
tein kinase; EWS, Ewing sarcoma RNA-binding protein; FasL, fas ligand pro-
tein; FLI1, Friend leukemia integration 1 transcription factor; FOXO1, fork-
head box protein O1; HDAC1, histone deacetylase 1; IGF-1R, insulin-like
growth factor 1 receptor; IHQ, immunohistochemistry; JAK, Janus kinase;
MC, mitotic catastrophe; MDM2, mouse double minute 2 homolog pro-
tein; MEK, mitogen-activated protein kinase kinase; miRNA, micro RNA;
MLKL, mixed lineage kinase domain-like protein; mTOR, mammalian target

• Can we assess more accurately the sequence of events of every
type of cell death?

• Which are the key molecules that determine tumor cell death
after therapy?

• Do translocation-bearing sarcomas have specific weaknesses in
their cell death signaling networks?

Cancer therapies are aimed to induce the specific destruc-
tion of tumor cells without compromising patient health. This
makes cell death mechanisms a central point of any therapeu-
tic approach (1, 2). However, no every death is equally desirable
in terms of therapy (3). The need of theoretical arrangement in
the field has become evident during the past years. Our knowl-
edge on cell death mechanisms has increased enormously and

of rapamycin protein; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells protein; NGFR, low-affinity nerve growth factor recep-
tor; Noxa, Phorbol-12-myristate-13-acetate-induced protein 1; oct4, octamer-
binding transcription factor 4; p21, cyclin-dependent kinase inhibitor 1;
PARP, poly (ADP-ribose) polymerase; PAX, protein encoded by paired box
gene; PD, progression disease; PDGFR, platelet-derived growth factor recep-
tor; PET-CT, positron emission tomography; PI, propidium iodide; PI3K,
phosphatidylinositol-4,5-bisphosphate 3-kinase; Plk1, polo-like kinase 1; PM,
plasma membrane; PR, partial response; pRb, retinoblastoma protein; puma, p53
upregulated modulator of apoptosis; RAF, raf proto-oncogene serine/threonine-
protein kinase; RANK, receptor activator of nuclear factor κB; ROS, reac-
tive oxygen species; sox2, sex determining region Y-box 2; SSX, protein
encoded by synovial sarcoma X breakpoint gene; STS, soft tissue sar-
coma; SYT, protein encoded by synovial sarcoma translocation on chro-
mosome 18 gene; TNFR, tumor necrosis factor receptor; TRAIL, TNF-
related apoptosis-inducing ligand; VEGFR-2, vascular endothelial growth factor
receptor 2.
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the available methodology has become more and more sophisti-
cated. Therefore, a clear nomenclature based on reliable markers
has been proposed (1, 4). Additionally, the growing number of
cell death participants have been organized in clear hierarchic
frameworks (5).

Sarcomas are a rare and heterogeneous group (more than 50
different clinical and molecular entities) of malignant tumors with
mesenchymal origin. Molecular biology of sarcomas has remained
elusive until recently, and a better knowledge remains as an unmet
need (6). New drugs against potential targets in tumor cells with
a crucial role in their metabolism or pro-survival fitness could
improve the prognosis of these patients. Indeed, the relatively high
rate of therapeutic failure and tumor relapse demands a better
assessment of cell death induction. But scientific efforts in this dis-
cipline are historically undermined by the relative low investments
and isolated work (7).

The scientific landscape involving cell death mechanisms in
sarcomas can be improved. The majority of articles included in
the present review focused on apoptosis (mostly) and necrosis,
whose morphological characters (Figure 1) and signaling play-
ers (Figure 2) are better described. Many studies about cell death
in sarcomas just describe the occurrence of cell death without
a proper characterization of the sequence-of-events leading to
a particular form of death. The aim of the present review is to
help sarcoma researchers to face new knowledge on cell death
mechanisms in order to routinely include it in their assessments.

CELL DEATH MECHANISMS
APOPTOSIS
Apoptosis involves a cellular controlled demolition process.
Signaling cascades are finely orchestrated and secured, to ensure

its perfect onset only when it is required (8). Caspases are
the major actors in cellular demolition; once triggered, cas-
pases can cross-activate each other and thus amplify the apop-
totic signal (8). Apoptosis is by far the most studied form
of cell death in sarcoma research. Nevertheless, researchers
either employ uninformative methods about the form of death
(i.e., Trypan Blue assay), or the mechanisms leading to such
death are not always fully analyzed. Apoptosis recognition is
easy by simple morphological features visible under the micro-
scope: nuclear condensation and fragmentation, blebbing etc.
(Figure 1). Other techniques (immunofluorescence or western
blotting of cleaved caspases and/or caspase substrates, etc.) can
be used to monitor specific mediators and executors of the
process (9–11). Based on their biochemical features, we can
describe two major pathways in apoptotic signaling: the intrin-
sic or mitochondrial pathway and the death receptor pathway
(Figure 2).

Mitochondrial apoptosis
The “intrinsic pathway” is defined by the role of the mitochon-
dria as encounter point of most of its initiators and mediators.
The Bcl-2 family of proteins controls this pathway by regulating
the formation of a pore in the mitochondrial outer membrane
(12). Several signaling pathways converge in the regulation of
Bcl-2 proteins, from DNA-damage sensor system to organelle
stress and malfunction or growth factor signaling (Figure 2) (13,
14). In order to demonstrate that a drug or physiological input
induces apoptosis through the mitochondrial pathway, exogenous
overexpression of anti-apoptotic Bcl-2 family members can be
performed; this should either prevent cell death or switch the
mechanism to necrosis.

FIGURE 1 | Graphical illustration of the most prominent morphological
features of apoptotic and necrotic cell death mechanisms. Nuclei changes
(karyorrhexis), cytoplasm shrinkage, and blebbing are the most evident

descriptors of apoptosis. On the other hand, necrosis is clearly recognizable
by cell swelling (loss of osmotic barrier) leading to the plasma membrane (PM)
breakage and final release of the inner soluble content and nuclei karyolysis.
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Rello-Varona et al. Cell death mechanisms in sarcomas

FIGURE 2 | Schematic representation of the better characterized signaling hubs of apoptotic and necrotic cell death mechanisms. Note that necrotic
processes are substantially worse described than apoptotic ones, being still controversial if the execution phase is protein-driven or result of a massive
metabolic failure.

Some sarcomas rely on the presence of specific aberrant fusion
proteins, generated after chromosomal rearrangements. Deregu-
lation of gene expression in sarcomas driven by these chimeric
oncoproteins can occur at different levels (epigenetic silencing,
transcription activity, messenger processing, etc.) affecting every
cellular process, including apoptosis (Figure 3). In the case of
Ewing Sarcoma (ES), the fusion proteins EWS-FLI1 or EWS-ERG
have an inhibitory effect on part of the apoptotic machinery (15,
16). This effect is mediated by direct or indirect interactions with
several signaling pathways modulating apoptosis repression and
inducing sustained growth (17–20). Alveolar rhabdomyosarcoma
(aRMS) is also dependent on fusion proteins involving different
PAX proteins with FOXO1, which also targets different signal-
ing networks in order to ensure evasion of apoptosis (21, 22).
SYT-SSX chimera proteins are present in the majority of synovial
sarcoma tumors. They are involved in resistance to pro-apoptotic
stimuli by modulating the levels and the activity of key apoptotic
players of the Bcl-2 family of proteins (23). Furthermore, certain
translocation-bearing sarcomas are also characterized by failure
to complete tissue differentiation (i.e., RMS to skeletal muscle,
liposarcoma to adipocytes) in a process mediated by their specific
fusion protein and linked to the inhibition of apoptosis induc-
tion (24–26). Several recent studies have linked miRNAs status
with apoptosis regulation in chromosome translocation-bearing
sarcomas. Hence, mitochondrial apoptotic resistance in ES corre-
lates with miR-125b upregulation through p53 and Bak (27) but
overexpression of miR-206 in RMS promotes proliferation arrest
and some sort of cell death (28). Overexpression of miR-145 and

FIGURE 3 | Fusion proteins in sarcomas disturb the natural
physiological balance between pro-survival and death signaling inputs
through different ways. The panoply of mechanisms and cellular targets
disturbed demonstrates the powerful tumorigenic effect of a single event of
genomic rearrangement.

miR-451 in liposarcoma cell lines decreases cellular proliferation,
impairs cell cycle progression, and boosts cell death (29), whereas
overexpression of miR-26a-2 has the opposite effects (30).

The levels and status of key pro- and anti-apoptotic proteins are
also crucial for understanding the differential sensitivity of cells
toward apoptosis. Most ES cells have both the p53 downstream
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pathway and the DNA-damage signaling pathway functionally
intact. The resistance of some ES cell lines to p53-induced apop-
tosis has been linked to a high Bcl-2/Bax ratio and low levels of
Apaf-1 (31). However, the influence of fusion proteins inacti-
vates p53 by deacetylation at Lys-382 driven by both EWS-FLI1
and HDAC1 (32), meaning that re-expression or re-activation
of p53 could be a good strategy against these tumors. Similar
phenomena occur in other fusion-positive sarcomas and accord-
ingly, histone deacetylase inhibitors have been successfully tested
as apoptotic inducers in different sarcoma types (33, 34). p53 re-
activator agents as Nutlin-3 and/or PRIMA-1 are able to induce
apoptosis successfully through Noxa, Puma, or p21 upregulation
in both mutant and wild-type p53 sarcoma cell lines (35–37).
Among downstream p53 targets p21, c-Myc, Bax, MDM2, DRAL,
Bcl-2, and Bcl-xL have been suggested as key apoptotic regulators
in different sarcoma models (38–43). Plasma membrane-anchored
growth receptors such as NGFR or IGF-1R have an anti-apoptotic
role (44, 45). In contrast, distinct behaviors have been suggested
for the closely related receptors PDGFR α and β (46). Thus,
PDGFR α favors cellular stemness and PDGFR β promotes angio-
genesis in the tumor stroma. Hepatocyte-growth-factor activator
inhibitors (HAI-1 and HAI-2) act as tumor suppressors leading
to apoptosis and necrosis in leiomyosarcoma (47). Also, inhibi-
tion of endogenous tyrosine kinase B (TrkB) signaling suppresses
cell proliferation and increases apoptosis in cultured leiomyosar-
coma cells (48). In this context, tyrosine kinase inhibitors like
Sorafenib induce apoptosis on many leiomyosarcoma or synovial
sarcoma cell lines by inhibiting the RAF/MEK/ERK signaling path-
way, among others (49, 50). Apoptotic cascades induced by other
kinase inhibitors like JAK1 and 2 have been analyzed in detail
in RMS and ES cells. These inhibitors lead to the alteration of
the balance between the pro-apoptotic Bax and the anti-apoptotic
proteins Bcl-2 and Bcl-xL, the release of cytochrome c, and the
activation of caspase-9, -8, and -3 (51, 52).

Many other different strategies have been used in sarcomas
to induce mitochondrial apoptosis. Betulinic acid is able to tar-
get the mitochondria in ES, promoting the permeabilization of
the outer membrane resulting in the release, from the mitochon-
dria to the cytosol, of soluble factors such as AIF and cytochrome
c, who ultimately leads to caspase activation (53). Direct target-
ing of mitochondrial physiology was also explored in RMS with
photodynamic therapy (54) and ROS-generation agents (55). Pro-
teasome inhibitors as Bortezomib generate a major stress in the
cell machinery, triggering a number of different reactions, many
of them aimed to induce apoptosis. Bortezomib has been success-
fully employed in different pre-clinical models (56, 57). Heat shock
proteins are among the most important actors against protein
stress in cells. Accordingly, Hsp-90 antagonists had been shown to
induce transient growth arrest and apoptosis in RMS cells (58).
Likewise, some metabolic disruptors like 2-deoxyglucose, Lovas-
tatin, and Catechins have been successfully tested as promoters
of mitochondrial apoptosis by unbalancing the equilibrium of
Bcl-2 family of proteins (59–61). Furthermore, down-regulation
of inhibitor of apoptosis proteins (IAPs) also leads to apoptosis,
identified by PARP cleavage, in pediatric sarcomas (62).

To keep their correct physiology, cells rely in their interaction
with neighbors and microenvironment, meaning that detachment

is a major apoptotic trigger. The process of detachment-induced
apoptosis is termed anoikis (4). The lack of attachment activates
signals from the plasma membrane, mostly by integrins and the
focal adhesion kinase (FAK) that regulate the BH3-only proteins
through the mitochondrial commitment to cell suicide (Figure 2)
(63). Cell culture in non-adherent conditions, like soft-agar, is the
better way to study this process. Suppression of anoikis cell death is
considered an important hallmark of transformed cells and thus,
a pre-metastatic key process (64).

Anoikis resistance in sarcomas has been described to be associ-
ated with integrins, Bcl-2 and caspase-8, CD99 isoforms, RANK,
and ERK (65–68). ES cells survival in non-adherent conditions is
mediated by E-cadherin dependent spheroid formation, avoiding
apoptotic triggering by means of the PI3K/Akt pathway (69). Scot-
landi et al. demonstrated the relevance of IGF-1R in the anoikis-
resistant ES cell line TC71. Impairment of IGF-1R signaling (by
neutralizing antibodies or siRNAs expression) led to a lower sur-
vival in anchorage-independent growth conditions and a decrease
on metastatic ability (70). In synovial sarcoma, the increased IGF-
2 synthesis protects cells from anoikis and is required for tumor
formation in vivo (71). Another trans-membrane growth fac-
tor receptor, the ErbB4 Tyrosine kinase, gets phosphorylated in
ES spheroids and its expression is linked to anoikis avoidance,
metastatic disease, and bad outcome (72). In RMS, spheroids
obtained after cell culture enrichment express stem cell gene mark-
ers such as oct4, pax3, sox2, c-myc, and nanog. It was also found
that CD133 was upregulated in these spheres, conferring cells
higher resistance to Cisplatin and Chlorambucil in vivo (73). In
osteosarcoma (OS) cells, anoikis can be induced by zoledronic
acid, DNA methylation inhibitors as decitabine or cyclooxygenase-
2 inhibitors via PI3K/Akt pathway inhibiting β-catenin, TrkB, and
E-cadherin (74–76).

Several of the aforementioned reports present indeed interest-
ing data for a number of plausible targets concerning mitochon-
drial apoptosis. However, it is worth noting that in most of these
cases, apoptotic analyses rely only in AnnexinV (AnnV) tests or
caspase-3 activation kits, being uninformative about the precise
processes involved. Although extended in the community, when
the end-points of AnnV-PI tests are not carefully selected, this
could lead to the misidentification of late apoptotic and necrotic
cells; similarly, caspase-3 is a common final step in apoptotic cell
death that does not imply a single precise activation pathway
(Figure 2) (11).

The death receptor pathway
Caspase-8 is the most characteristic mediator of the “death recep-
tor pathway” (Figure 2). In this case, the triggers of the apoptotic
process are extracellular signals (mostly from the TNF family) and
the initiators and mediators encounter not in the mitochondr-
ial outer membrane but rather close to the plasma membrane
(77). Besides direct stimulation of cell death, death receptors
can also induce specific protein synthesis by means of the NF-
κB pathway that balances and even counteracts the apoptotic
signaling (78).

TRAIL is a death ligand that has been studied in several sarco-
mas for therapeutic purposes (79–81). TRAIL-induced apoptosis
is regulated by other receptors and downstream effectors including
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cFLIP and the Bcl-2 family (82–84). The TRAIL receptor, death
receptor 5, has been identified as a mediator of chemically induced
apoptosis in RMS, synovial sarcoma and leiomyosarcoma, activat-
ing several apoptosis triggers (85–87). TNFα and FasL receptors
play also a significant role in the survival/apoptotic balance with
p21 as critical mediator of the anti-apoptotic effect of TNFα-
induced NF-κB (88, 89). Bad, a pro-apoptotic member of the Bcl-2
gene family, has been linked to FasL induced apoptosis in ES (90).
Activation of death receptors could be combined with other chal-
lenges like doxorubicin, interleukin-12, or immunotoxins (91–93).
Some other TNF receptor-related proteins, like NGFR, have been
proposed to be crucial in specific sarcomas (94). Thus, there is still
a need for a better understanding of the role of the other cell death
receptors in sarcomas.

Besides the death receptors themselves, the best strategy to
enhance extrinsic apoptosis is repressing NF-κB activation. This
rationale has been employed with success against ES and syn-
ovial sarcoma (95, 96). Sensitization to apoptosis has also been
achieved by re-expressing caspase-8 through demethylation or
gene transfer (97).

NECROSIS
Necrosis, in contrast to apoptosis, has been viewed classically as
a form of accidental death brought about by injury to the cell
by pathogens or toxins. Despite the extended pre-judice, necro-
sis is more than a mere accidental death (5). Loss of plasma
membrane integrity, the “cellular explosion”, is the major
morphological feature and characteristic element of necrosis
(Figure 1) (9, 98). Non-accidental or “regulated” necrosis has
attracted a growing interest in the scientific community in the
last years. Necroptosis is the best known phenotype in this group.
It is induced by either the activation of death receptors or spe-
cific injuries that are followed by the recruitment of the so-called
necrosome of which the principal participants are the receptor-
interacting protein kinases (RIPK1 and RIPK3), which finally
activate the executor MLKL (Figure 2) (99).

Necroptosis is just starting to be studied in sarcomas. It can
be distinguished from apoptosis by its distinct morphology and
the inability of caspase inhibitors to prevent it (10, 11). In an
OS model, RIPK1-mediated necroptosis was confirmed as the
main cell death mechanism involved in Shikonin therapy, as only
Necrostatin-1 (an inhibitor of RIPK1) was able to induce treat-
ment reversion (100). Basit et al. found that Obatoclax (a Bcl-2
inhibitor) treatment in RMS cell lines promoted necroptosis rather
than autophagic cell death, being autophagy only a necessary event
required for the necrosome assembly (101). So, it becomes clear
that there is still a big room for improvement in the accurate
characterization of regulated necrosis responses in anti-sarcoma
therapy.

OTHER SCENARIOS FOR THE CELL DEATH DRAMA
The long-standing dichotomy apoptosis-necrosis is in part noth-
ing but a classification artifact. Many times the exact nature of the
mechanism triggered relies simply on the intensity of the injury or
on the available energy (102). Furthermore, in the cell death land-
scape, there are other “circumstances” worth of some additional
explanation.

A classical example of “double-edged sword” is autophagy,
sometimes included as a cell death mechanism, although it usually
proceeds as a pro-survival process. Autophagy targets apoptotic-
signaling mitochondria for isolation and degradation, thus
interrupting the apoptotic outcome. Several proteins cross-link
autophagy and apoptosis signaling pathways, being mTOR one of
the most studied (103). As a process impacting the energy avail-
ability, autophagy also dialogs with necrotic signaling and some
reports point to a close relationship with necroptotic triggering
(101, 102). Again, it seems to be a question of threshold. In many
cases, an excessive autophagy can lead to cell death but this death
follows a mixed pattern with parallel apoptotic or necrotic pheno-
types. Only when inhibition of autophagy can impede cell death
and the final phenotype is considered non-apoptotic cell death,
we can classify it as “autophagic cell death” (4, 102). Among the
different techniques available, autophagy can be better followed by
microscopy assessment of autophagosome formation (11, 104).

To our knowledge, except for some interesting report showing
autophagic triggering of necroptosis in RMS (101), no instances
of true autophagic cell death have been described in sarcomas yet.
Indeed, its role in cancer therapy is still controversial (102). In
ES and OS, the protective role of autophagy was insufficient to
block apoptotic cell death when triggered by either the intrinsic
or the death receptor pathways (105, 106). Autophagy has also
been described to be actively removing micronuclei in OS cells,
generating an interesting connection with the stabilization of cells
recovering from failures during mitosis (107).

Mitotic catastrophe (MC), previously classified as a form of
cell death, constitutes a crossroad that could drive cells to die with
either apoptotic or necrotic features, go into senescence, or even
survive (108). Again, the precise features of the final death pheno-
type depend on cell context and energy availability (108, 109). The
clearest triggers of MC are the dysfunctions of the mitotic spin-
dle. Those dangers are monitored by specific checkpoint proteins
determining the final outcome. Thus, cells evading the mitotic
arrest have an increase in chromosome instability (110). MC can
be easily followed by means of microscopy observation, usually
aided with fluorescent markers, video-microscopy, and cell fate
imaging analysis.

Proper metaphase arrangement is required for mitosis and is a
key process monitored by several checkpoint regulators (Figure 2).
BubR1, involved in the mitotic spindle checkpoint, has been shown
to be necessary for survival in some RMS cell lines and its knock-
down promoted growth suppression and“mitotic catastrophe”but
the final outcome was not elucidated (111). Plk1 is another major
component of MC signaling: siRNA inhibition of Plk1 killed RMS
cells and the chemical inhibitor BI 2536 induced G2/M arrest and
cell death in OS cell lines (112, 113). Inhibitors of Aurora kinases
block the formation of the cleavage furrow, disrupting cytokinesis,
and killing leiomyosarcoma and synovial sarcoma cells (114, 115).
Chk1 blockade with CEP-3891 caused an abrogation of the S and
G2 checkpoints after ionizing radiation, giving rise to nuclear frag-
mentation as a consequence of defective chromosome segregation
and promoting cell death (116). Many active drugs tested in sar-
coma cells have been described to disrupt normal cell cycle. Those
compounds range from small molecules or plant derivatives, to cell
cycle kinase inhibitors, viral proteins etc. Several studies showed
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Table 1 | Summary of already published clinical trials that evaluate target therapies in sarcomas, classified regarding the mechanism of action.

Mechanism

of action

Drugs Trial

(reference)

Study population Benefits Common

severetoxicities

Apoptosis PARP

inhibitors

Olaparib Phase II

(127)

Recurrent/metastatic adult ES

(failure to prior CH), n = 12

patients

NO responses SD: 4

patients, TTP: 5.7 weeks

No significant

toxicities

Heat shock

protein

inhibitors

Retaspimycin

(Hsp-90 INH)

Phase I

(128)

Metastatic and/or unresectable

STS, n = 54 patients

PR: 2 patients (proof of

clinical activity)

Grade 3–4:

Fatigue

Nausea and vomiting

Headache

Artharalgia

Proteaseome

inhibitor

Bortezomib Phase II

(129)

Metastatic OS, ES, RMS, and

STS with no prior treatment for

advanced disease, n = 25

patients

Lack of benefit (trial

prematurely closed)

Grade 3–4:

Neuropathy

Asthenia

Myalgias

MDM2

inhibitor

RG7112 Proof of

mechanism

study (130)

WDLS or DDLS with MDM2

amplification receive RG7112

prior to surgery, n = 20 patients

SD: 14 patients,

IHQ: activation of p53

pathway

Grade 3–4

Neutropenia

Thrombocytopenia

Phase I

(131)

Phase I trial with extension

cohort for sarcoma patients,

n = 30 (sarcoma patients)

Metabolic responses

(PET-CT)

IHQ: activation of p53

(MDM2-independent)

Grade 3–4

Cytopenias

PI3K-AKT-

mTOR

pathway

inhibitors

Ridaforolimus

(mTOR INH)

Phase II

(132)

Pre-treated advanced bone and

STS, n = 212 patients

RR: 1.9%, clinical benefit:

28.8%

Grade 3–4

Fatigue

Stomatitis

Hypertriglyceridemia

Anemia

Thrombocytopenia

Phase III

(133)

Advanced bone and STS with

clinical benefit to previous CH

were randomized to

maintenance Ridaforolimus or

Placebo, n = 711 patients

Improvement in PFS

(17.7 weeks with

Ridaforolimus vs.

14.6 weeks with Placebo,

HR: 0.72, p: 0.001)

Similar to previous

study

Everolimus

(mTOR INH)

Phase II

(134)

Pre-treated advanced bone and

STS, n = 41 patients

Poor clinical activity Grade 3–4

Hyperglicemia

Stomatitis Pain

Asthenia

Anti-

angiogenic

therapy

Sorafenib

(VEGFR2,

VEGFR3,

PDGFR, and

c-Kit INH)

Phase II

(135)

Pre-treated advanced STS,

n = 101 patients

RR: 14.5%, SD: 32.9%

(leiomyosarcoma better

PFS)

Grade 3–4

Fatigue

Diarrhea

Hand–foot

Syndrome

Nausea and vomiting

Pazopanib

(VEGFR-1,

VEGFR-2,

VEGFR-3,

PDGFR, and

c-Kit INH)

Phase III

(136)

Pre-treated non-adipocytic STS

randomized to PAZOPANIB vs.

PLACEBO, n = 369 patients

Improvement in PFS

(4.6 months with

PAZOPANIB vs.

1.6 months with Placebo,

HR: 0.31, p < 0.0001)

Grade 3–4

Asthenia

Hypertension

Anorexia

Alteration of

transaminases

Mitotic

catastrophe

CDK

inhibitors

Palbociclib

(CDK4 and

CDK6 INH)

Phase II

(137)

WDLS or DDLS with CDK4

amplification and pRb expression

66% of patients free of PD

at 12 weeks

Grade 3–4

Anemia

Neutropenia

Thrombocytopenia

CH: chemotherapy, DDLS: dedifferentiated liposarcoma, HR: hazard ratio, INH: inhibitor, MPNST: malignant peripheral nerve sheath tumor, PFS: progression-free

survival, RR: response rate, SD: stabilization disease, STS: soft-tissues sarcoma, TTP: time to progression, WDLS: well-differentiated liposarcoma.
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Table 2 | Summary of clinical trials that are ongoing and evaluate target therapies in sarcomas, classified regarding the mechanism of action.

Ongoing trials specific for sarcomas Status

www.clinicaltrials.gov

Identifier

www.clinicaltrials.gov

Apoptosis PARP inhibitors ESP1/SARC025 global collaboration: a Phase I study of a

combination of the PARP inhibitor, niraparib, and

temozolomide in patients with previously treated,

incurable Ewing sarcoma

Ongoing, but not

recruiting

NCT02044120

Olaparib in adults with recurrent/metastatic Ewing’s

sarcoma.

Ongoing, but not

recruiting.

NCT01583543

Heat shock

protein inhibitor

A trial of ganetespib Plus sirolimus: phase 1 includes

multiple sarcoma subtypes and Phase 2 MPNST

Ongoing, but not

recruiting

NCT02008877

PI3K-AKT-mTOR

pathway

inhibitors

Phase II study of everolimus in children and adolescents

with refractory or relapsed osteosarcoma

Recruiting NCT01216826

Phase II open label, non-randomized study of Sorafenib

and everolimus in relapsed and non-resectable

osteosarcoma (SERIO)

Ongoing, but not

recruiting

NCT01804374

Study of everolimus with bevacizumab to treat refractory

malignant peripheral nerve sheath tumors

Ongoing, but not

recruiting

NCT01661283

Phase II study of everolimus in children and adolescents

with refractory or relapsed rhabdomyosarcoma and other

soft tissue sarcomas

Recruiting NCT01216839

Anti-angiogenic

therapy

Sorafenib tosylate, combination chemotherapy, radiation

therapy, and surgery in treating patients with high-risk

stage IIB–IV soft tissue sarcoma

Recruiting NCT02050919

Pazopanib hydrochloride followed by chemotherapy and

surgery in treating patients with soft tissue sarcoma

Recruiting NCT01446809

Activity and tolerability of pazopanib in advanced and/or

metastatic liposarcoma. a phase ii clinical trial

Recruiting NCT01692496

Study of pazopanib in the treatment of osteosarcoma

metastatic to the lung

Recruiting NCT01759303

Study of pre-operative therapy with pazopanib (votrient®)

to treat high-risk soft tissue sarcoma (NOPASS)

Recruiting NCT01543802

Mitotic

catastrophe

Aurora-kinase

inhibitors

Alisertib in treating patients with advanced or metastatic

sarcoma

Recruiting NCT01653028

CDK inhibitors PD0332991 in patients with advanced or metastatic

liposarcoma

Recruiting NCT01209598

cell cycle arrest and changes in the levels of MC mediators as
Survivin. For example, Keyomarsi’s group showed that combined
therapy with doxorubicin and roscovitine in synovial sarcoma and
leiomyosarcoma induced a synergistic increase in autophagy in
addition to a marked arrest in G2/M (117). Links between MC and
autophagy have also been commented previously for OS (107). In
any case, it would be desirable to perform an exhaustive mitotic
study or cell fate analysis together with the proper assessment of
the nature of cell cycle blockade (metaphase arrest, G2 stop, or
even senescence).

CELL DEATH MECHANISMS IN ANTI-SARCOMA CLINICAL
TRIALS
New targeted therapies linked to key cell death mechanisms are
continuously being developed (118). Preferred to cytostatic alter-
natives, cell death induction is the goal of the vast majority of

cancer treatments. And among the known mechanisms, apopto-
sis is the center of therapeutic developments (118). As a non-
inflammatory mechanism, apoptosis is traditionally considered
cleaner than necrosis, but its exact relevance in overall therapeu-
tic success is uncertain. Necrosis, due to its pro-inflammatory
nature, has been regarded as a back door for metastatic cells to
escape from the primary tumor (3, 119). But, depending on the
circumstances, necrosis could be effective enough to induce tumor
clearance (120). Conversely, a particular apoptotic phenotype with
the ability to trigger immune response against cancer cells has
been described (119). Moreover, classic chemotherapeutic agents
are shown to induce apoptosis by interfering with the normal cell
division processes and this could lead to the triggering of MC (108,
109, 121). Induction of MC vs. direct apoptosis triggering depends
of the effective drug concentration within the cells and thus, could
be different among the tumor mass (122). MC drives most of
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the cells to major death mechanisms but opens the gates for the
appearance of new stable karyotypes translating into perhaps new
resistant cancer clones (108, 123, 124).

The treatment of advanced sarcomas is based on classic
chemotherapeutic agents: anthracyclines and ifosfamide as first
option and, after progression, other agents like gemcitabine in
combination with docetaxel (or Dacarbazine) and trabectedin.
The benefit of chemotherapy is well-known, but limited, because a
high percentage of patients die due to the disease in approximately
1 year from diagnosis (125, 126).

In the past years, several sarcoma-focused clinical trials have
evaluated the activity in monotherapy of novel drugs with known
connections to a particular cell death mechanism (Table 1). So far,
only two phase III trials have been reported, reflecting that targeted
therapies have been mostly developed in recent years and remain
in a pre-clinical stage (127–137). The first trial was focused on the
mTOR signaling pathway, which links apoptosis with autophagy
(102, 103). The study evaluated the role of ridaforolimus as main-
tenance therapy after clinical benefit to chemotherapy (133). The
other trial analyzed the activity of Pazopanib (a multitargeted
kinase inhibitor) in pre-treated soft-tissue sarcoma patients (136).

It is easily noticeable that many of the targets mentioned above
have still not reached the clinical trial stage in sarcomas. Further
research should be aimed to fill that gap by a better description
of the pre-clinical effects in terms of quantity and quality (type,
characterization, assessment of resistant phenotypes, etc.) of the
induced cell death. A summary of the ongoing clinical trials in
sarcomas are included in Table 2.

CONCLUDING REMARKS
As often happens with research on rare diseases, sarcoma research
suffers from funding shortage and delayed implementation of
technical advances. But there is also an urgent need to improve
current therapeutic modalities in sarcomas and reduce their bur-
den. Additionally, due to their heterogeneity, sarcoma models are
very difficult to compare among them. Those constrains define
sarcoma research today. Cell death induction is the basis of cancer
therapy, but we are still far from understanding the mechanisms of
cell death signaling in sarcomas. The relatively low attention paid
to particular phenomena like autophagy or MC, with crucial roles
in therapy success, is symptomatic that we need to get back to the
laboratory benches and improve our methods (3, 118, 124). We
abuse too often of indirect tests, easy to read-out in flow cytome-
ters, or high-content analyzers. And perhaps, we rely too much in
bibliographic data, not looking for the actual connections between
our treatments and the specific cell death trigger.

Sarcoma research needs the implementation of a better deter-
mination of cell death mechanisms. The definition of the nature of
cell death is not a vain effort as the differences in mechanisms could
have tremendous consequences in terms of chemo-resistance or
in immunogenic potential (108, 119, 123, 124). We need to dedi-
cate more time to define cell death circumstances, but sometimes
it seems that this attention only happens when researchers are
faced with unusual/specific cell death signals (death receptors, MC,
necroptosis etc.) while relying in the bulk caspase-3 or AnnV-PI
kits for the rest of the occasions.

The extra work we are proposing is neither difficult nor
exhausting, as it requires only to spend a little time looking “what”
actually happens to our cells (and “when”). Cell death is evi-
dent to the trained eye by merely observing the cells in the cell
culture room’s inverted microscope (Figure 1). Then, there are
enough valuable tests, clear and easy to perform, for the major cell
death pathways (138). Performed in the correct set of end-points
a simple DAPI staining would serve to determine whether we are
facing apoptosis, necrosis, or MC (10, 11). Therefore, we encour-
age researchers to perform those tests and include their results in
their publications prior to embark themselves into more complex
analysis about the intimacy of cell physiology. Let’s concentrate on
describing better “what” is happening before moving on solving
“how” it is happening.
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