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Because of its disseminated nature and lack of tumor-draining lymph nodes, acute myeloid
leukemia (AML) likely employs unique immune evasion strategies as compared to solid
malignancies. Targeting these unique mechanisms may result in improved immunothera-
peutic approaches. Emerging data suggest that a specific dendritic cell (DC) subset, CD8α

DCs, may be responsible for mediating tolerance in AML and thus targeting the innate
immune system may be of benefit in this disease. Promising immune targets include the
toll-like receptors, calreticulin/CD47, the stimulator of interferon genes pathway, and sig-
nal transducer and activator of transcription 3 (STAT3). However, it is becoming clear that
compensatory mechanisms may limit the efficacy of these agents alone and thus ratio-
nale combinations of immunotherapies are warranted.This review discusses the potential
immune evasion strategies in AML, as well as discussion of the promising innate immune
targets, both alone and in combination, for this disease.
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INTRODUCTION
Over 18,000 people will be diagnosed with acute myeloid leukemia
(AML) in the United States this year (1). While the majority of
patients will achieve a complete remission with standard induc-
tion chemotherapy (2), the relapse rate is high and over half will
ultimately succumb to the disease. Despite an improved under-
standing of the molecular pathways altered in AML, no significant
therapeutic advances have been achieved in many years. Allogeneic
stem cell transplantation can be curative for some patients with
AML (3), thought to be secondary to therapeutic graft-versus-
leukemia effects resulting from donor-derived T cell recognition
of minor histocompatibility antigens expressed on host leukemia
cells (3–6). Unfortunately, only a minority of patients are candi-
dates for stem cell transplantation, but the success of this pro-
cedure suggests that other immune strategies may be beneficial
in AML.

It is known that AML cells express leukemia-associated antigens
(LAA) that can be recognized by the immune system, including
those derived from proteins such as proteinase 3 (PR3), recep-
tor for hyaluronic acid-mediated motility (RHAMM), and Wilm’s
tumor-1 (WT1), among others (7, 8). Objective clinical responses
have been documented in patients with myeloid malignancies
following PR3 and WT1 peptide vaccination (8, 9) and with
cellular-based WT1 vaccines (10). These observations argue that
vaccine-based immunotherapy for AML may be an effective strat-
egy to reduce the risk of disease relapse, particularly those in a
minimal residual disease state after remission induction and con-
solidation chemotherapy. However, there is limited data at this
point to support this hypothesis. Further, many years of experi-
ence with cancer vaccine approaches for solid tumors has been ripe

with failures, including dozens of therapeutic vaccination studies,
which demonstrated minimal clinical efficacy (11).

It is clear that the development of cancer immunotherapies
for hematologic malignancies, including AML, has lagged behind
that for solid tumors. In part, this may be due to the availabil-
ity of relatively effective chemotherapies and allogeneic stem cell
transplantation for AML patients, thus limiting the interest in
cultivating immune-based therapies in the field. Further, recent
results of AML exome and genome sequencing has revealed a
lower mutational burden in AML compared to most other can-
cers, such as melanoma and lung carcinoma, which impacts the
number of leukemia-specific antigens (LSA) available for discov-
ery and targeting (12, 13). While a number of LAA, including those
mentioned above, have been identified in AML, they are also typi-
cally expressed in other tissues, including the thymus. Developing
thymocytes capable of recognizing LAA with high affinity are likely
deleted via central tolerance mechanisms, leaving behind low affin-
ity T cells, which upon antigen encounter would be expected to
elicit a weak and ineffective immune response.

Yet another barrier to generating effective immunotherapy for
AML is that of immune evasion. Similar to solid malignancies,
AML activates mechanisms in the host to avoid its immune-
mediated elimination. Several of these negative regulatory mech-
anisms appear to be shared between solid and hematological
cancers, including expression of negative costimulatory ligands,
such as programed death-ligand 1 (PD-L1) and galectin 9 (Gal-9)
on AML cells, and induced expansion of immunoregulatory cells,
such as regulatory T cells (Tregs) and myeloid-derived suppressor
cells (MDSCs) (14–18). However, recent work from our laboratory
has demonstrated that AML may also promote unique immune
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evasion pathways not previously described in solid tumor settings
(described below). Further understanding and exploration of the
mechanisms of through which AML regulates the host immune
system is expected to culminate in the development of effective
immune therapies for this disease, as has been the case in solid
tumors (19–21).

THE ROLE OF INNATE IMMUNITY IN GENERATING IMMUNE
TOLERANCE TO AML
Our laboratory has recently characterized a novel and potent path-
way through which the host innate immune system generates a
T cell tolerant state in an animal AML model. In animals with
AML, leukemia-specific CD8+ T cells underwent abortive pro-
liferation and were deleted from the host. A small number of
surviving antigen-specific T cells were partially dysfunctional and
produced low levels of effector cytokines upon restimulation ex
vivo, which suggested that they may have been anergized follow-
ing antigen encounter. Deletional T cell tolerance in AML-bearing
hosts appeared to be regulated by host antigen presenting cells
(APCs) as it could be reversed in vivo following the administration
of an agonistic anti-CD40 antibody, which resulted in enhanced
anti-leukemia T cell immunity and prolonged survival (22).

More recent observations from our laboratory have suggested
that a subset of host dendritic cells (DCs), called CD8α+ DCs,
may mediate T cell tolerance in hosts with AML. Experiments in
which fluorescently labeled AML cells were inoculated into mice
revealed that CD8α+DCs were uniquely capable of engulfing AML
cells in vivo and of cross-presenting AML cell-derived antigens to
T cells ex vivo (23). These results support a critical role for CD8α+

DCs in the immune recognition of AML. These data are impor-
tant because they suggest that immune tolerance to AML may be
initiated at the level of the innate immune system.

The ability of DCs to activate T cells is dependent upon
their “activation state.” In the absence of inflammatory stimuli
(i.e., under steady-state conditions), DCs are quiescent and are
important in this context to maintain peripheral tolerance to self-
antigens. Conversely, in the solid tumor context, danger-associated
molecular patterns (DAMPs) released by dying cancer cells are
sensed by DCs, leading to enhanced antigen presentation, as well
as increased expression of costimulatory ligands, chemokines, and
cytokines. These changes effectively license DCs to prime a func-
tional anti-tumor T cell response. Although speculative, we believe
that due to the disseminated nature of AML, as well as the lack of
a classical tumor-draining lymph node, DCs, which engulf and
cross-present AML-derived antigens, may not be exposed to suf-
ficient “danger signals” from AML cells to mediate their licensing.
The net result is the induction of T cell tolerance to AML. If, in
fact, innate immune cells are central to tolerance induction in
leukemia-bearing hosts, then targeted activation of innate immu-
nity may be sufficient to overcome tolerance and promote clinically
meaningful immunity against AML. In the following sections, we
will discuss several innate immune pathways that are amenable to
targeting in order to enhance immunity in hosts with AML, as well
as the potential for combination therapy (see Figure 1).

TOLL-LIKE RECEPTORS
The toll-like receptors (TLRs) are a family of transmembrane
receptors, which recognize highly conserved microbial structures
(i.e., bacterial cell wall components, CpG DNA, viral nucleic acids),
termed pathogen-associated molecular patterns (PAMPs). Activa-
tion of TLR signal transduction pathways leads to induction of
inflammatory cytokines, chemokines, MHC, and costimulatory
molecules (24). There are at least 10 TLRs in humans and several,
including TLR3, have been targeted as immunotherapy for cancer.

FIGURE 1 | Pathways of potential immune targeting in AML. (A) Innate
immunity may be targeted in AML through activation of the STING, TLR
(specifically TLR-3) and CD40 receptors. Strategies to enhance calreticulin
exposure on AML cells, combined with CD47-blocking antibodies may also be
effective. Lastly, STAT3 signaling appears to inhibit the innate immune
response, including hampering the effect of TLR9, and inhibition of STAT3
signaling in AML cells leads to differentiation to antigen presenting cells
(APCs) with an activated DC phenotype. Activation of the innate immune

system, either by stimulating activating pathways or blocking inhibitory
pathways, ultimately leads to increased IFN-γ production by CD8+ T cells.
(B) Increased IFN-γ resulting from activating of the innate immune system
may lead to compensatory up-regulation of other immune evasion pathways,
such as PD-L1, indoleamine-2,3-dioxygenase (IDO), and regulatory T cells
(Treg). While innate immune activation will be critical to induce anti-leukemia T
cell priming, combination therapy targeting compensatory pathways will be
key in eliciting a clinically significant anti-leukemia immune response.
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The natural TLR3 ligand is double-stranded RNA. TLR3
stimulation results in the activation of the transcription fac-
tors interferon regulatory factor 3 (IRF3) and NF-κB through
the adaptor molecule TRIF, culminating in interferon (IFN)-
β production (25). Unlike the majority of TLRs, TLR3 sig-
nals in a MyD88-independent manner (24). Interestingly, TLR3
appears to be preferentially expressed on CD8α+ DCs (26,
27). Because this DC subset appears to be responsible for
mediating tolerance to AML, at least in pre-clinical mod-
els, TLR3 may be a promising target for immunotherapy in
leukemia. Polyriboinosinic polyribocytidylic acid [poly(I:C)] and
a related compound, polyinosinic-polycytidylic acid-polylysine-
carboxymethylcellulose (poly-ICLC), are TLR3 agonists, which
have been utilized to target TLR3 both in pre-clinical and clin-
ical studies. It has been shown that loading leukemia cells with
poly(I:C) by electroporation, and thus mimicking a viral infec-
tion, leads to enhanced immunogenicity of leukemia cells, as well
as DC maturation and activation (28). Thus, targeting TLR3, with
the goal of activating host DCs to reverse T cell tolerance is a
promising therapeutic strategy.

Poly(I:C) was initially investigated as monotherapy for hema-
tologic and solid malignancies several decades ago, with disap-
pointing results. Early clinical trials demonstrated that poly-ICLC
was a potent inducer of type I interferon and, among 19 adult and
pediatric patients with refractory solid tumors or acute leukemia
treated, 1 child with acute lymphoblastic leukemia (ALL) had a
complete remission (29). Adverse reactions in these trials included
fever, nausea, hypotension, thrombocytopenia, leukopenia, ery-
thema, polyarthralgia, and myalgia (29). In a phase II trial of
children with acute leukemia and neuroblastoma, including 28
children with ALL, no complete responses were achieved and
significant toxicity was observed, leading the authors to halt fur-
ther study of this agent in other childhood tumors (30). Simi-
larly, phase I studies of poly(I:C) and poly-ICLC in adults with
melanoma, ovarian cancer and other advanced cancers demon-
strated significant toxicity with few objective clinical responses
(31–33). Newer formulations, lower doses, and intramuscular
injections of poly(I:C) may decrease its toxicity (34, 35). Nev-
ertheless, the systemic delivery of poly(I:C) as a single agent
is not likely to have a major impact as an immunotherapy for
cancer.

More recently, poly(I:C) has re-emerged as a viable cancer
immunotherapeutic as a cancer vaccine adjuvant. Pre-clinical
studies have demonstrated that, when administered as a single
adjuvant to various tumor antigen vaccine formulations (includ-
ing cell-based, peptide, protein, exome, or viral), poly(I:C), and
poly-ICLC resulted in enhanced tumor-associated antigen spe-
cific and functional T cells, with reduced tumor growth (36).
To date, clinical trials of poly(I:C) and poly-ICLC as cancer vac-
cine adjuvants have mainly been conducted in solid malignancies,
specifically gliomas, but have shown promising results (36). A
phase I/II trial of DCs loaded glioma-associated antigens and poly-
ICLC adjuvant in 22 patients with recurrent malignant glioma
showed progression-free survival of at least 12 months in over one-
third of patients, as well as one complete response (37). Recent
studies have also investigated the use of poly(I:C) as a vaccine

adjuvant in combination with other immune stimulators, such as
Monatide-ISA-51, granulocyte–macrophage colony-stimulating
factor, or a TLR7/8 agonist (resquimod) (36). These combinations
appear to be well-tolerated, even in pediatric patients (38).

Poly(I:C) is currently being investigated as an adjuvant to
vaccine therapy in an early phase clinical trial in patients with
AML in complete remission following chemotherapy or allogeneic
stem cell transplantation (Table 1). This trial combines a WT1
peptide vaccine with basiliximab and either poly(I:C) or mon-
tanide ISA 51, with the goal of determining the side effects and
best method of administering vaccine therapy. Another ongoing
phase I trial combines poly(I:C) with the DEC-205/NY-ESO-1
fusion protein CDX-1401 and decitabine for treating patients
with MDS or AML (Table 1). DEC-205 is an endocytic recep-
tor expressed primarily by DCs, as well as thymic epithelial cells
(39) and NY-ESO-1 is an immunogenic protein that is usually
very low or absent in myeloid leukemias, but is expressed fol-
lowing hypomethylating agents (40). The DEC-205-NY-ESO-1
fusion protein, called CDX-1401, is a full length NY-ESO-1 pro-
tein sequence fused to a monoclonal antibody against DEC-205. A
previous phase I trial of this agent in solid malignancies, combined
with adjuvant TLR agonists, such as poly(I:C), demonstrated dis-
ease stabilization and regression in a subset of patients, with no
dose-limiting toxicities (41). Thus, while poly(I:C) treatment may
be of limited benefit as monotherapy, it has demonstrated mod-
erate effectiveness when coupled with other immunotherapeutic
approaches.

CALRETICULIN AND CD47
Calreticulin (CRT) is a chaperone protein that normally resides
in the endoplasmic reticulum (ER), where it functions to ensure
that misfolded proteins are not exported to the Golgi appara-
tus. However, more recent studies have demonstrated that CRT
translocates from the ER to the cell-surface following cell stress
or apoptosis (42). Upon translocation to the cell surface, CRT
appears to stimulate phagocytosis by macrophages via their expres-
sion of low-density lipoprotein-receptor related protein (LRP),
also known as CD91 (43).

Some chemotherapeutic agents (anthracyclines and oxali-
platin) and radiation have been shown to induce ER stress and
promote CRT surface translocation in cancer cells, resulting in
their recognition and phagocytosis by innate immune cells, such
as macrophages and DCs (44). In turn, these innate immune
cells become capable of priming antigen-specific T cell responses
directed against malignant cells, termed“immunologic cell death.”
Elevated cell surface CRT expression has also been observed on
viable malignant cells – including leukemia blasts (45, 46), suggest-
ing that cell death may not be a prerequisite for CRT translocation.
However, the mechanistic link between CRT expression and its
downstream effects on adaptive immunity has not been eluci-
dated. Furthermore, using publicly available gene profiling data
sets, Chao analyzed CRT mRNA levels in tumors from patients
with a variety of cancers, including neuroblastoma, bladder cancer,
and mantle cell lymphoma and found, perhaps counterintuitively,
that elevated CRT expression correlated inversely with event-free
and/or overall survival (45).
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Table 1 | Select ongoing trials in AML/MDS.

Immunotherapeutic

mechanism

Drug Combination Disease Primary

outcome

Phase (Clinical trial #)

PD-1 blockade CT-011 DC AML vaccine AML, CR1, or CR2 Toxicity Phase 2 (NCT01096602)

Nivolumab N/A AML, CR1, or CR1i PFS Phase 2 (NCT02275533)

PD-L1 blockade MK-3475 N/A MDS Toxicity, ORR Phase 1b (NCT01953692)

MEDI4736 N/A MDS, following

hypomethylating agents

Safety, toxicity Phase 1 (NCT02117219)

CTLA-4 blockade Ipilimumab N/A Relapsed/refractory

AML/MDS

Toxicity, Treg

percentage

Phase 1 (NCT01757639)

Ipilimumab N/A Recurrent AML/MDS Toxicity Phase 1/1b (NCT01822509)

IDO inhibition INCB024360 N/A MDS ORR Phase 2 (NCT01822691)

TLR3 agonist Poly-ICLC

(compared to

basilixumab)

WT1 peptide vaccine AML, CR, or CRi Peptide-specific

immune response,

Treg numbers

Phase 1 (NCT01842139)

Poly-ICLC DEC-205-NY-ESO-1

fusion protein, decitabine

AML with <30% blasts,

MDS

Toxicity Phase 1 (NCT01834248)

MDS, myelodysplastic syndrome; CR, complete remission; CRi, complete remission with incomplete count recovery; CR1, first complete remission with incomplete

count recovery; CR2, second complete remission; CR1i, first complete remission with incomplete count recovery; PFS, progression free survival; ORR, overall

response rate; Treg, regulatory T cell (www.clinicaltrials.gov ).

To directly investigate the role of CRT on immunity to AML,our
lab has recently generated AML cells engineered to express high-
levels of cell-surface CRT. Consistent with previous studies, CRT-
expressing AML cells promoted enhanced anti-leukemia T cell
responses and prolonged survival in mice. This effect was depen-
dent on adaptive immunity, as it did not occur in Rag−/− hosts, or
following in vivo T cell depletion. Although a clear effect of CRT
expression on in vivo phagocytosis by DCs or macrophages was not
observed in our experiments, further studies are needed to clar-
ify the mechanism through which CRT promotes anti-leukemia
immunity.

Calreticulin-mediated phagocytosis of cancer cells can be
inhibited by expression of anti-phagocytic proteins, such as
integrin-associated protein (IAP), also known as CD47 (43, 45).
CD47 is broadly expressed on all cells and transmits a “do not
eat me” signal to phagocytes expressing its receptor, signal reg-
ulatory protein-α (SIRP-α) (47). Increased CD47 expression on
human AML cells promotes their survival through evasion of
phagocytosis (48), and blocking CD47 on human cancer cells
in xenotransplantation models promotes their phagocytosis and
elimination by innate immune cells (48–50). CD47 is more highly
expressed in a subset of human acute lymphocytic leukemia
(ALL) samples and is an independent predictor of survival and
disease refractoriness (51). Pre-clinical studies of a blocking mon-
oclonal antibody against CD47 enabled phagocytosis of ALL cells
by macrophages in vitro, inhibited tumor engraftment in vivo,
and eliminated ALL in mice engrafted with primary human ALL
(51). In a non-Hodgkin lymphoma model, anti-CD47 antibodies
were found to be synergistic with rituximab, leading to disease
“cure” through Fc receptor-dependent and -independent stimula-
tion of phagocytosis (52). This data suggest that calreticulin/CD47

targeting may be a beneficial immunotherapeutic strategy for
AML as well. Phase I clinical trials utilizing CD47 antibodies are
currently being developed (http://stemcell.stanford.edu/CD47/).
Thus, CD47 over-expression on leukemia cells could represent yet
another immune evasion mechanism, which is targetable through
receptor blockade.

TYPE I INTERFERON AND STING
The importance of type I IFN signaling in the development of
functional anti-tumor immunity has been well-characterized (53).
Studies in bone marrow chimeric mice harboring autochthonous,
carcinogen-induced sarcomas have revealed that type I IFN pro-
duced in response to a developing cancer must be “sensed” by host
hematopoietic cells, rather than by malignant cells, in order for
immune-mediated tumor rejection to ensue (54, 55). Type I IFN
signaling, particularly by DCs, is critical to generate functional T
cell responses that ultimately mediate tumor elimination (54, 55),
and mice lacking the IFNα/β receptor (IFNAR) in DCs fail to reject
immunogenic solid tumors (54). Within the DC compartment,
CD8α+ DCs were required to respond to type I IFN and to prime
anti-tumor T cell responses in a pre-clinical melanoma model, as
Batf3−/−mice, in which CD8α+ DCs fail to develop, generate very
poor spontaneous anti-tumor T cell responses (55). Collectively,
these data suggest a critical role for type I IFN in the host immune
response to cancer and may be mediated by CD8α+ DCs.

Until recently, the tumor-derived signals that regulate type I
IFN production in the tumor-bearing host were unknown. How-
ever, it has been recently demonstrated that cytosolic DNA from
dying tumor cells may be a potent inducer of the type I IFN
response, through the activation of a cytosolic DNA-sensing recep-
tor called stimulator of interferon genes (STING) (56). STING was
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originally discovered to stimulate of production of type I inter-
feron using expression screening of human and mouse cDNA
transfected into T cells harboring a luciferase reporter under
control of the IFNβ promoter (57). Subsequently, STING was
found to be required for the induction of innate immune responses
to cytosolic, (non-CpG) pathogenic DNA following viral infection
(58). Recently, the ligands for STING have been identified as cyclic
dinucleotides, known as cyclic-GMP-AMPs (cGAMPS), which are
generated from GTP and ATP by the cytosolic enzyme cGMP-AMP
synthase (cGAS). cGAMP binding to STING induces its homod-
imerization and trafficking from the ER to the Golgi (59, 60). In
the Golgi, STING recruits tank binding kinase 1 (TBK1), resulting
in its phosphorylation and activation of the transcription factor
interferon regulatory factor-3 (IRF-3). IRF-3 then translocates to
the nucleus and activates transcription of type I IFN (57, 58).

Administration of STING agonists to C1498 AML-bearing mice
bearing results in significant expansion of functional leukemia
antigen-specific T cells, as well as significantly improved survival
(61). While further understanding of the mechanisms underly-
ing the efficacy of STING agonists are warranted prior to human
translation, these data suggest that the STING pathway, by stim-
ulating IFN-β production in the host, may represent an effective
therapeutic target for AML.

SIGNAL TRANSDUCER AND ACTIVATOR
OF TRANSCRIPTION 3
Signal transducer and activator of transcription 3 (STAT3) belongs
to a family of seven cytoplasmic transcription factors, which medi-
ate cellular growth, differentiation and apoptosis (62, 63). While
a number of cytokines and growth factor receptors can activate
STAT3, IL-6 signaling represents one key pathway. IL-6 signal-
ing through GP130 and Janus kinases (JAKs) results in STAT3
phosphorylation, dimerization, and translocation to the nucleus,
leading to further production of IL-6 (creating a feed-forward
loop), and up-regulation of anti-apoptotic genes (63, 64). Other
activators of STAT3 include IL-10, IL-23, and LPS activation of
TLR4 and TLR9 (64).

Signal transducer and activator of transcription 3 has been
shown to be aberrantly activated in a majority of cancers, most
commonly secondary to activation of upstream kinases, such as
epidermal growth factor receptor and platelet-derived growth fac-
tor receptor (64). Constitutive activation of STAT3 in malignant
cells results from the loss of function of negative regulators, such
as the suppressor of cytokine signaling (SOCS) family of pro-
teins, protein tyrosine phosphatases (PTPs), the protein inhibitors
of activated STATs (PIAS) family, and the ubiquitin-proteasome
degradation pathway (62). Constitutive STAT3 activation in malig-
nant cells promotes cell-cycle progression and prevents apoptosis
through a variety of mechanisms, including p53 inhibition and
up-regulation of genes such as cyclin D1/D2, MYC, and Bcl-XL
(65). In pre-clinical models, constitutive STAT3 activation alone
results in malignant transformation (65) and inhibition of STAT3
activity results in arrest of tumor development and apoptosis (62).

In addition to its intrinsic role in promoting transforma-
tion and cancer progression, active STAT3 also contributes to
cancer immune evasion and has been implicated in infectious
(such as H. pylori and Epstein–Barr virus) and non-infectious

(such as colitis) inflammation-induced carcinogenesis (63, 64, 66).
STAT3 activation antagonizes expression of anti-tumor T helper
1 cytokines (such as IL-12 and IFN-γ), mediates T regulatory
cell expansion in tumors, and is required for the immunosup-
pressive effects of MDSCs and tumor-associated macrophages,
as well as for the development of tumor-promoting TH17 T
cells (64). STAT3 activity has also been found to hamper the
effect of locally administered TLR9 ligands (67). Ablating STAT3
through use of inhibitors or knock-out mice results in enhanced
function of DCs, T cells, natural killer cells, and neutrophils in
tumor-bearing mice and induces growth inhibition of established
tumors (68).

Signal transducer and activator of transcription 3 may also
promote leukemogenesis, and active STAT3 has been observed in
primary leukemia blasts in a majority of AML patients (62). Fur-
thermore, STAT3 activation is correlated with inferior outcome
in AML. In a study of 63 patients with AML, STAT3 activation, as
determined by STAT3 phosphorylation on Western Blot and DNA-
binding activity on electrophoretic mobility shift assay, was present
in 44% of patients, where it was associated with a significantly
decreased disease-free survival (median 20.6 versus 8.7 months)
(69). Thus, STAT3 has become an attractive therapeutic target in
AML. However, until recently, it was unclear whether the adverse
effects of STAT3 activation in leukemia were a result of its anti-
apoptotic and proliferative effects, or also a result of its immune
modulatory effects.

In a pre-clinical study of a mouse model of Cbfb-MYH11/Mpl-
induced leukemia, which mimics inv(16) AML in humans,
systemic administration of CpG-STAT3 small interfering RNA
(siRNA) resulted in eradication of established AML in mice
(70). STAT3 inhibition failed to restrain leukemia progression
in immunodeficient mice, demonstrating that the anti-leukemia
effects of STAT3 inhibition were likely immune-dependent. Fur-
thermore, targeted STAT3 blocking/TLR9 activation resulted in
differentiation of AML blasts to APCs with an activated DC phe-
notype, increased the ratio of tumor-infiltrating CD8+ T cells
to regulatory T cells, and promoted CD8+ T cell dependent
regression of leukemia (70).

Current methods of inhibiting STAT3 are indirect, including
inhibition of upstream tyrosine phosphorylation through tyrosine
kinase inhibitors, activating negative regulators of STAT (including
SOCS and PIAS), disruption of STAT nucleocytoplasmic shut-
tling, and blockade of cytokine/growth factor receptor binding
(62). However, small molecule inhibitors are being developed to
block STAT3 dimerization and transcriptional activity (71). While
further study and development of STAT3 inhibitors are needed,
based on the promising pre-clinical results and evidence of acti-
vation in AML, STAT3 inhibition warrants further evaluation in
clinical trials in leukemia.

COMBINATION THERAPIES WITH INNATE IMMUNE
ACTIVATION
While immune-based therapies, such as CTLA-4 and PD-1-
blocking antibodies are highly effective in a subset of patients
with melanoma and other solid cancers, monotherapy for most
patients is not sufficient for complete or prolonged tumor erad-
ication, likely due to compensatory immune evasion pathways
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activated in the cancer-bearing host (19, 20, 72, 73). Thus, it fol-
lows that targeting the innate immune system alone is unlikely to
be a sufficient strategy to eliminate AML. In addition, as discussed
below, the increased IFN-γ produced by innate immune activation
leads to up-regulation of several compensatory immune evasion
pathways, making combination therapy even more pertinent in
this setting. We envision that the simultaneous manipulation
of several non-redundant negative regulatory pathways, includ-
ing negative costimulatory receptor (i.e., PD-1, CTLA-4, TIM-3,
LAG-3) blockade, removal of suppressor cell populations, and tar-
geting inhibitory enzymes (IDO, arginase), in combination with
innate immune targeting may lead to synergistic effects. Although
a detailed discussion of the other immune evasion pathways is
beyond the scope of this review, a few promising targets will be
discussed and are shown in Figure 1.

Programed cell death-1 (PD-1) is a negative regulatory receptor
expressed on the surface of activated T cells, B cells, and NK cells
and binds to PD-L1, which is expressed on various malignant cells,
including AML cells. Zhang and colleagues have demonstrated
that the ligand for PD-1, PD-L1 is up-regulated on a murine
leukemia cell line in vivo and after in vitro exposure to IFN-
γ (15). Other groups have also demonstrated that up-regulated
expression of PD-L1 is dependent on exposure of tumor cells to
IFN-γ produced by effector T cells (74). Because many of the
therapies targeting innate immune activation result in T cell acti-
vation and IFN-γ production, targeting PD-L1 in combination
with innate immune activation may be synergistic. Trials of PD-1
and PD-L1 inhibitors have demonstrated efficacy in solid tumors
(21, 72), and clinical trials of PD-1 and PD-L1 inhibitors are cur-
rently underway in AML (Table 1). Future trials may consider
combination of PD-1 or PD-L1 inhibitors with innate immune
activators.

Inhibitory enzymes, such as indoleamine-2,3-dioxygenase
(IDO), may also be beneficial synergistic targets with innate
immune activators. IDO catalyzes tryptophan degradation, with
tryptophan metabolites negatively regulating T cell activation and
survival. Similar to PD-L1, IFN-γ production by CD8+ T cells
has been shown to result in up-regulation of IDO (74). IDO
inhibitors are currently being investigated in clinical trials in lym-
phoid malignancies and MDS (Table 1). IDO expression has been
demonstrated in blasts of AML patients (75) and is correlated with
decreased survival (76). Based on this data, trials in AML, including
combination with innate immune activators are warranted.

Regulatory T cells (Tregs) are naturally occurring immunosup-
pressive CD4+ T cells, which are important in the maintenance of
peripheral tolerance to self-antigens (77–79). Inhibition or deple-
tion of Tregs results in enhanced anti-tumor T cell responses and
control of tumor progression in transplantable cancer models
(80, 81). In addition, Tregs accumulate in leukemia-bearing mice
and depletion results in enhanced anti-leukemia T cell responses
(16). CD8+ T cell infiltration is associated with recruitment of
Tregs in the tumor microenvironment, making this an attractive
immunotherapeutic target (74). In the clinical setting, Treg deple-
tion has been demonstrated to be achievable in cancer patients,
although responses have been conflicting (82–84). However, based
on the evidence available, Treg depletion may be beneficial in
combination with innate immune activation.

It is unlikely that targeting any single immune pathway will be
sufficient for effective and prolonged treatment of AML. Because
AML appears to rapidly induce tolerance of leukemia-specific T
cells in a manner, which depends on the innate immune system,
we envision that activation of the innate immune will be a key
component of immune-based therapies and necessary in order for
functional anti-leukemia T cell responses to be primed. However,
it is likely that even functionally primed T cells will be subjected to
additional negative regulation in the host and thus combination
with other immune evasion targeted therapies will be important in
order for clinically meaningful anti-leukemia immune responses
to be raised in the host.

CONCLUSION
The innate immune system appears to play a key role in immune
evasion by AML and thus, activating innate immunity will likely be
critical in immunotherapeutic strategies for this disease. Further
insight into the unique mechanisms of immune evasion in AML
is needed, but early data suggest promising immunotherapeutic
approaches with TLR agonists, the calreticulin-CD47 pathway,
STING activation, and STAT3 inhibition. However, because of
compensatory immune evasion pathways, combination with other
immune targets, such as PD-1/PD-L1, IDO inhibition, and Treg
depletion will likely be needed. Given these findings, future studies
may benefit from incorporating innate immune activation strate-
gies and will hopefully lead to the same exciting results already
demonstrated in solid malignancies.
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