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In the last decade, Hsp90 has emerged as a major regulator of cancer cell growth and
proliferation. In cancer cells, it assists in giving maturation to oncogenic proteins including
several kinases and transcription factors (TF). Recent studies have shown that apart from
its chaperone activity, it also imparts regulation of transcription machinery and thereby
alters the cellular physiology. Hsp90 and its co-chaperonesmodulate transcription at least
at three different levels. In the first place, they alter the steady-state levels of certain TFs
in response to various physiological cues. Second, they modulate the activity of certain
epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and
thereby respond to the change in the environment. Third, they participate in the eviction of
histones from the promoter region of certain genes and thereby turn on gene expression.
In this review, we discuss the role of Hsp90 in all the three aforementioned mechanisms
of transcriptional control, taking examples from various model organisms with a special
emphasis on cancer progression.
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Introduction

Considerable progress has been achieved in understanding the cellular role of the major eukaryotic
cytoplasmic chaperone, Hsp90. It aids in the folding and stability of numerous classes of proteins
(collectively known as clients), under normal as well as stressful conditions. In normal cell, Hsp90
comprises about 2%of the total cellular proteins.However, in stressful condition, its level is increased
significantly (up to 10%) with concomitant increase in its activity. Cancer cells experience a variety
of stressful conditions like hypoxia, nutrient deprivation, acidosis, high interstitial pressure (1),
and consequently, Hsp90 levels are found to be up-regulated in melanoma (2), breast cancer (3),
gastric and pancreatic carcinoma (4, 5), ovarian and endometrial carcinoma (6, 7), etc. The increased
level of Hsp90 causes chaperoning of the potentially dangerous oncogenic clients that are otherwise
metastable. Thereby, Hsp90 impairs the apoptotic signaling in cancer cells. One such candidate is
mutant p53, whose stability and intracellular concentration are aided by Hsp90 (8). Experimental
findings establish that Hsp90 inhibition by geldanamycin (GA) in rat embryo fibroblast cell lines
A1–5 increases the proteolytic turnover of mutant p53 and enhances its nuclear translocation,
although it is unable to restore the wild-type transcriptional activity of target genes.

Although Hsp90 is a cytoplasmic chaperone, a small fraction of Hsp90 (about 3% of the total
cellular pool) is present in the nucleus. In recent days, the focus has been shifted in understanding
the function of Hsp90 in the nucleus. Two decades back, it was first observed that during heat-
shock treatment, Hsp90 is specifically localized in the salivary gland ofDrosophila melanogaster 93D
chromosomal locus as well as at the telomere region of Chironomus thummi (9). Intriguingly, the
fact that its localization to those regions of chromatin was hindered in the presence of transcription
inhibitor suggests a role ofHsp90 in transcription during heat-stressed condition. It also assists in the

Frontiers in Oncology | www.frontiersin.org April 2015 | Volume 5 | Article 1001

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00100
https://creativecommons.org/licenses/by/4.0/
mailto:sbtsl@uohyd.ernet.in
http://dx.doi.org/10.3389/fonc.2015.00100
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00100/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00100/abstract
http://loop.frontiersin.org/people/230966/overview
http://loop.frontiersin.org/people/199589/overview
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive


Khurana and Bhattacharyya Hsp90 modulates transcription

degradation of unfolded or un-required proteins and thereby plays
a significant role in maintaining the protein homeostasis in cell.
Hsp90 acts as a master regulator of gene expression as it con-
trols the trafficking of steroid hormone receptors to nucleus in a
hormone-dependent manner. Recent study shows that Hsp90 and
its co-chaperone FKBP51 also promotes hormone-independent
nuclear localization of androgen receptor in prostate cancer cells
(10) and thereby plays a critical role in progression of prostate
cancer. It is observed that in hormone refractory or androgen-
independent (AI) prostate cancer cells, a large pool of androgen
receptor is translocated into the nucleus even in the absence of
androgen and thus leads to the transcriptional activation of target
genes resulting in tumor growth (11, 12). The specific inhibitor
of Hsp90, 17-allylamino-17-demethoxygeldanamycin (17-AAG),
prevents the nuclear localization of androgen receptor in AI
tumor at much lower doses than that required to inhibit androgen
induced nuclear import of androgen receptors (AR) (13).

In this review, we shall focus on various transcription factors
(TF), which interact with Hsp90. Also, we will discuss about
the latest understanding on how Hsp90 is involved in regulat-
ing chromatin structure and thereby controls gene expression.
Although the cellular role of Hsp90 in transcriptional regulation
by modulating chromatin dynamics is apparent, its relevance in
cancer progression is yet to be appreciated.

Major Transcription Factors Belong to the
Hsp90 Network Society

The role of Hsp90 in transcriptional regulation is foremost
attributed to a wide variety of TFs that serve as its clients. One
of the ways by which Hsp90 aids in cell survival upon stressed
conditions is by regulating the expression profiles of many genes.
However, Hsp90 does not do so by binding to DNA as it lacks
DNA binding ability. Nevertheless, it chaperones different pro-
teins that act as either activator (like SP1, STAT5) or repressor (for
example, Bcl-6) (14, 15) to govern gross transcriptional program
(16). TFs serve as tools to regulate different downstreambiological
processes. Therefore, by providing its services to TFs, Hsp90 is
able to regulate multiple pathways simultaneously and hence,
plays a vital role in facilitating the progression of many diseases,
infections, and cancer (17, 18). When it comes to get hold of
processes relevant to cancer, Hsp90 has its branches penetrating
into all the six hallmarks of cancer (19). Among the TFs, which
serve as Hsp90 clients, NF-κB, STATs, p53, and Bcl-6 (20–26)
top the scores owing to the importance of the processes governed
by them, which favor malignant transformation. To orchestrate
the transcriptional response in a pathway, two or more TFs,
which are Hsp90 clients, work together and allow the progression
of a pathway dance to their tune. In this light, Hsf-1, which
serves as a client of Hsp90 under normal conditions and drives
transcriptional programs that are cancer specific, indulges in a
positive feedback loop with mutp53 (another Hsp90 client) and
endow cancer cells more resistant to proteotoxic stress. The direct
interaction between these two proteins in a feed forward loop
reinforces tumorigenesis by stabilizing the transcription of HSPs
that further stabilize EGF, ErbB2, mutp53, and other oncogenes
(27). In another scenario, the broad array of clientele of Hsp90
gives it the advantage to regulate the expression of a single protein

in different conditions via different TFs. The parallel effect of the
TFs upon cellular machinery is witnessed when Hsf-1 and Hif-
1 (hypoxia-inducible factor), the clients of Hsp90, regulate the
expression of the same protein FoxM1 under different conditions.
On one hand, FoxM1 (a key TF for cell cycle progression and
a critical molecule for tumor development and progression) is
shown to be induced by hypoxia via direct binding of Hif-1 to
its promoter sequence, which causes its up-regulation. Induction
of FoxM1 leads to promotion of tumor cells proliferation by
diminishing nuclear levels of p21 protein and increasing cyclin
B1 and cyclin D1 expression (28). On the other hand, FoxM1 is
also regulated byHsf-1 under heat-shock stress conditions and the
induction of FoxM1 by Hsf-1 is required for cell cycle progression
through regulating the expression of downstream Cdc20, Cdc2,
and Cdc25B proteins (29). The importance of Hsp90 in tumor
progression is further portrayed by the following study, which
reveals that inhibition of Hsp90 leads to the suppression of Lmp1
expression (amajor oncogene encoded byEpstein–Barr virus) that
plays a crucial role in development of lymphomas. The effect was
due to compromised JAK/STAT and NF-κB signaling pathways
owing to the repression of STATs and NF-κB TFs upon Hsp90
inhibition (30).

Hsp90 has long been known to regulate transcription when it
comes to steroid hormone signaling and was studied extensively
(31). The relevance of steroid hormone receptors in cancer is
very well reflected by estrogen and progesterone receptors in
breast cancer, and by AR in prostate cancer (32, 33). However,
Hsp90 does not fail to add one more layer of regulatory step in
stabilizing AR by involving breast carcinoma amplified sequence
2 (Bcas2). Bcas2 is a transcriptional cofactor of estrogen receptor
(ER), which is involved in breast cancer malignant progression
and also overexpresses in prostate cancer. A recent study reports
that Bcas2 interacts with Hsp90 to bring about AR stabilization
in a p53-independent manner (34). Hsp90 not only stabilizes its
clients but also helps them to localize in the right compartment in
the cell where their function is required. This aspect was explicitly
shown in a study with a bona fide client TF, AF9, which is vital
for hematopoiesis. It is also called master regulator of HOX gene
expression. It is observed that it depends onHsp90 for proper sub-
cellular localization (35). Nevertheless, another study exemplifies
the role ofHsp90 in deciding the fate of cell deathwhether it would
be necrosis or apoptosis. The inhibition of Hsp90 dictates the
inhibition of Atf3 (a TF that regulates gene expression in response
to oncogenic stresses) expression, which regulates the switch from
necrosis to apoptosis (36). In these ways, the parameters ofHSP90
regulation are extended to the normal cellular processes as well.

The versatile nature of Hsp90 does not restrict it to stay “in-
house” rather reflects its ability to tune the transcriptional pro-
gram being “outdoor.” This particular molecular chaperone now
is reported to be secreted out in extracellular “reactive” stroma
by tumor cells and also under other stressed conditions. This
secreted form of Hsp90, addressed as eHsp90, sustains cancer
cell motility, invasion, and metastatic spread (37). The extent of
secretion of eHsp90 is more in aggressive tumors as it is reported
in prostate cancer (38). A recent study suggests eHsp90 as a potent
initiator of stromal inflammatory response, which is executed
by transcriptional modulation of NF-κB and STAT3, the master
regulators of inflammatory pathway (39). Thus, Hsp90 creates a
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hub of regulatory network where not only the client TFs lead to
required alteration in the progression of pathway but also cross-
talks among client proteins dictate the downstream effectors for
better response to stress stimuli. Thus, Hsp90 regulates the activity
of several key transcriptions factors involved in cancer progression
via two different mechanisms: in the first place, by regulating the
cellular abundance of these factors and second, by regulating their
intracellular transports (Figure 1, 1 and 2).

Communication between Hsp90 and
Chromatin Remodeling Factors

So far, we have discussed the role of Hsp90 in transcriptional
regulation by directly modulating the activity of TFs. Now, we
will discuss how Hsp90 alters the epigenetic marks on chro-
matin and thereby modulates transcription of several genes that
might include proto-oncogenes. Abnormal methylation marks on
DNA, altered histone modifications, or RNA-mediated silencing
could potentially result in inappropriate gene expression. Any
of these epigenetic abnormalities might cause development of
cancer. There are increasing amounts of evidence that suggest
mutual cross-talks between Hsp90 and several chromatin modi-
fiers (Figure 1, 4). Hsp90α is shown to interact and enhance the
activity of (H3–K4) histone methyltransferase (HMTase) SMYD3
whose over-expression is essential for the growth of colorectal-,
liver-, and breast cancers (40, 41).Hsp90 induces a conformational
change of SMYD3 upon binding to its N-terminal domain, which
is essential for the regulation of its cognateHMTase activity (42). It
is also reported that the tetratricopeptide repeat (TPR) present at
theC-terminal domain of SMYD3 is involved in the physical inter-
action with MEEVD regions of Hsp90. This interaction is proved
to be essential for the chromatin localization and enhancement
of HMTase activity of SMYD3 (43). It has been speculated that
disruption of the interaction between Hsp90α and SMYD3might
be responsible for inactivation of WNT gene transcription (44).
Recent findings show that increased ATPase activity of Hsp90 by
Aha1 results in enhanced expression ofWNT target genes in colon
cancer in a p53-dependent manner (45). It has also been observed
that functional inactivation of Hsp90 or post-translational mod-
ification of Hsp90 leads to the dysfunction of several chromatin
remodelers, which eventually cause alteration of chromatin state
associatedwithmany oncogenes and tumor suppressor genes. The
“maintenance” methyltransferase DNMT1 is stabilized by Hsp90.
Elevated level of DNMT1 is observed inMCF-7 breast cancer cells
(46). DNMT1 along with HDAC1 and (H3–K9) HMTase remain
associated with the ER-α promoter, causing hypermethylation of
5′ CpG islands and thereby causes silencing of ER-α expression
in breast cancer cells (47, 48). Studies with HDAC1 inhibitors
reveal that post-translational modification (hyperacetylation) of
Hsp90 destabilizes its interaction with DNMT1 and promotes
ubiquitin-dependent degradation of DNMT1 (49).

In lower eukaryotes like Saccharomyces cerevisiae, genome-
wide two-hybrid interaction study revealed that Hsp90may influ-
ence global gene expression through interactions with histone
deacetylases. Strong association between Hsp90E33A and Sir2
(Type III histone deacetylase) as well as Sap30 (a component
of Rpd3L histone deacetylase complex) has been observed (50).

FIGURE 1 | Schematic representation of direct and in-direct roles of
Hsp90 in transcription. (1) Hsp90 and its co-chaperones aid in the folding
of various transcription factors either activators or repressors. (2) It also
assists their nuclear transport. (3) Hsp90 being present at the TSS regulates
transcription either by nucleosome removal or by stalling RNA polymerase II.
Removal of Hsp90 complex thereby allows the movement of RNA polymerase
II and initiates gene transcription. (4) Hsp90 aids in the maturation and
enhances the activity of several chromatin modifiers. However, it is not clear
whether it assists their entry into the nucleus. (5 and 6) Chromatin modifiers
upon maturation by Hsp90 are responsible for maintaining euchromatin or
heterochromatin states under various conditions. Hsp90 remains associated
with some chromatin modifiers (e.g., Trx) near actively transcribing gene.

Recent studies have established that Hsp90 is required for the
stability and functional activity of Sir2. In Hsp90 loss of function
mutant, the endogenous level of Sir2 reduces considerably and
it results in de-repression of silencing at telomeres and at the
mating loci HMLα and HMRa (Figure 1, 6). The temperature-
sensitive mutant of Hsp90 behaves similarly as ∆sir2 mutant
resulting in sterile yeast (51). On the other hand, Hsp90 over-
expression, which is a natural outcome of heat-stressed condition,
drives downregulation of SIR2 at the transcription level (52).
Such reduced abundance of SIR2 transcript is maintained through
several generations before it gradually returns to its normal level.
Hence, the level and activity of the chromatin modifier Sir2
are modulated by two independent pathways both controlled by
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Hsp90. In addition to the regulation of histone deacetylase activ-
ity, Hsp90 chaperosome also amends the activity of other types of
chromatin modifiers. Two co-chaperones of Hsp90; Tah1 (human
ortholog RPAP3) and Pih1 (also known as NOP17 and Pih1D1)
are found to interact with Rvb1/2 (53), which are the essential
components of INO80 (42, 54); SWR-C chromatin remodeling
complex (55–57); and histone acetyl transferase TIP60 complex
(58). In Drosophila melanogaster, it has been reported that Hsp90
interacts with TrithoraxG, which is an important chromatinmod-
ifier complex that controls Drosophila development. Inhibition of
Hsp90 function by radicicol causes depletion of intracellular Trx.
As a result, the recruitment of Trx at the specific chromatin locus
is reduced thereby leading to the down regulation of Trx target
genes (59).

The third arm of epigenetic control, namely the small inter-
fering RNA-mediated post-transcriptional gene silencing is also
influenced by Hsp90 chaperone complex. It has been demon-
strated that Hsp90/Hsc70 chaperone complex is required for
the loading of small RNA duplexes onto the Argonaute pro-
teins (60). Its involvement in the assembly and maintenance
of box C/D small nucleolar ribonucleoprotein (SnoRNP) com-
plexes is also observed. Hsp90 along with Tah1 and Pih1 inter-
act with Rvb1/2 to form R2TP complex, which participates in
assembly of snoRNPs (61). Interestingly, while Hsp90 controls
the activity of chromatin modifiers, its own activity is often
regulated by non-histone methyl transferases. Such regulation
provides another layer of regulation where Hsp90 is a central
molecule. Recent report witnesses that SMYD2-mediated methy-
lation of Hsp90β induces its dimerization and chaperone com-
plex formation, which accelerates the proliferation of cancer
cell (62).

Hsp90 collaborates with histone deacetylases to influence
the stability of oncogenic TFs and tumor suppressors. The
Hsp90–HDAC6 complex is critical for the stability of mutant
p53 (63). Recent reports establish that the regulation of tumor
suppressor TAp73 stability is mediated by Hsp90–HDAC1 combo
protein complex. HDAC1 knockdown induces hyperacetylation
of Hsp90, which disrupts the interaction between TAp73 and
Hsp90 and promotes proteasomal degradation of TAp73 (64).
Thus, Hsp90 influences the activity of several epigeneticmodifiers
as well as the micro-RNAs. Independent studies have revealed the
link between cancer progression and the improper functioning
of such epigenetic writers, speculating a general role of Hsp90 in
cancer progression through the modulation of chromatin dynam-
ics. However, any such direct connection between Hsp90, chro-
matin modification, and clinical progression of cancer is yet to be
established.

The Function of Hsp90 at Promoter
Proximal Regions

The transcription machinery including RNA polymerase, tran-
scription activators, and other factors need to be recruited at
the promoter adjacent region at the onset of transcription and
once transcription is over they must be dislodged from the DNA.
Hsp90 actively participates at all the above steps of transcription.
Genome wide ChIP-seq analysis reveals that Hsp90 is recruited at

the transcription start site (TSS) of about one-third of Drosophila
genome suggesting a general role of Hsp90 in transcription initia-
tion (65). Interestingly, Hsp90 targeted promoters include TFs like
c-myc, p53; genes involved in stress response and developmental
signaling such asWNT, JNK, etc.; as well as several environmental
responsive genes likeHsp70, Hsp68, andHsp22. It is observed that
Hsp90 together with negative elongation factor (NELF) represses
the expression of its target genes by forming stalled RNA poly-
merase II at the target locus. Hsp90 inhibitory condition causes
robust up-regulation of Hsp90 target genes by converting stalled
RNA polymerase to the elongated form. However, Hsp90 may
not have a general role in transcription as it is evident from
another study where Hsp90 and Trx are co-localized only at the
TSS of the actively transcribed region Abd-B in Drosophila SF4
cells (59) (Figure 1, 5) but neither it is found to be associated
with Trx at the TSS of silent genes (Dfd or Ubx) nor at the
TSS of house-keeping genes. There are reports, which show that
Hsp90 also enhances transcriptional activation in cancer cells by
binding to the DNA–protein complex. It is observed that Hsp90
interacts strongly to the hTERT promoters in telomerase posi-
tive oral cancer cell lines compared to the normal human oral
keratinocytes (NHOKs) cell lines and thereby causes enhanced
promoter activity of telomerase gene in cancer cells (66). Hsp90
inhibition by GA specifically destabilizes the interaction between
Hsp90 and hTERT promoter causing loss of hTERT mRNA
expression.

It turns out that the role of Hsp90 in transcriptional regulation
beginsmuch earlier than the recruitment of TFs or RNApol II. It is
observed that Hsp90 is involved in the steps prior to the transcrip-
tion initiation, which involves precise removal of nucleosomes
(Figure 1, 3). The transcriptional induction of GAL1 is found to
be delayed in ∆hsc82 strain background due to the retention of
nucleosomes at the GAL1 promoter (67). However, the precise
mechanism of how Hsp90 aids in the eviction of nucleosomes is
not clear.

Consistent with the function of Hsp90 in the removal of his-
tone proteins from several promoters, Hsp90 also removes other
proteins from the promoter proximal regions. Hsp90 controls
the exit of steroid hormone receptors from nuclear locus. Hsp90
and its co-chaperone p23 also play pivotal roles during the dis-
lodging of steroid hormone receptor complexes from hormone
response elements (HRE) in a hormone-dependent manner (68).
First, over-expression of p23 causes significant (35-fold) reduc-
tion of GR activity in vitro. Similarly, Hsp90 over-expression
results in modest (twofold) reduction. Second, ChIP assay shows
increased recruitment of Hsp90, p23, and gluococorticoid recep-
tor at GRE upon addition of dexamethasone. Finally, forced local-
ization of Hsp90/p23 to HRE precludes GR-induced transcrip-
tional activation.

In summary, Hsp90 has multifaceted cellular functions in
transcription regulations. It could evict nucleosomes from the
promoter and thereby makes space for loading of RNA pol II
and other TFs; it could alter the heterochromatin to euchromatin
states bymodulating chromatinmodifiers; it could give functional
maturation to the TFs and regulate their nuclear entry; and finally,
it could remove the TFs from the promoter proximal regions upon
the completion of transcription.
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Future Perspective

In the light of the recent findings, it is becoming clear that besides
the well known chaperone function Hsp90 plays significant roles
at many stages of transcriptional control. However, it is not
clear whether Hsp90 has a generalized role during transcription
or its involvement is confined to certain specific promoters. In
the later case, it would be extremely important to decipher the
molecular mechanism behind such promoter specificity. It will
also be interesting to unravel whether human Hsp90 also tar-
gets promoters of tumor suppressors/oncogenes. The interplay
between Hsp90 and chromatin modifiers during carcinogenesis
needs to be investigated. Studies focusing on whether and how
human Hsp90 modulates post-transcriptional gene regulation via
non-coding micro-RNAs in cancer cells demand special atten-
tion. The classical chaperone function of cytosolic Hsp90 and
several newly emerged moonlighting functions of Hsp90 at the

nucleus prompt us to propose that the nuclear Hsp90 could be
structurally different (due to certain post-translational modifi-
cation: PTM) from the cytosolic form. Identification of differ-
ent PTM of Hsp90 might give us valuable handle in separating
the cytosolic versus the nuclear functions of Hsp90. This field
is still at its infancy and more experimentations are needed to
understand the yet to be discovered newer nuclear functions of
Hsp90.
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