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Tumor interstitial fluid formation,
characterization, and clinical
implications
Marek Wagner and Helge Wiig*

Department of Biomedicine, University of Bergen, Bergen, Norway

The interstitium, situated between the blood and lymph vessels and the cells, consists
of a solid or matrix phase and a fluid phase representing the tissue microenvironment. In
the present review, we focus on the interstitial fluid phase of solid tumors, the tumor
interstitial fluid (TIF), i.e., the fluid bathing the tumor and stroma cells, also including
immune cells. This is a component of the internal milieu of a solid tumor that has
attracted regained attention. Access to this space may provide important insight into
tumor development and therapy response. TIF is formed by transcapillary filtration, and
since this fluid is not readily available we discuss available techniques for TIF isolation,
results from subsequent characterization and implications of recent findings with respect
to fluid filtration and uptake of macromolecular therapeutic agents. There appear to
be local gradients in signaling substances from neoplastic tissue to plasma that may
provide new understanding of tumor biology. The development of sensitive proteomic
technologies has made TIF a valuable source for tumor specific proteins and biomarker
candidates. Potential biomarkers will appear locally in high concentrations in tumors and
may eventually be found diluted in the plasma. Access to TIF that reliably reflects the
local tumor microenvironment enables identification of substances that can be used in
early detection and monitoring of disease.

Keywords: extracellular matrix, extracellular space, biomarkers, proteomics, tumor microenvironment, tumor
extracellular fluid, interstitial space

Introduction

The interstitium, or interstitial space, is a general term applied for connective and supporting tissues
in the body. This space is located outside the blood and lymph vessels and parenchymal cells, and
consists of two major phases: the interstitial fluid (IF) and the structural molecules comprising the
extracellular matrix (ECM). The tumor interstitial fluid (TIF) is not only a transport medium for
nutrients and waste products between cells and capillary blood, but also contains an abundance of
substances that are either produced locally or transported to the organ by the blood circulation.

Cells have traditionally not been included in this concept of the interstitium (1). Cells in the
interstitium, however, are active in continuous bi-directional cell–matrix interactions that result
in microenvironmental changes, secrete substances to the IF and have important roles in initiating
immune responses (2), and are a central element of the tumor interstitium. All of these are good
reasons for including cells in the term “interstitium” here, notably those that are not organ specific,
e.g., fibroblasts or immune cells, but rather an integrated part of the ECM. Whereas in previous
years, the focus has been on the tumor cell per se, during recent years, there has been an increasing
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interest in the tumormicroenvironment shown to be of significant
importance for tumor growth and metastasis. The microenviron-
ment consists of the insoluble elements of the ECM, the interstitial
space with its non-tumor cellular elements (frequently referred to
as stroma), and the fluid phase containing dissolved substances.
While tumor microenvironment studies have mostly been on the
stroma and the cellular elements of the tumor, we will focus on the
fluid phase that has received less attention (3–5).

Here, we will review in brief the structure of the tumor ECM
as a part of a general description of the tumor interstitium before
we turn to the formation of TIF and techniques for fluid isolation
of most relevance for the secretome, i.e., substances secreted by
the tumor to the TIF. Our aim is to summarize recent studies on
TIF where the focus has been locally secreted substances that will
appear in the tumor at high concentrations, eventually appearing
in the blood and thus reflecting processes at the tissue level. In
the last part of the review, we will outline potential biological
and clinical implications of new knowledge regarding secreted
proteins and tissue microenvironment in tumors with respect to
local signaling and the possible translation into new biomarkers.
Although of interest in itself, fluids that are biologically more
proximal to the disease site and thereby called proximal fluids
(e.g., TIF) are also important elements in a more integrated
approach toward biomarkers, also involving, e.g., tumor tissue,
serum, and cancer cell lines (6). In a more extensive recent review,
we have summarized literature on the formation of IF and TIF (7)
and in another we have focused on the tumor secretome (8). Since
the role of TIF as a source for biomarkers is an emerging and active
field we will here give an update particularly focusing on recent
developments in the area.

The Tumor Interstitium and Interstitial
Space – The Tumor Microenvironment

In general, the interstitium of normal tissue as well as tumors
consist of a collagen fiber framework, a gel phase of glycosamino-
glycans (GAGs), a salt solution, and plasma proteins. The struc-
ture and composition of the tumor interstitium/stroma have been
covered in many recent comprehensive reviews, e.g., Ref. (9–
15). A schematic picture of the tumor interstitium is shown in
Figure 1. Because of the previous extensive literature on the topic,
we therefore just discuss some salient features of importance for
TIF pathophysiology here. As pointed out by Lu et al. (15), the
ECM directly or indirectly regulates almost all cellular behavior
andmoreover the availability and activation of growth factors (14)
and is therefore highly relevant also when discussing TIF.

Even though the tumor interstitium consists of the same com-
ponents as the interstitium of normal tissues as depicted in
Figure 1A, it has its special features that will be addressed briefly
here. Compared with normal interstitium, the tumor stroma is
“reactive” (9), involving i.a. an increased number of inflammatory
cells, endothelial cells, and fibroblasts, which evolve with and
provide support to tumor cells during the transition to malig-
nancy (16). Macrophages are probably the most plastic among the
inflammatory cells with tumor-associated macrophages (TAMs)
serving as a paradigm for their functional polarization (17). In
established solid tumors, TAMs contribute to angiogenesis, tumor

FIGURE 1 | (A) Schematic overview of the interstitium with some of its major
extracellular matrix components. Fluid containing plasma proteins and other
solutes is filtered from the capillary percolates through the interstitium and is
absorbed and thus returned to the circulation by lymph. In addition to proteins
and solutes, immune cells migrate into lymphatic vessels and are transported
to lymph nodes where they may initiate an immune response. Reproduced
from Wiig et al. (128) with permission. (B) Role of the extracellular matrix and
microenvironment in lymphangiogenesis in tumors. Growth factors and
cytokines produced by tumor cells and stroma are transported by fluid flow
and down a diffusion gradient to lymphatics and blood capillaries. Tumor and
immune cells (expressing CCR7) are chemoattracted to and enter peritumoral
initial lymphatics expressing CCL19/21. + (plus) and − (minus) denote
stimulating and inhibiting lymphangiogenesis, respectively. x-collagen,
crosslinked collagen; Pif, interstitial fluid pressure; CAF, cancer-associated
fibroblast. Reproduced from Wiig et al. (128) with permission.

invasion, and metastasis by producing proangiogenic factors
such as vascular endothelial growth factor (VEGF)-A, epidermal
growth factor (EGF), and IL-8, and proteases such as cathepsins,
serine proteases, and matrix metalloproteinases (MMPs) (18).
Therefore, an abundance of TAMs in the tumor interstitium is
often associated with poor prognosis as revealed by analysis of
pre-clinical and clinical data (18, 19). Progress has been made
in defining signaling molecules underlying macrophage polar-
ization in vitro (17, 20). Classically activated (M1) macrophages
are induced by IFN-γ alone or in concert with microbial
stimuli, such as lipopolysaccharide (LPS), or cytokines TNF-
α and granulocyte-macrophage colony-stimulating factor (GM-
CSF) and generally exert antitumoral functions (17). Conversely,
IL-4 and IL-13 impose an alternative (M2) protumoral form of
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macrophage activation (17). Additionally, other molecules, such
as macrophage colony-stimulating factor (M-CSF), can activate
macrophages toward M2 direction (17). In solid tumors, bi-
directional interaction betweenmacrophages and the tumor inter-
stitium shapes their phenotype. In response to various tumor- and
stroma-derived cues, TAMs acquire M2-like state that shares a
variable proportion of the signature features of M2 cells (17).

In contrast tomacrophages, tumor-infiltrating cytotoxic T lym-
phocytes (TILs), including CD8+ T cells, are generally associated
with good prognosis (21). CD4+ T cells, characterized by the
production of IL-2 and IFN-γ, support CD8+ T cells and their
high numbers also correlate with good prognosis (21).

Another myeloid cell population characterized by the immune
suppressive activity has also been identified. These bone
marrow-derived cells defined as myeloid-derived suppressor cells
(MDSCs) are able to suppress CD8+ T cells activation through
the expression of arginase (ARG1) and nitric oxide synthase
2 (NOS2), and induce the polarization of TAMs to M2-like
state (22, 23).

Additionally, an increased number of fibroblasts that are called
cancer-associated fibroblasts (CAFs) have a profound role with
respect to tumor ECMcomposition and dynamics (13–15), result-
ing in a higher content of collagen, proteoglycans, and GAGs,
notably hyaluronan and chrondroitin sulfate, e.g., Ref. (24–27).
VEGF-A is a crucial inducer of reactive stroma formation (28) that
may be secreted by inflammatory cells, by fibroblasts, or by the
cancer cells themselves (29). The high levels of VEGF in tumors
result in a high-microvascular permeability and extravasation
of plasma proteins such as fibrin, again attracting fibroblasts,
inflammatory cells, and endothelial cells (30, 31). These cellular
responses resemble those of wound healing; although the process
is dysregulated in the case of tumor stroma (32). It is established
that stroma cells and fibroblasts are important for secretion of
angiogenetic factors, e.g., Ref. (29), less is known on lymphan-
giogenic factors in this setting. Such secretion occurs, likely since
inflammation has a pivotal role in tumor progression (33), and
immune as well as tumor cells are important sources for lym-
phangiogenetic factors (34), again influencing the tumor stroma
structure and function (Figure 1B). A very recent update on ECM
biology is given in two particularly relevant reviews (35, 36).

Tumor Interstitial Fluid Formation

As for normal tissues, the formation of IF in tumors is determined
by properties of the capillary wall, hydrostatic pressures, and
protein concentrations in the blood and interstitium according
to basic principles for fluid exchange described by Starling more
than a century ago (37). He suggested that the capillaries are
semipermeablemembranes, and that transcapillary fluid filtration
is determined by the imbalance between oncotic (colloid osmotic)
and hydrostatic forces. Later, important modifications have been
introduced (38), resulting in the following expression for trans-
membrane flux applicable also to tumors, known as the Starling
Equation:

JV = LpA [(Pc − Pif)− σ (COPc − COPif)] (1)

where Jv in the net capillary filtration, Lp is the hydraulic per-
meability of the capillaries, A is the surface area available for

filtration, and σ is the capillary reflection coefficient. (Pc −Pif) is
the hydrostatic pressure difference between plasma in the capillar-
ies (c) and IF, and (COPc −COPif) represents the corresponding
difference in colloid osmotic pressures. Solid tumors, however,
have special features, notably a Pif that is elevated compared with
normal tissues, as reviewed in, e.g., Ref. (39–41). Skin and muscle
Pif are in the range of −2 to 0 (42), while pressures in tumors are
positive both in experimental animals and humans, in the range
of 10–40mm Hg in the latter (39, 40). Interestingly, a dramatically
high mean Pif of 99mm Hg, and thus close to mean arterial pres-
sure, has been observed in a model of pancreatic adenocarcinoma
(43). The fact that tumor Pif is highmay dramatically influence the
delivery of therapeutic agents to tumors negatively, e.g., Ref. (41,
44) and has resulted in various efforts to counteract this effect and
enhance drug uptake, as recently reviewed in, e.g., Ref. (45, 46).

Several factorsmay contribute to the high tumorPif, notably the
tumor vasculature (39, 40), which due to the effect of VEGF and
other factors is irregular, convoluted, and highly permeable (47)
and have no pericyte coverage (48). Accordingly, there will be low
restriction of protein and transcapillary water transport, resulting
in high Lp and low σ in Eq. 1, and high interstitial “counter-
pressure” to filtration synonymous to Pif (49). A low restriction to
transcapillary fluid and protein transport and lack of functioning
lymphatics in central tumor areas will result in a high COPif (50,
51), the latter factor also contributing to the high tumor Pif (52,
53). Other factors contributing to the high tumor Pif would be
intratumoral blood vessel compression due to solid stress due to
growth (54), and direct effects of growth factors such as PDGF,
TGF-β, and VEGF (40). Collectively, these special features of the
tumor microcirculation contribute to a TIF deviating from the
normal (7). Knowledge on these factors is of prime importance
when attempting to overcome microenvironmental obstacles in
therapy and to improve drug delivery to solid tumors (44, 55).

Isolation of Tumor Interstitial Fluid

Techniques for TIF Isolation
When studying substances present in or secreted to the interstium,
it is of prime importance to have methodologies that reflect the
fluid microenvironment of the tissue cells, notably the local con-
centration of substances of interest to be able to decide whether
substances are produced locally or brought to the respective inter-
stitium by the circulation. In most tissues and conditions, IF is
not readily available, and various methods have therefore been
developed for IF isolation. Isolation of TIF represents a particular
challenge due to the special properties of the tumor interstitium
(see above), e.g., rich vascularization and high-cell content (4) and
some of these challenges will be given special attention.

We have recently discussed more extensively available methods
for IF and TIF isolation and evaluated their inherent strengths
and weaknesses (7). Such an analysis is useful when deciding
on a method for sampling of substrate for IF and, in particular,
proteomic analysis. There have been no major developments in
this field since our previous analysis (7, 8), and the reader is
referred to these reviews for a more details. Available methods
may be grouped according to whether the isolated fluid is native
or derived, a fact that can be used to decide whether a substance
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is produced locally and a part of the secretome or comes from
the general circulation. It is generally accepted that IF and lymph
have the same composition and accordingly that IF and prenodal
lymph both represent the fluid microenvironment for cells in a
tissue (7). Tumor lymph collection might appear attractive, but
even though lymph vessels are present in tumor tissue [for review
see Ref. (52, 56–58)], these vessels appear to be non-functional,
not draining any fluid (52, 53), and not cannulable, making lymph
sampling inapplicable in tumors. Techniques that have been used
in tumors are tissue centrifugation, tissue elution, ultrafiltration,
and microdialysis (59), as depicted schematically in Figure 2
in Ref. (8).

Tissue Centrifugation
Tissue centrifugation (51) is one of the more recent methods
developed to sample TIF for native fluid and secretome analysis. It
was originally applied for cell-poor and collagen-rich tissues like
cornea (60) and tail tendon (61), but it later turned out that TIF
could be extracted by exposing tumors to an increased G-force.
Methodological studies using the extracellular tracer 51Cr-EDTA
have shown that provided application of a g-force of G≤ 424 there
is no dilution of extracellular fluid. Based on these and other
validation experiments, we concluded that the isolated fluid was
representative for TIF (51). The procedure has been used in other
tumormodels (62, 63), andwas recently translated to human ovar-
ian carcinomas (64) and validated using two “internal” markers,
namely Na+ and creatinine, assumed to distribute predominantly
in the extracellular fluid phase.

Tissue Elution
A much-used method for TIF isolation is tissue elution, originally
introduced by Celis and co-workers as a method when searching
for a substrate for biomarker analysis (65). With this technique,
fresh biopsies isolated from women with invasive breast cancer
are cut into small pieces (1–3mm3), washed carefully, and incu-
bated in phosphate buffered saline. The supernatant collected after
1 h elution is named tumor IF. Although TIF collected this way
contained major serum proteins as might be expected, the general
protein profile deviated strongly from that of serum.

A potential problem with the tissue elution method is that the
peptides and proteins found in isolated fluid may derive from
cell fluid released during sectioning for elution and thus be of
intracellular origin. This may not be a problem when searching
for biomarkers, but may make it very challenging to calculate the
exact tissue concentration in order to decide whether a substance
is produced locally or brought to the tissue by the circulation.

Capillary Ultrafiltration
Ultrafiltration, a technique mostly used for purification or sepa-
ration of chemicals, has also been applied to sample tissue fluid
after implantation of capillary probes in vivo (66). With this
method, negative pressure is applied to the probe. The recovery for
small molecules is ~ 100%, and the in vitro recovery for albumin
74–100% depending on sampling time (67). Membranes with
MW cut-off of 400 kDa have been used to allow for collection of
proteins in TIF. For tumors, the technique has also been applied
for collection of TIF from fibrosarcomas in mice (68), and it has

been claimed that the collected fluid directly reflects the tissue
concentration (69). Even if a high MW cut-off membrane is
used, the protein concentration in the ultrafiltrate is very low
compared with that found with alternative approaches, calculated
to be <1/2000 (7) of that in TIF of other tumors in mice (50).
This is probably due to sieving of tissue proteins at the capil-
lary membrane, in the tissue or at the tissue-membrane interface
during ultrafiltration (7), and will be accentuated with increasing
protein size. Ultrafiltration fluid will accordingly not represent
TIF composition.

Microdialysis
Microdialysis, originally developed for fluid sampling from the
brain, is a method frequently applied for isolation of endoge-
nous and exogenous substances from the extracellular space also
in other organs. The technique has been used extensively to
study TIF [for reviews see, e.g., Ref. (70–72)], although mostly
in pharmacokinetic and pharmacodynamics studies (73–75). The
underlying principle of the method is that of passive diffusion
of substances across a semipermeable membrane. Although ini-
tially used for sampling of small molecules, microdialysis has
during recent years also been applied to examine peptides and
proteins in the extracellular fluid phase [for recent reviews see,
e.g., Ref. (76–78)]. When applied for this purpose, the recovery of
macromolecules in the dialyzate may, however, be very low (~1%)
due to various physical restrictions (77). The dialyzate will thus
not reflect the concentration and molecular size distribution of
substances in TIF, a deviation that will increase with increasing
molecular size. This fact notwithstanding, the technique has been
applied in studies of peptides and proteins dissolved in TIF (59,
79), i.e., in a context where the movement of such substances
to the dialyzate may be severely restricted. Microdialysis is likely
more suitable for investigations of small molecules also in tumors,
including the “metabolome” (80).

Composition of Tumor Interstitial Fluid

Characteristics of TIF
The composition of TIF has recently been addressed in a compre-
hensive review by one of us (7) and moreover in a recent review
by Baronzio et al. (5) and is therefore summarized just briefly
here. When compared with plasma and subcutaneous IF, TIF has
a high PCO2 and lactate, and a low PO2 and pH (Table 1), with
an ionic composition close to that of plasma (81). The interstitial
acidity has been found to be related linearly to tumor size in
rats, decreasing from pH of ~7.3–6.2 with increasing tumor mass
up to 50 g (82). High-capillary permeability and dysfunctional
lymph vessels (53) have been suggested as explanation for the
relatively high TIF protein concentration and thus a high TIF
COP, being ~80% of that in plasma and significantly higher than
the corresponding ratio of 50–60% in subcutis (50, 51, 64). It
is likely that tumor specific proteins are found in TIF at high
concentrations.

Although to our knowledge not investigated directly, TIF con-
ceivably contains a class of substances calledmatrikines (3). These
are the result of limited enzymatic cleavage of numerous extracel-
lular proteins and GAGs that exert biological activities (83, 84).
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TABLE 1 | Composition of interstitial fluid in tumors.

Tumor type Host PO2

(mm Hg)
PCO2

(mm Hg)
PCO2

(mm Hg)
PCO2

(mm Hg)
pH pH pH Lactic acid

(mg/l)
Reference

TIF TIF SIF Plasma TIF SIF Plasma
(arterial)

TIF Plasma

Carcinoma (Walker 256) Rat 79±6 50±2 31±1 7.044±0.044 7.341±0.30 7.313±0.041 12±3 5.1±4 (81, 129)
Chinese hamster lung
fibroblasts

Mouse 76.9±7.9 6.85±0.05 20±1.2 (130)

Carcinoma (Walker 256) Rat 6.98±0.13 7.30±0.11 (82)
Colon adenocarcinoma
(LS174T)

Mouse 8.3±1.6 7.04±0.02 (131)

Cervical cancer Human <10 (132)
Various Human <10 (133)

TIF, tumor interstitial fluid; SIF, subcutaneous interstitial fluid.
Empty cells in table: value not determined. Reproduced from Haslene-Hox et al. (8).

Interestingly, their biological activity is usually different from
their parent full-length molecules (84), a property that may be
exploited in anti-cancer therapy (85).

Tumor interstitial fluid likely harbors extracellular vesicles
(EVs) [also called microparticles, e.g., Ref. (86)] that have been
isolated from most bodily fluids (87, 88). EVs have received
considerable attention during the last years, shown by the almost
exponential increase in published papers addressing this issue.
Such vesicles are one likely component of the multifaceted TIF
and are therefore just briefly considered here, but a recent broad
and extensive review of the biogenesis, secretion, and intercellular
interactions can be found in Colombo et al. (88). EVs are a het-
erogeneous population of cell-derived vesicles enclosed by a lipid
bilayer with a diameter of 30–2000 nm released from cells that
appear to be involved not only in normal physiological processes
like tissue repair, immune surveillance, and blood coagulation
but also have a pathophysiological role, including that of tumor
growth and progression, e.g., Ref. (87, 89). There are three main
classes of EVs; exosomes,microvesicles, and apoptotic bodies (87),
and their classification are based on cellular origin, size, biological
function, or biogenesis. A considerable increase in EV generation
is, however, found in various pathological conditions, including
inflammation and autoimmune diseases, vascular conditions, and
malignancies as discussed in several comprehensive reviews, e.g.,
Ref. (86, 89–95). EVs may contain mRNA and microRNA, signal-
ing proteins cytokines, and pro-thrombotic factors, and represent
a network for exchange of intercellular information and thus
paracrine signaling. In tumors, EVs are shed from tumor as well as
stroma cells to the surrounding microenvironment. Although not
shown, it is highly likely that IF contains EVs that are enriched in
TIF. Interestingly, EVs have been used to monitor tumor therapy
in real time (96), and have emerged as possessing therapeutic
opportunities (87). Although a normal phenomenon, EVs also
reflect pathological processes and is a likely source for biomarkers.
As stated earlier (8), there are apparently no studies on content or
composition of EVs in TIF and this topic ought to be addressed in
future work.

Concentration Gradients in IF
Analysis of IF in normal tissue as well as tumors may enable the
assessment of the quantitative importance of local production of,

e.g., signaling substances and thus a better knowledge on patho-
physiological processes at the microenvironmental level. Local
production in the respective interstitium will appear as a higher
concentration in IF than in plasma (P), i.e., IF/P> 1, since any
solute transported across the microvasculature from plasma will
result in an IF/P< 1.0.

An insight into such pathophysiological processes was given in
a study on patients with acute myeloid leukemia. Iversen and Wiig
(97) isolated bone marrow IF and could identify substances with
a potential mechanistic role in leukemia development. Whereas
fluid isolated from bone marrow repressed hematopoietic cell
growth, there was no response to plasma. The IF repression effect
was, however, lost by successful induction treatment, suggesting
that the hematopoiesis inhibiting factor(s) was/were not present
in this situation, an assumption supported by the observation of
maintained repression in cases where the treatment was unsuc-
cessful. The IF/P ratio of adiponectin and TNF-α exceeded 1.0,
thus showing local production. The cytokine concentrations fell
in patients that went into remission, there was, however, no
corresponding reduction in plasma levels.

Gradients between the tumor interstitium and plasma have
been presumed for tumor specific proteins and are an assumption
in most biomarker studies, as will be discussed in further detail
below. In a recent study, we presented proof of this concept by
isolation of native, undiluted, TIF by centrifugation from ovarian
carcinomas (98). We assessed the TIF/P ratio for the known
ovarian cancer biomarker cancer antigen (CA)-125 and the more
general tumor markers osteopontin and VEGF-A. All three were
significantly up-regulated in TIF relative to plasma (Figure 2).
Not surprisingly, this finding was most pronounced for CA-125,
having a TIF/P ratio ranging from 1.4 to 24,300, with a median
concentration 194 times that of plasma. This study documents
possible TIF/plasma gradients thatmay occur, and exemplifies the
advantage of using TIF as a source for biomarker and therapeutic
target discoveries.

As evident from the studies discussed above, there will be
concentration gradients between TIF and plasma for substances
secreted by tumor and stroma cells. Of interest, there may also
be local gradients within the interstitium because of the flow of
IF toward the lymphatics that may be of considerable physiolog-
ical and pathophysiological importance. In experiments in mice
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FIGURE 2 | CA-125, osteopontin and VEGF-A in tumor interstitial fluid
(TIF), ascites, and plasma. Concentration of (A) CA-125 (Uml−1);
(B) osteopontin (ngml−1); and (C) VEGF-A (ngml−1) in TIF, ascites (for
CA-125), and plasma from patients with epithelial ovarian carcinomas. Values
are for individual tumors and also show mean±SEM. ***p= 0.0001
(Wilcoxon matched pairs signed rank test). Reproduced from Haslene-Hox
et al.(98) with permission.

supported by in vitro data, Swartz and collaborators have shown
that tumor cells generate autologous gradients of CCR7 ligands by
secreting them into the interstitium under the influence of slow IF
flow toward lymphatics [reviewed in Ref. (99)], and have named
this phenomenon autologous chemotaxis (100). Based on these
data they also suggest that IF and lymphatic flow in the tumor
microenvironment result in mechanical changes to the tumor
stroma and affect the immunity of the tumor. These examples of
studies on IF and lymph demonstrate the importance of focusing
at the local microenvironment. An implication would be that
tissue fluid should be used to interrogate local pathophysiolog-
ical processes if available, and also that that the TIF and lymph
subproteomes may deviate from plasma.

Tissue-Specific Substances Originating
from TIF

TIF as a Vehicle
In the remaining part of the paper we will focus on the application
of TIF as a vehicle or substrate for substances and tumor-specific
proteins that are secreted (i.e., secretome) to the extracellular
and thereby the IF phase. In this way, we may gain knowledge
on biological processes that may be translated into diagnostic,
therapeutic, and prognostic use. This inevitably leads into the
topic of biomarkers that will be discussed in the context of TIF.
Biomarkers have become a vast and continuously expanding topic
during the last years, and we will try to limit ourselves by having a
special focus on ovarian carcinomas. This notwithstanding, our
discussion may have relevance for other solid tumors and even
leukemias as discussed above (97).

Although the main focus in this section is TIF as a source for
biomarkers, alternatively, analysis of medium abundant proteins
isolated from TIF but carried to the interstitium by filtration
of plasma may also reveal properties of the ECM. Plasma pro-
teins in the IF may also be considered as protein probes with
a given size and charge that are distributed in the interstitium
depending on properties of the ECM. With this rationale, we
recently developed a novel approach, involving the exact deter-
mination of albumin concentration and mass in IF and tissue
eluate by HPLC and thereafter, expressing the corresponding
numbers relative to albumin for a set of probe proteins assessed
by quantitative proteomics on unfractionated IF (101). We later
used this method to determine plasma protein distribution vol-
umes in human ovarian and endometrial cancer using normal
postmenopausal ovarium as control, and found that the distri-
bution of abundant plasma proteins in the interstitium depends
markedly on hydration and ECM structure (102). Interestingly,
these data can be used in modeling of drug uptake, and give
indications on ECM components to be targeted to increase the
uptake of macromolecular substances, and is an alternative trans-
lational use of the TIF-analysis data. Although not the main
focus of the study, a number of earlier proposed biomarker can-
didates were detected in increased amounts in malignant tis-
sue, e.g., stathmin and spindlin-1, again suggesting that IF, even
when unfractionated, can be a valuable source for tissue-specific
proteins (102).
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TIF and Secretome as Source for Biomarkers
During the recent years, there have been rapid advances of mass
spectrometry techniques enabling the identification and quantifi-
cation of thousands of proteins in biological samples. This fact,
together with a corresponding improvement of bioinformatics,
enabled the search for biomarkers with high throughput. In spite
of the considerable effort that has been invested in this search,
identification of candidates fulfilling all the requirements of a
biomarker has been sluggish, e.g., Ref. (103–106). Actually, as
concluded in a recent review (106), the “inconvenient truth” is that
no biomarker developed by proteomics has proven to be beneficial
for cancer patients.

Clearly, blood or plasma is the preferablematerial for a diagnos-
tic test. In spite of significant technological advances, the present
proteomic technology, however, has limited power to detect a
“needle” (low abundance disease biomarkers) in the “haystack”
of high abundance plasma proteins. To reduce this problem, a
possible strategy in a biomarker search might be to increase
the relative abundance of disease-associated proteins by moving
“upstream,” to samples more proximal to the primary disease site
(103, 105–107).

As recently shown in our study on the established biomarker
CA-125 (98) and most likely applying to all tumor-specific
biomarkers (104, 108, 109), there will be high concentrations
locally in the diseased tissue. The concentration will, however, be
reduced in the perimeter of the lesion and the substance in ques-
tion will be substantially diluted in blood. Accordingly, proximal
fluids like TIF appear to be attractive substrates (107). Naturally
secreted proximal fluids, as cerebrospinal fluid, saliva, urine, and
nipple aspirate fluid, have been substrates in proteomic discovery
studies [e.g., reviewed in Ref. (110)]. Examining TIF, however,
will allow studies of shed and secreted proteins in tissues and
conditions where natural secretion does not occur, e.g., in tumors.
TIF is the best substrate to study proteins secreted by cancer cells
and other cells confined in the tumor microenvironment, i.e., the
cancer secretome (111, 112).

Cell line supernatants andproximal (i.e., close to the anticipated
source) biological fluids have been the two main substrates for
studies of the cancer secretome, where the conditioned media
collected from in vitro cell cultures (112, 113) is themost common
source. Evidently, it is debatable whether cell cultures can replicate
the complexity of the tumor microenvironment in vivo (114).
This notwithstanding, such in vitro secretome studies have the
advantage of being able to simulate disease models and pertur-
bations in the secretome due to altered physiological parameters
or autocrine and/or paracrine secretion (115). Under these condi-
tions, to distinguish between those proteins that are secreted and
those that are released into the conditioned media by cell death
and proteolysis due to serum-free media culturing conditions,
may represent a challenge. Since the concentration of secreted
proteins is low, lysis of a low fraction of cells will contaminate
the pool of truly secreted proteins due to a high intracellular
protein content and thus overshadow the small amount of secreted
proteins in the sample (115).

Evidently, in vivo and/or ex vivo secretome studies are more
complex since the microenvironment of the entire tissue is
reflected, and due to challenges related to TIF isolation in these

situations, there are fewer studies (112, 115). Analysis of fluid
harvested from tumor tissue is a powerful approach to bridge
the gap between cancer secretomes and tumor biology. Below we
address studies performed on tissue fluid.

When studying the in vivo/ex vivo secretome, it may be of
importance to be able to validate that the proteins in question
truly originate from the extracellular fluid phase and thus to
differentiate between proteins that are of intracellular origin as
recently discussed in more detail (8). Extracellular markers can
be applied to validate the origin of the isolated fluid, and specific
proteinsmay also represent intracellular fluid admixture andmore
specifically, defined intracellular compartments (116).

(More or Less) Specific Proteins and Peptides
in TIF
Proteomic profiling of TIF has been performed on samples col-
lected by microdialysis (59, 117), capillary ultrafiltration (68, 69,
118), incubation of tissue in a physiological buffer (65, 116, 119–
122), tissue explants/elution (123), and tissue centrifugation (64,
124). Table 2 summarizes TIF studies where human cancer sam-
ples have been used as substrate for TIF isolation, and the resulting
candidate molecules and validation techniques.

Unfortunately, there are few common validated candidate pro-
teins in the presented TIF studies. Of these, peroxiredoxin 1 and
S100A8/9 have been suggested inmore than one study, and perox-
iredoxin 1 is themost prevalent. It is, however, difficult to integrate
results from different studies. The methods for fluid isolation
and data collection, analysis, and reporting and the selection of
“secreted” proteins may influence the results in the various studies
and lead to discrepancies. Even in cell culture studies, where
the complexity of an intact tissue is avoided that should reduce
biological variation, the trend is similar. In addition, differentially
expressed proteins from different cancers and even within one
cancer type although in a different model, appear to demonstrate
very little overlap (113).

Common Proteins in TIF
In a recent publication (8), we investigated whether common
“protein denominators” could be found in TIF, and examined
six recently published TIF proteomes in more detail (64, 116–
120), all deriving from different cancers and using different TIF
extraction methods. Altogether, we found 1805 unique proteins,
with 123 proteins (6.8%) discovered in five or six proteomes, and
with unique proteins in each proteome; 15% (116), 17% (120),
23% (64), 30% (119), 31% (118), and 59% (117). The 123 common
proteins were intracellular enzymes, abundant plasma proteins,
and several common cytoplasmic proteins highly conserved in
exosomes (125, 126) and several proteins from the 14-3-3 family
and peroxiredoxins.

What might appear confusing considering that we were study-
ing TIF, and thus extracellular fluid, was the finding of a substan-
tial fraction of proteins that are classified as intracellular. That is a
result of the gene ontology (GO) system, assigning proteins to all
the compartments where they have been found. As a consequence,
the extracellular compartment plasma will also contain a substan-
tial fraction of proteins classified as intracellular (127). Because
TIF contains many of the proteins referred as the exosome “core”
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TABLE 2 | Summary of proteomic studies utilizing human tumor interstitial fluid, including candidate proteins that were chosen for validation.

Analyzed
sample

Isolation
technique

Samples Candidates Validation Published protein findings Reference

Mouse colorectal
carcinoma (human serum)

Elution TIF; NIF MCM4, S100A9 IHC 2172 proteins identified (1958 with human
homologs), 52 suggested candidates

(134)

Serum (control; adenoma; CRC) CHI3L1, CEA ELISA

Hepatocellular carcinoma Elution TIF/NIF 381 (TIF) and 245 (NIF) identified proteins,
111 unique for TIF

(116)

NIF 325 proteins identified in healthy liver

Hepatocellular carcinoma Elution TIF/NIF sERBB3 Western blot 72 proteins identified (135)
Serum (HCC, cirrhosis, chronic
hepatitis)

sERBB3, AFP ELISA

Renal cell carcinoma Elution TIF ENO2, NNMT Western blot, SRM 539 proteins identified, 138 up-regulated (136)
Serum (patient; normal pool) ENO2, TSP1 ELISA, SRM

Ovarian carcinoma Centrifugation TIF 769 proteins identified (64)
Plasma (patient; control) 124 and 102 proteins identified in patient

and control plasma

Ovarian carcinoma Elution TIF/ascites PRDX1 Western blot 569 proteins identified (120)
Serum (EOC; normal/benign) PRDX1 ELISA

Ovarian carcinoma Centrifugation TIF WDR1 MRM, SRM WB 6 proteins selected for validation (124)

Ovarian carcinoma Elution TIF/NIF S100-A8 IHC 58 proteins identified, 1 up-regulated, 5
down-regulated proteins

(137)

Ovarian carcinoma Elution TIF; NIF STIP1, LAP3, TPI1, UCHL1 Western blot, IHC 8 proteins identified (138)
BNDF, transferrin ELISA

Serum (patient; control) STIP1 ELISA

Breast carcinoma Elution with biotin TIF/NIF 93 up-regulated proteins (139)
TIF; NIF CD276 IHC

Breast carcinoma Elution NIF/TIF Calreticulin, calumenin, TCPT,
S100A9

IHC 832 proteins detected, 84 up-regulated
proteins

(119)

TIF; NIF Calreticulin, CRABP2, CLIC1,
EF-1-beta, galectin-1, PRDX2,
PD-ECGF, PDI, UCTH5

Tissue microarray 26 of protein candidates present in all
patients (gels compared)

Breast carcinoma Elution TIF/NIF YWHAZ, GDI-1, HNRNPD Western blot 1324 non-redundant proteins (121)

Non-small cell lung cancer Elution TIF/NIF PRDX1 Western blot/ELISA 24 proteins differentially expressed (122)

Colorectal tumor Explant eluate TIF/NIF Desmocollin, fibrinogen γ-chain 32 proteins differentially expressed (123)

Head and neck squamous
cell carcinoma

Capillary
ultrafiltration

TIF 525 proteins identified (118)

Oral squamous cell
carcinoma

Microdialysis TIF; NIF MMP-8, MMP-9, neurotrypsin,
trypsin-1

IHC 217 proteins identified (117)

TIF, tumor interstitial fluid; NIF, normal tissue interstitial fluid; MCM4, minichromosome maintenance complex component 4; IHC, immunohistochemistry; CRC, colorectal carcinoma; CHI3L1, chitinase 3-like 1; CEA, carcinoembryonic
antigen; ELISA, enzyme-linked immunosorbent assay; sERBB3, secreted receptor tyrosine-kinase erbB-3; HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; ENO2, enolase 2; NNMT, nicotinamide n-methyltransferase; SRM, selected
reaction monitoring; TSP1, thrombospondin-1; PRDX1, peroxiredoxin 1; EOC, epithelial ovarian carcinoma; STIP1, stress-induced phosphoprotein 1; LAP3, leucine aminopeptidase 3; TPI1, triosephosphate isomerase 1; UCHL1, ubiquity
carboxyl-terminal esterase L1; BNDF, brain-derived neurotrophic factor; TCPT, translationally controlled tumor protein; CRABP2, cellular retinoic acid-binding protein 2; CLIC1, chloride intracellular channel protein 1; EF-1-beta, elongation
factor 1-beta; PRDX2, peroxiredoxin 2; PD-ECGF, platelet-derived endothelial cell growth factor; PDI, protein disulfideisomerase; UCTH5, ubiquitin carboxyl-terminal hydrolase 5; MMP, matrix metalloprotease; WDR1, WD-repeat containing
protein 1; YWHAZ, 14-3-3 protein zeta/delta; GDI1, dissociation inhibitor alpha; HNRNPD, AU-rich element RNA-binding protein 1.
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proteins (125), intracellular proteins in TIF may actually derive
from exosomes. Due to their size, these particles will be sieved off
when using techniques involving membranes like microdialysis
and ultrafiltration that may again lead to divergent proteomes
depending on the isolation techniques, a conclusion that was
actually supported by our analysis (8). Based on this evaluation
we concluded that there are many common proteins that appear
in several proteomes, and moreover that there are many potential
unique candidates for each tumor type (8). Another implication of
this analysis is that since the isolation method will influence the
overall composition of the identified proteome, proteomes from
different studies should be evaluated with this inmind. These data
might actually suggest that more than one method should be used
to isolate TIF in the initial screening for biomarker candidates.

Summary and Conclusion

In spite of extensive efforts, economical as well as technical, “the
inconvenient truth” is that up till now, no biomarker developed
by proteomics has been proven to be of benefit for cancer patients
(106). The many problems regarding proteomic analysis of serum
are well known. This calls for alternative approaches and for new
substrates in this endeavor. TIF represents a proximal fluid that
may be enriched in tumor specific proteins. It may serve as a
new substrate that could be used in a more targeted analysis of
the proximal fluids in general. In the present review, we have

briefly summarized recent knowledge on the tumor interstitium
and the formation and composition of TIF. We have moreover, in
particular, addressed proteins secreted to the tumor fluid phase.
While several proteomic secretome studies have been performed
in cell cultures, only a few studies addressing the TIF proteome
have emerged in the recent years, and have been summarized in
this article. The isolation of TIF can be challenging per se, and
the choice of method may have a direct impact on the proteomic
results. Unfortunately, even when comparing a fluid that is more
proximal to the tumor, i.e., TIF, there are few common validated
candidate proteins in the presented TIF studies. There appear
to be an unexploited potential in using TIF proteomic data in a
functional context. It might appear as a more integrated systems
biology biomarker discovery platform should be used. Such a
platform should also involve, e.g., cancer cell lines, animalmodels,
tumor tissues, and transcriptomics in addition to proximal fluids
(6). Such a strategy will provide new knowledge on tumor biology
and hopefully produce new biomarkers or treatment strategies for
cancer.
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