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Cancer transformation involves reprograming of mitochondrial function to avert cell
death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and
promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic
targets because of their connection to metabolic and apoptotic functions. This mini review
discusses how mitochondrial channels may be associated with cancer transformation
and expands on the possible involvement of mitochondrial protein import complexes in
pathophysiological process.
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Introduction

The eukaryotic merger that gave rise to mitochondria was arguably the major contributor to the ori-
gin of multicellular organisms (1, 2), afforded by the increased efficiency in cellular energy conver-
sion. However, maintaining multicellular life required more than power. Mitochondria had to spe-
cialize in eliminatingmalfunctioning cells and policing unrestrained growth of once-single cells. An
insurgence against the newfound multicellular way of life would be punished with a death sentence.

Power, or a death sentence, is released from mitochondria through channels spanning the
inner and the outer membranes. For example, mitochondria deliver ATP and other high-energy
metabolites to the cell through a voltage-dependent anion channel [VDAC, reviewed in Ref. (3)],
while death signals like cytochrome c are unleashed through the mitochondrial apoptosis-induced
channel [MAC; (4)] (Figure 1). Comprehensive reviews on the structure–function relationships of
ion channels in mitochondria are available elsewhere (5–11). This mini review will focus on the
possible involvement of mitochondrial ion channels in cancer transformation.

If an insurgent cell is to survive, it must reprogram the power plant. Some cancer cells accomplish
this task by decreasing the open probability of mitochondrial channels involved in the transport of
energy metabolites (13–15) and relying on glycolytic metabolism to fuel competitive reproduction
(3).Onewould think that the payoff for relinquishing energy conversion efficiency is that cancer cells
suffer lower oxidative stress. However, oxidative stress seems to be one of the determinants of tumor
cell transformation (16, 17). As discussed below and elsewhere (18), respiring mitochondria are the
major sources of cytotoxic reactive oxygen species (ROS). Interestingly, exacerbated ROS emission
causes the opening of pores in the inner membrane that breach the permeability barrier to solutes
and the ensuing uncontrolled matrix swelling, membrane rupture, and spillage of mitochondrial
proteins into the cytosol. Although the exact mechanism of permeability transition of the inner
membrane is still being deciphered, cancer cells expertly avert them by equally mysterious ways.

Another feature of cancer mitochondria is that they are coated with sentinel proteins, which
prevent the formation ofMAC in the outermembrane, rendering the power plant oblivious to cancer
transformation and unrestrained growth. Interestingly, much of our current understanding about
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FIGURE 1 | Mitochondrial ion channels might mediate exchange of
oncogenic factors with the nucleus. Nuclear oncogenic factors either
directly (via nuclear pore complexes, NPC) (12) or indirectly (via oncogenic
expression) are transmitted to mitochondria to reprogram metabolism and cell
death mechanisms. Channels in the outer and the inner membranes might
provide the pathways for production and/or bi-directional transport of oncogenic

factors. Alternatively, they might be direct targets (see text). The legend indicates
channel components (red) or modulators (black) associated with cancer (see
text for references). Components and regulators of TIM22 and TIM23 channels
were listed in the same category. K+C represents the potassium channels BKCa

and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related acid-sensitive
K+ channel-3 (TASK-3). Inspired by Odra Noel’s “Mitochondrial Dawn”.

the regulation of MAC arose from studying cancer cells, which
over express the sentinel protein Bcl-2. It may also sound counter-
intuitive that the MAC components Bax and Bak are structurally
related and belong to the Bcl-2 family of proteins. The truth is that
this multifaceted family of proteins controls permeabilization of
the outer membrane by either inducing or preventing it. In cancer
cells, the second mode prevails and might even go beyond the
outer membrane, as some anti-apoptotic members (Bcl-xL and
Mcl-1) have been shown to interact with and regulate inner mem-
brane proteins, including putative components of the permeability
transition pore complex (19–21).

Induction and maintenance of tumor transformation might
involve more than reprograming of metabolism and containment
of apoptotic signaling. Recent studies suggest that mitochondrial
dysfunctionmight be causally linked to the characteristic genomic
instability of many human cancer cells (22–27). One could
envision the involvement of additional mitochondrial channels
responsible for, e.g., control of calcium, potassium and mag-
nesium flux, organelle volume, and nucleic acid transport. The
development of new tools has enabled the identification of elusive
mitochondrial channels like the calcium uniporter (MCU) (28,
29), creating momentum for deeper understanding of the role
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of mitochondria in cancer cell transformation. Excellent reviews
have been recently published on the therapeutic potential of mito-
chondrial ion channels in cancer (30–32). This mini review will
focus on the putative role that these channels might exert on the
reciprocal transmission of oncogenic factors between mitochon-
dria and the nucleus (Figure 1).

Metabolic Channels

Voltage-Dependent Anion Channel
Sometimes coined the food channel, VDAC was discovered in
mitochondria almost 40 years ago (33). There is currently no
definitive evidence that indicates the steady state conformation
of VDAC in intact cells, but a pioneering study suggests an open
state (34). When fully open, VDAC allows the exchange of ATP
and ADP as well as electron transport chain substrates pyruvate,
malate, succinate, and NADH across the outer mitochondrial
membrane (35–41). In this state, the channel is normally slightly
anion-selective but becomes cation-selective in its half-open state,
possibly favoring calcium over metabolites (42). Interestingly,
this cationic conductance has also been observed when VDAC
is fully open (42), suggestive of a possible role in transport of
larger positively charged metabolites. Although more sporadic in
reconstituted systems, this behavior was observed in preparations
from yeast and mammalian VDAC and might explain the overall
positive net conductance of mitochondria (42–44). In mammals,
three isoforms of VDAC have been discovered: VDAC1, VDAC2,
and VDAC3 (45). These isoforms display similarities in both
structure and function, but each has been found to play a dis-
tinct role in mitochondria-mediated apoptosis and metabolism.
Little is known of the function of VDAC3, which is abundant
in sperm cells. Is any particular isoform up/down regulated in
different tumors? The answer seems to be yes, at least for VDAC1.
Recent studies found that the vdac1 gene is up regulated in breast,
colon, liver, lung, pancreatic, and thyroid cancer tissue (46, 47).
Knockdown of vdac1 caused slowed proliferation of HeLa cells
and reduced tumor size in vivo, suggesting a role of VDAC1 in the
loss of growth control commonly observed in cancer cells (48).

Another possible role for VDAC1 may exist in tumor microen-
vironments, which are often hypoxic. VDAC1 with a truncated
C-terminus (VDAC1-∆C) has been identified in both cancer cell
lines and patient tumor tissue samples (41). VDAC1-∆C was
present in cancer cell lines that had high-cytoplasmic levels of
adenosine triphosphate and in lung cancer biopsies that showed
a strong resistance to chemotherapy-induced apoptosis (49).

Voltage-dependent anion channel has become an attractive
target for anticancer therapy due to its essential role in apoptosis
and metabolism, processes deregulated in cancer (50). Cancer
cells exhibit high levels of aerobic glycolysis, a phenomenon first
observed by Otto Warburg in 1956. The glycolytic enzyme hex-
okinase 2 (HK2), which is overexpressed in cancer cells, is a
key regulator of the Warburg effect and binds to VDAC, form-
ing HK–VDAC complexes (51). It remains to be determined if
HK2 binds to all VDAC isoforms. However, an additional link
to VDAC1 and VDAC2 involvement can be inferred from their
regulation by free tubulin, suggesting that it might underlie the
cytotoxic effect of chemotherapeutic drugs affecting microtubule

formation (15). It has also been recently suggested that the low-
ATP/ADP ratio resulting from free tubulin-mediated VDAC clo-
sure is a contributing factor to theWarburg effect (12–15).VDAC2
also regulates apoptosis through its interactions with Bak, namely,
the localization of Bak to the mitochondria and inhibition of
Bak-mediated apoptosis (49, 52). As demonstrated in melanoma
cells, overexpressing Bcl-xS disrupts the VDAC2-Bak interaction
by binding to VDAC2, releasing Bak, and allowing it to initiate
apoptosis (53). Less is known about interaction between VDAC2
and the primarily cytosolic Bcl-2 protein Bax, but recent studies
have shed some light on Bax regulation by VDAC2. Cells deficient
in Bak and VDAC2, but not Bax, displayed resistance to apoptotic
stimuli, suggesting a role for VDAC2 in Bax activation (54). More
recently, it has been shown that VDAC2 facilitates recruitment of
both Bak and Bax to the mitochondria and that VDAC2 and Bak
are required for Bax-mediated apoptosis (52, 53, 55).

Cell Death Channels

The two mitochondria-permeabilizing structures MAC and PTP
are considered to be the main death channels. Of note, these
two functional entities allow the release in the cytosol of mito-
chondrial factors such as cytochrome c during apoptosis and/or
necrosis (56).

Mitochondrial Apoptosis-Induced Channel
Broadly recognized as the main site through which death sig-
nals like cytochrome c are released into the cytosol, MAC is a
dynamic channel formed in the outer membrane by at least two
pro-apoptotic members of the Bcl-2 protein family, Bak and Bax
(57, 58). However, the MAC pore may not be entirely of protein
nature. Some studies showed that ceramides or intermediates of
ceramide biosynthesis pathway had the potential to stimulate
cytochrome c release in a Bak- and/or Bax-dependent fashion,
indicating that these lipids are potentially an integral part of
MAC (59, 60). In theory, MAC function antagonizes cancer cell
transformation and is, in fact, kept at bay by oncogenic gene
expression. Up regulation of the Bcl-2 or Bcl-xL proto-oncogenes
is associated with tumor formation and more particularly with
B-cell non-Hodgkin’s lymphoma (61–63). Pro-lymphocytic cell
lines overexpressing Bcl-2 exhibit resistance to MAC formation
and the ability to induce lymphoma in mice (44, 63–65). Para-
doxically, it was shown that an over-abundance of Bcl-2 not
only caused mitochondrial sequestration of BH3-only proteins,
which are activators of MAC formation, but also that of the MAC
core component Bax (66–68). This phenomenon seems to be a
common feature of anti-apoptotic Bcl-2 family members as an
over-abundance of Bcl-xL was also recently shown to induce both
Bax accumulation and functional activation at the mitochondria
(69, 70). This accumulation has been coined “priming for death,”
and this concept is currently being used to develop new cancer
therapies (66, 67). The first approach to pharmacologically trigger
Bax-mediated apoptosis in primed cancer cells comes from the
group of Stanley Korsmeyer. In one of these studies, a stabilized
stapled BIM helix peptide was even shown to efficiently com-
pete for binding to Bcl-2 with mitochondrial native BIM in a
model of hematologic cancer (71). Another approach taken was
to screen for small organic molecules, which can act as BH3
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mimetics on anti-apoptotic multi-domain Bcl-2 family members.
The first of these BH3 mimetic compounds to be developed was
ABT-737, which binds Bcl-2, Bcl-xL, and Bcl-w (69). An orally
bioavailable variant (ABT-263 or Navitoclax) was later developed
(12) with promising clinical trial results but the caveat of causing
thrombocytopenia (15).

ABT-199 is another recently developed drug that has shown
antitumor activity in vitro and in vivo (31) and is perhaps the
most promising BH3 mimetic. Unlike ABT-263 and ABT-737,
ABT-199 is Bcl-2 selective and does not seem to cause throm-
bocytopenia (72). Its efficacy was first demonstrated in chronic
lymphocytic leukemia (CLL), but its cytotoxic activity has since
been reported in T-cell acute lymphoblastic leukemia (T-ALL)
(73), acute myeloid leukemia (74), and chronic myeloid leukemia
(CML) progenitor cells (15). In the CML study, treatment with
ABT-199 in combination with the tyrosine kinase inhibitor
imatinib enhanced inhibitory effects. It has also been used in com-
bination with tamoxifen to induce apoptosis in estrogen receptor-
positive breast cancer cells, in which Bcl-2 is overexpressed (70).
ABT-199, alone or in combination with other anticancer agents,
represents a promising strategy against growth of Bcl-2 dependent
cancers.

Tumorigenesis and the accompanying resistance to apoptosis
can also be initiated by down-regulation of pro-apoptotic Bax and
Bak. In this case, the death program fails as MAC formation is
prevented by a lack of building blocks (75). Chemotherapies in
this latter case may involve the activation of Nur77 by the drug
3-Cl-AHPC; activation of Nur77 leading to the conversion of Bcl-
2 into a core component of a new type of cytochrome c release
channel (76).

PTP
The selective induction of permeability transition in the inner
membrane has obvious onco-therapeutic potential. However,
most cancer mitochondria seem to be desensitized to signals
that trigger permeability transition in normal mitochondria (dis-
cussed below). Interestingly, a high incidence of cancer is found
in transplant patients treated with cyclosporine A, an immuno-
suppressant known to inhibit permeability transition of the inner
membrane (77). Themechanisms of PTP inhibition in cancer cells
are expertly summarized in two recent reviews by the Pinton and
Bernardi groups: cancer cells down regulate PTP inducers (i.e.,
ROS and calcium), alter expression of chaperones that regulate
PTP opening, desensitize the channel through kinase signaling
pathways (GSK-3 and hexokinase II), leading to reduced mito-
chondrial oxidative phosphorylation regimes characterized by
high ATP/ADP ratios, low-inorganic phosphate, and high-ROS
levels (74, 78). Intriguingly, some of the currently proposed PTP
components seem to be up regulated in cancer cells. That is the
case, for example, for the c subunit of the ATP synthase (79).
Other studies showed that increased levels of the c subunit induce
cell death via PTP (80, 81). One possible explanation to this
seemingly discrepancy is that cancer cells initially benefit from
PTP function (mitochondrial dysfunction and ROS emission) to
generate genome instability. As the cancer phenotype strengthens,
PTP is silenced, possibly by a combination of the fourmechanisms

listed above, a process sometimes potentiated by an increase in
mitophagy (74). It should be noted, however, that the structural
composition of PTP is still a matter of debate and it might involve
interactions between cyclophilin D, the adenine nucleotide trans-
porter (ANT), the phosphate carrier (PiC), and the F1Fo ATP
synthase in the inner membrane (82, 83).

Protein Import Channels

Mitochondrial biogenesis relies on the import of over 99% of the
organelle proteome from the cytoplasm. The import pathway is
through water-filled channel complexes, namely, the translocase
of the outer membrane (TOM), and the translocases of the inner
membrane (TIM22, and TIM23) [for a comprehensive review, see
Ref. (84)]. The TIM23 channel was the first electrophysiological
demonstration of the link between protein import and water-
filled channels inmitochondria (85, 86) followed by reports on the
channel activity of TOM, the protein import complex of the outer
membrane (87, 88). These two channels enable the coordinated
passage of proteins across both membranes and into the matrix
space.

Translocase of the outer membrane channels act as gatekeep-
ers of protein import as they open in response to binding of
precursor proteins carrying a signal peptide (89). This signal
can be a cysteine motif (90), a presequence (91), or an internal
targeting element (92). Most of the precursor proteins pass the
outer membrane via the TOM complex. Precursors with cleav-
able N-terminal presequences are further sorted to the matrix
or inner membrane by TIM23. Precursors of β-barrel proteins
bind to small Tim chaperones in the inter membrane space
and are then inserted into the outer membrane via the sorting
and assembly machinery (SAM). If the precursor carries spe-
cific cysteine motifs, it will be transferred from TOM to the
MIA complex for sorting into the intermembrane space. Finally,
precursors of the metabolite carrier family are transferred via
the Tim chaperones to the TIM22 translocase which then medi-
ates their insertion into the inner membrane (93). A few α-
helical outer membrane proteins seem to be imported indepen-
dently from the TOM complex but may instead require the SAM
complex (94).

A number of subunits of the protein import machineries have
been found to be overexpressed in mitochondria of cancer cells,
including Timm17a, Tim9, Tim13, Tim8b, Tim22, Tom20, Tom70,
and Tom7 (79). While it might sound logical that enhanced
biogenesis of mitochondrial proteins during cancer transforma-
tion requires up-regulation of the protein import machiner-
ies, it is surprising that, out of the list mentioned above, the
only channel forming protein is Tim22. Another study found
splice variants of Tim44 in oncotic thyroid carcinomas and
suggests this TIM23 peripheral component might have a role
in cancer transformation possibly by induction of ROS pro-
duction or impairment of protein import (95). Furthermore,
metabolic reprograming during tumorigenesis often requires
redistribution of kinases or transcription factors to mitochon-
dria in a process that depends on the mitochondrial import
machinery (12–15).
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Translocase of the outer membrane complex proteins have been
shown to interact with both pro- and anti-apoptotic Bcl-2 family
proteins, but their role in mitochondrial apoptosis is unclear.
Tom22, essential for maintaining TOM structure, has been
established as the mitochondrial receptor of Bax (96). In HeLa
cells treated with the proteasome inhibitor celastrol, Tom22 was
up regulated, yet Bax translocation still occurred in the absence of
Tom22, Tom70, and Tom40 (97, 98). Interestingly, metaxins 1 and
2, components of the SAM complex, were found to be required for
Bak activation in TNF-induced apoptosis in Bax deficient glioma
cells (99).

Another TOM subunit, Tom20, might have a role in cancer
transformation via interactionwith the arylhydrocarbon receptor-
interacting protein (AIP) (100). AIP is also associated with the
inhibitor of apoptosis protein survivin, which localizes to the
mitochondria and when released in response to apoptotic stimuli,
prevents cell death by inhibiting caspase activation (101). Survivin
is overexpressed in cancer cells and its import into the mito-
chondria is mediated by the AIP–Tom20 complex; this pathway
may be a potential target for cancer cells (102), provided that the
AIP–survivin interaction can be specifically targeted, as AIP has
been shown to bind other mitochondrial pre-proteins (100).

Small Ion Channels
Voltage-dependent anion channel is thought to allow unre-
strained ion flux across the outer membrane. However, ion flow
is tightly regulated across the inner membrane as to allow the
vital establishment of the hydrogen proton gradient. Inner mem-
brane ion channels control metabolic pace, emission of ROS,
organelle volume, and other functions that seem to be modified
in cancer cells; they are therefore natural candidates for activity

modulation through cancer transformation. A non-exhaustive list
of potential targets includes mitochondrial potassium channels
[calcium-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3,
two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-
3)], calcium uniporter MCU, magnesium channels (Mrs2), anion
channels (CLIC), and channel activities that await molecular
identification (mCs, AAA, ACA, and IMAC) (30–32).

Concluding Remarks

Mitochondrial ion channels are emerging as promising onco-
therapeutic targets. Compelling and mounting literature suggests
that reprogramed metabolic and apoptotic signaling from mito-
chondria is present in cancer cells and might underlie their char-
acteristic genome instability. The field should benefit from studies
that aim at identifying oncogenic factors that are either released
from mitochondria or that affect the function of these organelles.
Also helpful would be the ability tomanipulate specific mitochon-
drial functions in animal models of cancer cell transformation;
and new electrophysiological and imagery techniques allowing
live monitoring of mitochondrial channels in cancer cells. Can-
cer cell transformation, rather than being solely induced by the
nucleus or the mitochondria, might involve crosstalk between
these cellular compartments.
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