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Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that acts as a co-receptor for
various members of the vascular endothelial growth factor (VEGF) family. Its ability to
bind or modulate the activity of a number of other extracellular ligands, such as class 3
semaphorins, TGF-β, HGF, FGF, and PDGF, has suggested the involvement of NRP-
1 in a variety of physiological and pathological processes. Actually, this co-receptor
has been implicated in axon guidance, angiogenesis, and immune responses. NRP-1 is
also expressed in a variety of cancers (prostate, lung, pancreatic, or colon carcinoma,
melanoma, astrocytoma, glioblastoma, and neuroblastoma), suggesting a critical role
in tumor progression. Moreover, a growing amount of evidence indicates that NRP-1
might display important functions independently of other VEGF receptors. In particular,
in the absence of VEGFR-1/2, NRP-1 promotes melanoma invasiveness, through the
activation of selected integrins, by stimulating VEGF-A and metalloproteinases secretion
and modulating specific signal transduction pathways. This review is focused on the role
of NRP-1 in melanoma aggressiveness and on the evidence supporting its use as target
of therapies for metastatic melanoma.

Keywords: neuropilin-1, melanoma, peptidomimetics, cell-penetrating peptides, T regulatory cells, angiogenesis,
metastasis

Introduction

Neuropilin-1 (NRP-1) is a transmembrane glycoprotein, composed of a large N-terminal extracel-
lular region, a short transmembrane domain and a small cytoplasmic tail (44 aa) (1) (Figure 1). It
was originally identified as co-receptor for class 3 semaphorins, a family of molecules that provide
repulsive or attractive signals for neurons (2, 3). Actually, NRP-1 was shown to be involved in
neural crest migration and axon growth during the development of the nervous system by forming a
complex with type-A plexin, a signal-transducing transmembrane receptor for class 3 semaphorins
(4, 5). Studies on over-expression and/or ectopic expression of NRP-1 in chimeric mouse embryos
or inactivation of the gene in mutant mice indicated that NRP-1 is required during embryogenesis
not only for the neuronal guidance but also for the normal development of the cardiovascular system
(6, 7). In fact, NRP-1 is expressed in endothelial cells, where it interacts with several members of the
vascular endothelial growth factor (VEGF) family of angiogenic factors and some of their tyrosine
kinase receptors enhancing the signaling and promoting angiogenesis (8–14).

Abbreviations: NRP-1, neuropilin-1; pDCs, plasmocytoid dendritic cells; PlGF, placenta growth factor, siRNA, small inter-
fering RNA; sNRP-1, soluble NRP-1; Tregs, T regulatory cells; VEGF, vascular endothelial growth factor; VEGFRs, VEGF
receptors.
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FIGURE 1 | NRP-1 structure and strategies to target its functions. The
extracellular region of membrane NRP-1 (mNRP-1) is divided into three
domains: a1/a2, which is homologous to the complement proteins C1r/C1s,
Uegf and Bmp-1 (CUB); b1/b2, which is homologous to the coagulation
factors V and VIII (CF); c, which is homologous to meprin, A5 and receptor
tyrosine phosphatase µ (MAM). The cytoplasmic tail (CP) lacks a catalytic
activity, but contains a C-terminal SEA sequence that represents a consensus
binding motif for proteins containing the PDZ (PSD-95, Dlg, ZO-1) domain
(e.g., synectin), which promotes the formation of complexes with signaling
components (15). The interaction of NRP-1 cytoplasmic tail with adaptor
proteins may trigger different signal transduction pathways (see text). Soluble
NRP-1 (sNRP-1) contains the extracellular a1/a2 and b1/b2 domains but
lacks the c, transmembrane and cytoplasmic domains, ending with an
intron-derived three amino acids sequence (GIK). NRP-1 ligands and
interacting receptors include (16, 17): (a) class 3 semaphorins (SEMA3) that
bind to the CUB and, partly, to the CF domains; (b) growth factors
(VEGF-A/B/D/E, PlGF-2, HGF, TGFβ1, bFGF, PDGF), all binding to the CF
domain; (c) membrane receptors (plexins, VEGFRs, PDGFR, TGFR) that
interact with NRP-1 through its dimerization MAM and CF domains. HGFR
interacts with NRP-1 CUB domain (18). The possible strategies to target
NRP-1 function are indicated in red: (a) blockade of growth factor binding to
membrane NRP-1 by sNRP-1; (b) induction of inhibitory signals by class 3
semaphorins binding to NRP-1; (c) blockade of VEGF-A binding to NRP-1
with monoclonal antibodies (mAbs), peptides or peptidomimetics; (d)
knockdown of NRP-1 expression with small interfering RNAs (siRNA) or
microRNAs; (e) delivery of therapeutic agents to NRP-1 expressing cells using
cell-penetrating peptides (CPPs), which interact with the CF domain; (f)
inhibition of the signal transduction pathways triggered by NRP-1 activation.
Please, refer to the text for further details.

Besides its critical role during embryogenesis, NRP-1 has
important functions in the adult tissues, being involved in axon
guidance (mediated by class 3 semaphorins), vascular endothelial
sprouting (triggered by VEGFs), and immunosuppression [medi-
ated by plasmocytoid dendritic cells (pDCs) and T regulatory cells
(Tregs)]. Other ligands of NRP-1 include (Figure 1): transforming
growth factor-β1 (TGF-β1) and its receptors, hepatocyte growth
factor (HGF) and its receptor c-met, platelet-derived growth
factor (PDGF) and its receptors, fibroblast growth factor (FGF),

anti-thrombin III, and galectin-1 (16, 19). In addition, NRP-1
interacts with other transmembrane proteins such as αvβ3 and
β1 integrin (20–23).

NRP-1 is also able to respond to some of its ligands even
in the absence of the corresponding tyrosine kinase receptors.
For instance, PDGF-B, through the interaction with NRP-1, con-
trols the differentiation and recruitment of mesenchymal stem
cells and stimulates the migration of smooth muscle cells (24–
26). Moreover, placenta growth factor (PlGF, a member of the
VEGF family) has been shown to promote the growth and sur-
vival of medulloblastoma after binding to NRP-1 (27). The abil-
ity of NRP-1 to initiate signal transduction pathways has been
attributed to the interaction of its cytoplasmic tail with adap-
tor polypeptides, which activate downstream molecules, such as
Akt or p130Cas/FAK, involved in cell proliferation, migration,
survival, and invasion (26, 28, 29). Moreover, the interaction of
NRP-1 with ABL1 promotes paxillin phosphorylation and actin
remodeling, favoring cell motility in vitro and angiogenesis in vivo
(30) (Figure 1).

In addition to the membrane form, a naturally occurring sol-
uble NRP-1 protein (sNRP-1), containing only part of the extra-
cellular domain, is generated by alternative splicing of the NRP-1
gene (Figure 1) (31, 32) and is thought to function as a natural
inhibitor of the membrane NRP-1 by sequestering its ligands.

NRP-1 in Tumor Progression: Role in
Melanoma

NRP-1 is expressed not only in tumor-associated vessels but also
in a variety of cancers suggesting a role in tumor progression. In
a recent study utilizing carcinomas, NRP-1 has been detected in
blood vessels in more than 98% of cases, whereas its expression
in cancer varies depending on the tissue origin, histological sub-
type and stage (33). Increased levels of NRP-1 correlate with
tumor aggressiveness, advanced disease stage, and poor prognosis
(19, 34). NRP-1 up-regulation appears to be associated with the
tumor invasive behavior andmetastatic potential (35), for instance
in melanoma and breast cancer (9, 36). This receptor has been
implicated in mediating the effects of VEGF-A and semaphorins
on the proliferation, survival, and migration of cancer cells (36–
42). NRP-1 is also expressed by various stromal cells, including
fibroblasts, endothelial and immune cells, which can be acti-
vated by growth factors different from VEGF-A and contribute
to tumor progression. In fact, although the cancer promoting
effects of NRP-1 have often been attributed to an enhancement of
VEGF receptors (VEGFR)-2 activation in response to VEGF-A,
some tumors express NRP-1 but neither VEGFR-1 nor VEGFR-2
(26, 43, 44).

A large number of human melanoma cell lines, derived from
primary and metastatic lesions, secrete VEGF-A and express its
receptors, including NRP-1 (45). NRP-1 enhances the activa-
tion of a VEGF-A/VEGFR-2 autocrine loop, which promotes
the invasion of melanoma cells into the extracellular matrix
(46), through the up-regulation of VEGF-A and metallopro-
teinases secretion (29, 47). Moreover, NRP-1 over-expression pro-
vides human melanoma cells with an increased in vivo growth
rate (48).
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NRP-1 might be also involved in the effects of PlGF on
melanoma cells. This angiogenic factor, has been detected in spec-
imens from melanoma patients by immunohistochemical stain-
ing, is secreted by melanoma cells and promotes in vitro extra-
cellular matrix invasion and matrix metalloproteinases secretion
(45, 49). In a transgenic murine model, the over-expression of
PlGF in the skin significantly favored the growth and metastasis
to the lungs of syngeneicmelanoma cells orthotopically implanted
in the skin (49). Moreover, PlGF plays a role in the resistance
of melanoma to temozolomide, an anticancer agent used for
the treatment of the metastatic disease, through a mechanism
involving NF-kB (50). Interestingly, melanoma cells expressing
NRP-1 but lacking other VEGF-A or PlGF receptors, specifically
responded to PlGF in a chemotactic assay (51), suggesting that
PlGFmay perform at least some of its functions through activation
of NRP-1 dependent pathways.

Highly malignant cells, because of their ability to de-
differentiate and acquire characteristics of other cell types, may
form de novo vascular networks (vasculogenic mimicry), con-
tributing to new vessel formation. Vasculogenic mimicry favors
tumor growth and invasion and predicts poor prognosis in
melanoma patients (52). It has been recently demonstrated that
NRP-1 expression in melanoma cells increases their aggressive-
ness and ability to form tubule-like structures (47). These NRP-
1-mediated effects require the activation of specific integrins. In
particular, αvβ5 integrin favors cell adhesion to vitronectin and
collaborates with NRP-1 in the development of an invasive and
vasculogenic mimicry phenotype (47). In this context, NRP-1
has been shown to complex with the intracellular kinase ABL1
after adhesion of endothelial cells to fibronectin, resulting in
phosphorylation of the focal adhesion component paxillin and
promotion of cell migration (30). If confirmed in NRP-1 express-
ing melanoma cells, this pathway might also contribute to tumor
aggressiveness (Figure 2).

NRP-1 has been indicated as a promoter of epithelial-
mesenchymal transition, a critical step in tumor invasion and
disease progression. A similar process of phenotype switching has
been reported in melanoma and implicated in promotion to a
metastatic state, providing further evidence ofNRP-1 involvement
in multiple oncogenic functions (55, 56).

This evidence supports the hypothesis that NRP-1 might rep-
resent a suitable target for anti-melanoma therapies. However,
since this protein interacts with a number of tumor-associated
molecules, further studies are required to define its precise mech-
anisms of action in melanoma progression.

NRP-1 as Therapeutic Target

Several strategies have been explored to counteract the tumor
promoting effects of NRP-1 function, employing different tools
(Figure 1): recombinant sNRP-1, class 3 semaphorins, mono-
clonal antibodies (mAbs), peptides and peptidomimetics, small
interfering RNAs (siRNAs) or microRNAs.

Administration of sNRP-1
sNRP-1, functioning as natural ligand trap, inhibits the interaction
of VEGF-A or other growth factors with their specific receptors
and with membrane NRP-1 expressed by tumor or normal cells

(32, 57, 58). Indeed, the injection of an adenovirus encoding for
sNRP-1 significantly inhibited neoangiogenesis and prolonged the
survival of leukemia-bearingmice (59). sNRP-1 also decreased the
invasiveness of human non-small cell lung cancer cells in vitro
(41) and its over-expression inhibited breast cancer cell migration
(32, 60).

Interestingly, following administration of an anti-NRP-1 mAb
(see below) that specifically recognizes the coagulation factors
domain of this receptor, an increase in circulating NRP-1 in the
serum of treated patients was observed (61). In this case, circulat-
ing NRP-1 is likely the result of membrane NRP-1 shedding and
may contribute to enhance the efficacy of the anti-NRP-1 mAb by
sequestering VEGF-A.

Another mechanism by which sNRP-1 might modulate VEGF-
A signal transduction is the formation of a complex with VEGF-
A bound to VEGFR-2. A similar mechanism has been recently
described inmurine B16melanoma cells, where tumor-associated
NRP-1 can prevent VEGFR2/VEGF-A internalization and sig-
naling in endothelial cells through a trans complex formation,
suppressing tumor initiation and angiogenesis (62).

Over-expression of Class 3 Semaphorins
Semaphorins and VEGF-A seem to compete for NRP-1 binding,
although they interact with different domains of the receptor.
Indeed, semaphorins are responsible for inhibition of cancer
cell proliferation and induction of apoptosis, whereas VEGF-
A enhances angiogenesis and tumor growth. Since semaphorins
such as Sema3B and Sema3F are often down-regulated in tumor
cells (63), over-expression of Sema3 genesmay represent a promis-
ing therapeutic strategy to antagonize VEGF-A-mediated effects
(64). However, exogenous administration of Sema3A induced
proteinuria by disrupting podocyte foot processes in the kid-
ney (65).

Blockade of VEGF-A Binding with anti-NRP-1
Monoclonal Antibodies
A high-affinity mAb targeting the coagulation factors domain
of NRP-1 (anti-NRP-1B) has been shown to inhibit VEGF-A-
induced migration of human endothelial cells and tumor forma-
tion in animal models avoiding VEGF-A-binding to NRP-1 (66–
69). This antibody also potentiates the effects of an anti-VEGF-
A therapy (68). These findings have led to speculate that the
combination of anti-NRP-1 and anti-VEGF agents might improve
the survival of patients with advanced malignancies. Moreover,
the anti-NRP-1B antibody was found to directly inhibit breast
cancer cell proliferation, adhesion to fibronectin and formation
of NRP-1/α5β1 integrin complexes, as well as phosphorylation
of FAK and p130cas (70). Finally, it enhanced chemosensitivity
of human non-small-cell lung, kidney, prostate cancer, and other
carcinoma cells, by interfering with integrin-dependent survival
pathways (43).

The majority of anti-angiogenic therapies developed so far
target the VEGF-A signaling by blocking VEGF-A and inhibiting
VEGFR-1 and/or VEGFR-2 activation (71). However, primary
and acquired resistance to the available anti-angiogenic therapies
is commonly reported. Thus, other anti-angiogenic approaches
that affect additional signal transduction pathways are under
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investigation. In this context, a human mAb (i.e., MNRP1685A)
that blocks the binding of VEGF-A, VEGF-B, and PlGF to NRP-1
is currently under evaluation in clinical trials. This antibody does
not affect the binding of Sema3A to the CUB domain that regu-
lates neurogenesis. Phase I studies with MNRP1685A in patients
with advanced solid tumors showed that this antibody is generally
well-tolerated as single agent, but it has a modest clinical activ-
ity (72). However, when co-administered with bevacizumab and
paclitaxel, it caused a high rate of clinically significant proteinuria,
not supporting further testing ofMNRP1685A associatedwith the
anti-VEGF-A antibody (73).

Blockade of VEGF-A Binding to NRP-1 with
Specific Peptides and Peptidomimetics
Differently from semaphorins, VEGF-A binds exclusively to the
NRP-1 coagulation factors domain (74). This allows the selec-
tive targeting of VEGF-A/NRP-1 interaction without affecting
the binding of class 3 semaphorins. Indeed, several specific pep-
tides and peptidomimetics, capable of competitively inhibiting
the VEGF-A/NRP-1 interaction, exerted anti-angiogenic activity
through down-regulation of VEGF-A signaling, as demonstrated
by the reduced VEGFR-2 tyrosine phosphorylation and in vitro
tubule-like formation (75–77). These molecules induced apop-
tosis in NRP-1-expressing breast cancer cells (39) and decreased
in vivo tumor growth (77).

Peptides are not considered viable drugs, but they provide
an appropriate starting point for the structure-based design of
peptidomimetics and smallmolecule inhibitors. An example is the
potent peptidomimetic compound DLPR, a tripeptide resistant to
proteolysis generated by the amino acid retroinversion method
(substitution of - for -amino acids and sequence reversal) (78).
This peptide interacted withNRP-1 and exhibited anti-angiogenic
activity in different in vivo animal models of cancer.

The molecular design of a small molecule ligand that fits into
theVEGF-Abinding site of theNRP-1 coagulation factors domain
has been reported (79). This inhibitor, denoted as EG00229,
derives from the previously characterized bicyclic peptide EG3287
that corresponds to the C-terminal 28-residue segment of VEGF-
A (75). EG00229 inhibited VEGF-A binding to NRP-1, decreased
VEGFR-2 phosphorylation and the migration of lung carcinoma
cells in vitro. Moreover, it enhanced tumor sensitivity to the
cytotoxic effects of paclitaxel and 5-fluorouracil.

Other NRP-1 antagonists designed on the basis of a previously
described NRP-1 inhibitory peptide have been recently produced
(80), but data on their efficacy in preclinical in vivo tumor models
are not available yet.

NRP-1 Knockdown with Small Interfering RNAs
or microRNAs
Small interfering RNAs have also been utilized to target NRP-1,
resulting in a significant reduction of the growth, angiogenesis
and metastasis formation in various human tumor models, such
as hepatocellular carcinoma (81, 82), acutemyeloid leukemia (83),
and lung cancer (41). NRP-1 silencing with specific siRNA also
impaired the activity of several growth factors (84) and increased
the sensitivity to chemotherapeutic agents (e.g., 5-fluorouracil,
paclitaxel, and cisplatin) (43).

NRP-1 has been shown to be the target of several microRNAs
(miR), such as miR-9, miR-181b, and miR-320, which modulate
angiogenesis and tumor invasion (85, 86). Hence, it has been
suggested that these microRNAs might be good candidates for
cancer treatment. In particular, the anti-angiogenic microRNA
miR-320a, by targeting NRP-1, suppressed the in vitro migra-
tion, adhesion and tubule formation by vascular endothelial cells,
and reduced in vivo tumor angiogenesis and colon cancer cell
migration and invasion (86, 87). These findings support the pos-
sible development of microRNA-based agents as anti-angiogenic
and/or anticancer drugs.

Cell-Penetrating Peptides
In the search for cell-penetrating peptides (CPPs), the screening
of phage peptide libraries led to the observation that many CPPs
have a C-terminal R/KXXR/K consensus sequence, referred to
as the C-end rule (CendR) motif (88, 89). Peptides with these
characteristics appear to bind to the electronegative pocket of
the coagulation factors domain of NRP-1, which mediates their
rapid internalization into NRP-1-expressing cells. Since NRP-1 is
frequently expressed in cancer cells, this NRP-1 activity is being
explored for the targeted delivery of therapeutic and diagnostic
agents (90, 91). Thus, CPPs appear particularly valuable to allow
cell internalization of high molecular weight drugs that cannot
cross the plasmamembrane and to selectively target tumor tissues
minimizing systemic toxicity.

Tumor-homing cyclic peptides, designated iRGD, are charac-
terized by their ability to attach to RGD-binding integrins (88, 92).
These compounds are cleaved on the membrane of tumor cells by
a furin-like protease, which exposes a CendR motif (RGDK/R),
allowing their interaction with NRP-1 and the internalization of
the complex, along with a potential peptide-linked cargo. Conju-
gation of these peptides with imaging or chemotherapeutic agents
enhanced tumor detection and the activity of anticancer thera-
pies (88, 89, 92). For instance, iRGD-modified and doxorubicin-
loaded sterically stabilized liposomes exhibited high distribu-
tion in B16 melanoma cells, and exerted antitumor and anti-
angiogenic effects, with low systemic toxicity (93). Furthermore,
the iRGD peptides induced vascular leakage, allowing extensive
tumor penetration of the peptide, attached cargo and co-injected
drug (92).

Moreover, nanoparticles carrying a therapeutic p53-stabilizing
peptide alongside with the NRP-1-targeting peptide, showed
promising in vitro anticancer activity (94), suggesting the potential
applicability of this technology in different fields such as imaging,
diagnosis, and combination therapies.

Concluding Remarks

Cutaneous melanoma is an extremely aggressive cancer with high
metastatic potential. Actually, melanoma’s ability tometastasize to
distant organs is the primary cause of human skin cancer-related
deaths. The identification of molecular mechanisms associated
with the acquisition of a metastatic phenotype by melanoma cells
is, therefore, of great importance for the design of more efficient
therapies. In this context, three factors are crucial for melanoma
progression: (1) formation of new blood vessels from the pre-
existing vasculature (angiogenesis); (2) increased ability of tumor
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FIGURE 2 | Targeting of NRP-1 in the treatment of melanoma. The
targeting of this receptor is expected to result in therapeutic benefit by at least
three mechanisms (see text for details): (A) Decrease of melanoma
aggressiveness, metastatic potential and chemoresistance. NRP-1 targeting,
besides reducing the invasiveness and vasculogenic mimicry that confer
melanoma cells an aggressive and metastatic phenotype, might also
counteract resistance to inhibitors of mutated BRAF. (B) Enhancement of
antitumor immune responses. NRP-1 targeting may inhibit the recruitment of
pDCs and Tregs, reduce immune suppression against melanoma and

synergize with immunotherapies, delaying tumor progression and
development of resistance. (C) Inhibition of angiogenesis. Melanoma growth
and dissemination is dependent on angiogenesis and NRP-1 cooperates in
the signal transduction of tyrosine kinase receptors activated by angiogenic
factors and involved in the formation of new vessels (53). Moreover, NRP-1
over-expression is involved in tumor resistance to anti-angiogenic therapies
targeting VEGF-A and VEGFR-1/2 (54). Therefore, the targeting of NRP-1 may
inhibit neovessel formation and counteract resistance to anti-VEGF-A
therapies.

cells to invade the extracellular matrix and to form capillary-
like structures (vasculogenic mimicry); (3) tumor evasion from
the control of the immune system. NRP-1 is involved in all
these biological processes, being expressed in endothelial, highly
aggressive melanoma and immune cells. Thus, the targeting of
NRP-1 seems to be a valuable strategy for combination therapies
with, BRAF inhibitors, immunomodulating, or anti-angiogenic
agents (Figure 2).

BRAF inhibitors target specific mutations of BRAF in the
kinase domain, which are present in about 50% of melanomas
and cause over-activation of the mitogen-activated protein kinase
(MAPK)/extracellular-signal-regulated kinase (ERK) pathway,
involved in cell proliferation/survival. However, responses to
BRAF inhibitors are short-lived, due to the development of dif-
ferent mechanisms of resistance that lead to the recovery of the
MAPK signaling or the activation of alternative pathways, such
as PI3K/AKT/mTOR [reviewed in Ref. (95)]. In melanoma cells,
NRP-1 has been shown to activate signal transduction path-
ways involving AKT (29). Moreover, NRP-1-dependent pathways
described in endothelial cells or other tumor models (26, 28,
30, 70) might be active in melanoma and contribute to BRAF
inhibitor resistance. Thus, inhibition of NRP-1 may prevent the
activation of compensatorymechanisms that stimulate melanoma
cell proliferation and limit the efficacy of BRAF inhibitors
(Figure 2A).

Immunotherapy with immune checkpoint inhibitors repre-
sents an important advancement in the treatment of metastatic
melanoma (96). These agents increase immune responses by
enhancing effector T cell functions. However, melanoma may
evade the control of immune system by several mechanisms,
including the activation of tumor-infiltrating Tregs (97). NRP-
1 is expressed in pDCs and in a subset of Tregs and favors the
transendothelial migration of these cells in response to angiogenic
factors produced by the tumor (98, 99). Tregs recruited in the
tumor tissue suppress immune responses by inhibiting the prolif-
eration of effector T cells specific for tumor-associated antigens. In
fact, NRP-1 deficiency in Tregs impairs melanoma growth (100).
The pDCs are one of the two main types of dendritic cells and
are regarded as an unfavorable prognostic factor in melanoma,
since they accumulate within the melanoma microenvironment
and play a predominantly immunosuppressive role (101). Indeed,
pDCs promote the differentiation and modulate the function
of Tregs by mechanisms involving also the interaction of the
NRP-1 present in Tregs with the transmembrane semaphorin 4A
(Sema4A) expressed by pDCs (102, 103). However, the precise
functional significance of Sema4A in physiological and patholog-
ical immune responses remains to be determined. To this regard,
it has been suggested that Sema4A/NRP-1 interaction increases
the stability and survival of intra-tumoral Tregs, whereas it is
dispensable for the maintenance of immune homeostasis (103).
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Thus, targeting NRP-1 would result in decrease of the immune
suppressive activity of pDCs and Tregs against melanoma,
likely without inducing autoimmunity. Moreover, inhibition
of NRP-1 may synergize with immune checkpoint inhibitors,
delaying tumor progression and development of resistance
(Figure 2B).

Finally, the targeting of NRP-1 may not only inhibit neovessel
formation, but also counteract resistance to anti-VEGF-A thera-
pies. In fact, NRP-1 over-expression is one of the pro-angiogenic
signaling pathways involved in the development of resistance
to the current anti-angiogenic therapies targeting VEGF-A and
VEGFR-1/2 (54) (Figure 2C).

Inhibition of NRP-1 function may also result in modulation of
signal transduction pathways triggered by growth factors other
than VEGF-A, such as PDGF, FGF, EGF, and HGF, which are
implicated in tumor progression and are capable of binding NRP-
1. Indeed, the results observed using therapies that prevent the
binding of VEGF-A to NRP-1 can be likely attributed also to the
blockade of the interaction of NRP-1 with ligands that share with
VEGF-A the same NRP-1 binding site.

Although over-expressed in melanoma, NRP-1 has a
widespread expression in normal adult tissues. This might explain
the quick drop of the MNRP1685 antibody concentration in
the serum, observed in preclinical and phase I clinical studies,

due to a significant target-mediated clearance (72, 104). Thus,
adverse effects can be expected from inhibition of NRP-1 physi-
ological functions. Indeed, NRP-1 is required for axon guidance,
angiogenesis, immunity and regulation of the actin cytoskeleton
in podocytes of the Bowman’s capsule in the kidney (105).
Interestingly, no NRP-1 related toxicity, such as neurotoxicity
or nephrotoxicity, was observed when MNRP1685 was used
as single agent, whereas increased proteinuria, as a potential
damage of podocyte function, was reported in combination with
bevacizumab (73).

A better understanding of NRP-1 contribution to intracellular
signal transduction mechanisms and the design of molecules that
impair the binding of specific ligands, involved in tumor progres-
sion, will provide additional opportunities for the development of
new therapeutic approaches to target NRP-1 in melanoma and to
limit systemic toxicity.
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