
June 2015 | Volume 5 | Article 1381

Review
published: 25 June 2015

doi: 10.3389/fonc.2015.00138

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Ala-Eddin Al Moustafa,  

McGill and Concordia Universities, 
Canada; Syrian Research Cancer 

Center of the Syrian Society Against 
Cancer, Syria

Reviewed by: 
Daniel Christian Hoessli,  

International Center for Chemical and 
Biological Sciences, Switzerland  

Olivier Micheau,  
Institut national de la santé et de la 

recherche médicale, France

*Correspondence:
 Adriane Regina Todeschini,  

Instituto de Biofísica Carlos Chagas 
Filho,Universidade Federal do Rio de 

Janeiro, Avenida Carlos Chagas 
Filho, 373 - Cidade Universitária,  

Rio de Janeiro, 21941902,  
Rio de Janeiro, Brazil  
adrianet@biof.ufrj.br

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 04 May 2015
Accepted: 02 June 2015
Published: 25 June 2015

Citation: 
Vasconcelos-dos-Santos A,  

Oliveira IA, Lucena MC, 
Mantuano NR, Whelan SA, Dias WB 

and Todeschini AR (2015) 
Biosynthetic machinery involved in 

aberrant glycosylation: promising 
targets for developing of drugs 

against cancer. Front. Oncol. 5:138.  
doi: 10.3389/fonc.2015.00138

Biosynthetic machinery involved in 
aberrant glycosylation: promising 
targets for developing of drugs 
against cancer
Andréia Vasconcelos-dos-Santos1, Isadora A. Oliveira1, Miguel Clodomiro Lucena1,  
Natalia Rodrigues Mantuano1, Stephen A. Whelan 2, Wagner Barbosa Dias1 and  
Adriane Regina Todeschini 1*

1 Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 2 Department of 
Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA

Cancer cells depend on altered metabolism and nutrient uptake to generate and keep 
the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose 
metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-
Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. 
Growing evidence demonstrates that alteration of the pool of activated substrates might 
lead to different glycosylation and cell signaling. It is already well established that aberrant 
glycosylation can modulate tumor growth and malignant transformation in different cancer 
types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are 
becoming prominent targets for anti-tumor drugs. This review describes three classes of 
glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved 
in tumor progression, their biosynthesis and highlights the available inhibitors as potential 
anti-tumor drugs.

Keywords: glycans, glycosyltransferases, inhibitors, cancer, hexosamine biosynthetic pathway, O-linked glycan, 
N-linked glycan, glycoconjugate

introduction

Glycans constitute the most complex and abundant group of molecules in living organisms. Besides 
playing important roles in energy storage and supply, they often serve as essential biosynthetic precur-
sors or structural elements needed to sustain all forms of life. The complex glycans are frequently 
attached to proteins, forming glycoproteins and proteoglycans, or to lipids, forming glycosphingolipids 
and glycosylphosphatidylinositol anchors (Figure 1a). The majority of glycoconjugates are expressed 
on the cell surface, where they form a thick layer known as glycocalyx. Glycans can also be secreted 
to the extracellular medium in order to be incorporated into the extracellular matrix (ECM). Such 
location places glycoconjugates as major players in cell-to-cell interactions and motility. In addition, 
glycosylation is analogous to phosphorylation in that it can be found on many, cytoplasmic, nuclear 
and mitochondrial proteins (Figure 1b). It is a dynamic post-translational modification (PTM) and 
it regulates many cellular functions as well (1).

Glycoconjugates participate in many key biological processes including cellular adhesion, migra-
tion, growth, differentiation, signal transduction, receptor activation, immune response modulation, 
quality control of protein folding, and host–pathogen interactions (2–4).
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Glycans play several roles in different steps of tumor progres-
sion regulating tumor proliferation, invasion, metastasis, and 
angiogenesis (5). Therefore, aberrant glycosylation exhibits 
prominent candidates for cancer biomarkers, and their biosynthetic 
machinery have become targets for designing and synthesizing 
anti-tumors drugs.

Glycan structures do not depend only on genes, but also on the 
activities of glycosyltransferases and glycosidases and the avail-
ability of the donor substrates at the needed location. The donor 
substrates are derived from extracellular glucose (Glc) and from 
intracellular degradation of glycoconjugates in lysosomes, through 
the action of glycosidases and others enzymes as epimerases. 
Tumor cells have altered Glc metabolism, producing ATP primar-
ily through glycolysis even under normoxic condition, thereby 
upregulating the Glc uptake approximately 10 times more than 
adjacent normal tissue (6) in order to sustain a highly demanding 

FiGURe 1 | The synthesis of glycoconjugates from glucose through 
the hexosamine biosynthetic pathway (HBP). After glucose entry into the 
cell via the glucose transport, it is phosphorylated into glucose-6-phosphate 
(Glc-6P) by hexokinase (HK), mainly proceeding into glycolysis through 
conversion into fructose-6 -phosphate (Fru-6P) by Glc-6P isomerase. 
Alternatively, Glc-6P may be utilized by the pentose phosphate pathway 
(PPP). Glc-6P can also be diverted to glucosamine-6-phosphate by the 
rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase 
(GFAT) (c). The end product of this pathway, uridinediphosphoglucose-N-
acetylglucosamine (UDP-GlcNAc) (d) serves to build extracellular 

glycoconjugates (a), as well as, it is used for the biosynthesis of intracellular 
O-linked glycoproteins (b) by the enzyme O-GlcNAc transferase. 
Alternatively, UDP-GlcNAc can undergo epimerization to generate 
UDP-GalNAc (e) and CMP-Neu5Ac (f) which can be used for the 
extracellular biosynthesis of glycoproteins and glycolipids (a) UDP-GlcNAc 
and its derivatives are extremely responsive to variations in cell nutrients as 
its synthesis depends on products of the metabolism of glucose (green), 
amino acids (blue), fatty acids (red), and nucleotides (orange). Thus, 
glycosylation can serve as a reporter for the functional status of multiple 
pathways and considered a metabolic sensor.

metabolism. This metabolic shift was termed “Warburg effect” and 
is critical for supporting the malignant phenotype (6). The high 
rate of glycolytic flux is a central metabolic hallmark of tumors and 
cancer cells support this rate by increasing the expression of Glc 
transporters (Glut) (7). This phenomenon of elevated Glc uptake 
has been clinically exploited to detect tumor cells by positron 
emission tomography (PET) scan (8). In addition, a stable Glc 
analog 2-deoxi-D-glucose (2-DG) has been suggested as a tumor 
therapeutic drug (9, 10). Various small molecule inhibitors of the 
glycolytic pathway have been used effectively in the past to halt the 
progression of cancer (11–13). The 2DG is a well-known glycolytic 
inhibitor, which inhibits the key glycolytic enzyme hexokinase. 
Recently, Muley et al. (10) evaluated the additional cellular effects 
of 2DG, apart from inhibiting glycolysis. Their findings indicate 
that 2DG increases the expression of p21 and p53 in colorectal 
cancer cell lines leading to cell cycle arrest at the G0/G1 phase.
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Hexosamine Biosynthetic Pathway

Upon entering cells, Glc is rapidly converted to glucose-6-phos-
phate (Glc-6P) by hexokinase (Figure 1) and then to fructose-
6-phosphate (Fru-6P) by glucose-6-phosphate isomerase. Despite 
the majority of Fru-6P being metabolized by phosphofructokinase 
(PFK) entering in to glycolysis, approximately 2–5% of Glc influx is 
directed by the hexosamine biosynthetic pathway (HBP) (14). The 
first and rate limiting step of the HBP is catalyzed by glutamine, 
fructose-6-phosphate amidotransferase (GFAT), which converts 
Fru-6P to glucosamine-6-phosphate (GlcN-6P) using glutamine 
(Gln) as an amine donor (Figure 1c).

GlcN-6P is further metabolized to uridine-5'-diphosphate-
N-acetylglucosamine (UDP-GlcNAc) that serves as a major 
substrate for several kinds of glycosylation including O-linked 
N-acetylglucosamine (O-GlcNAc), O-glycans, N-glycans, gly-
cosaminoglycans, and glycolipids (Figure 1d). UDP-GlcNAc can 
be epimerized to uridine-5′-diphospho-N-acetylgalactosamine 
(UDP-GalNAc; Figure  1e) or further metabolized to gener-
ate cytidine-5´-monophosphate-5-N-acetylneuraminic acid 
(CMP-Neu5Ac; Figure 1f). UDP-GlcNAc and its derivatives are 
considered sensors of the metabolic status of the cell, as it requires 
components of all four major classes of macromolecules: Glc, Gln, 
acetyl-coenzyme-A, and the nucleotide UDP. Gln is a key nutri-
ent for tumor cells, being a major source of nitrogen and energy 
in rapidly dividing cells (15). Although the cause of increased 
flux through the HBP is not clear in tumor cells, it is likely to 
occur as a result of increased Glc and Gln uptake. To support this 
hypothesis, Itkonen et al. recently showed that several HBP genes 
were overexpressed in human prostate cancers (16). Thus, the link 
between altered metabolism and the up-regulation of glycosylation 
through the HBP provides a mechanism for cancer cells to sense 
and respond to a variety of environmental conditions.

How the HBP induces the malignancy process is not com-
pletely understood yet. One hypothesis is that the HBP exerts its 
effects by transforming growth factor-β (TGF-β) secretion. Many 
manuscripts have described that elevated Glc levels induce TGF-
β production by different cell lines (17, 18). TGF-β is a known 
potent inductor of epithelial mesenchymal transition (EMT). The 
EMT involves a striking decline in epithelial markers, such as 
E-cadherin, ocludins, claudins, cytokeratin, and consequently cell 
polarity, accompanied by enhanced expression of mesenchymal 
markers, such as N-cadherin, vimentin, and fibronectin (FN), 
culminating in cell morphology alteration and increased cell 
motility (19). Besides, recent studies bring to light the involvement 
of a key O-glycosylation in the IIICS, a variant splicing domain of 
human FN, forming the oncofetal fibronectin (onfFN) during the 
EMT process (20). The importance of glycosylation in this process 
was supported by data showing that ppGalNAc-T6 knockdown 
inhibits onfFN biosynthesis and EMT in human prostate epithelial 
cells (20). In addition, a recent manuscript indicated that high 
Glc or GFAT2 overexpression induces EMT, onfFN production 
and increased ppGalNAc-T6 mRNA levels in human alveolar epi-
thelial adenocarcinoma cells. Those factors imply that metabolite 
availability to the HBP exerts control over gene expression and 
modulates cell surface glycosylation, suggesting that changes in 
Glc uptake alters epithelial cell communication with neighboring 

cells and the ECM, which results in loss of tissue organization 
and contributes to tumor formation and progression (21). Thus, 
it is reasonable to think that glycan structures are changed by 
the metabolic status of the cells, and the aberrant glycosylation 
observed in tumors is a consequence of altered expression of glyco-
syltransferases combined with substrates availability. Therefore, the 
metabolic pathways, especially the HBP, can be directly implicated 
in alterations observed in O-GlcNAcylation (1), N-glycans (22), 
and O-glycans (21) in cancer cells.

O-Linked N-Acetylglucosamine

The O-GlcNAc PTM is characterized by the linkage of a β-N-
acetylglucosamine moiety to the hydroxyl group of threonine 
(Thr) or serine (Ser) residues found in nuclear, cytoplasmic, and 
mitochondrial proteins (1). The addition of O-GlcNAc to proteins 
is catalyzed by O-GlcNAc transferase (OGT), and its removal is 
catalyzed by O-GlcNAcase (OGA). Deletion of OGT is lethal in 
mice at embryonic and single-cell level, highlighting the impor-
tance of O-GlcNAcylation in regulating basic cellular events (23). 
Aberrant O-GlcNAcylation has been linked to major diseases, 
including cancer, diabetes, and Alzheimer’s disease (24, 25). This 
dynamic glycosylation is analogous to phosphorylation and more 
than 1000 proteins have been described to be O-GlcNAcylated 
to date (26). The relationship between phosphorylation and 
O-GlcNAcylation has proved more complex than initially 
thought, since their function is not limited to site occupancy 
alone, but both PTMs can modulate each other at the same site 
or adjacent sites (27). Our group has also shown that O-GlcNAc 
can modulate tyrosine (Tyr) phosphorylation, indicating that 
the interplay between these PTMs at the substrate level is not 
limited to Ser and Thr residues (28). Growing evidence suggests 
that O-GlcNAcylation and phosphorylation not only compete 
for substrates (at the same or proximal sites), but also that 
O-GlcNAcylation regulates kinases and/or phosphatases. In one 
example, we showed that O-GlcNAcylation directly regulates the 
kinase activity of calcium/calmodulin-dependent protein kinase 
type IV (CaMKIV) toward cAMP response element-binding 
protein (CREB) (29). In addition, we recently showed that 39% 
of the kinases of the functional protein array are O-GlcNAcylated 
in vitro by recombinant OGT. Interestingly, the majority of identi-
fied kinases play a role in cancer (30).

Like phosphorylation, O-GlcNAcylation can modulate protein 
function, turnover, interactions, subcellular localization, enzyme 
activity, DNA affinity, and transcription activity (27). Several tran-
scription factors involved in cancer biology, such as p53, c-Myc, 
NF-kB, and Sp1 are modified by O-GlcNAc (31). Over 60 papers 
were published in the past 3  years describing the relationship 
between O-GlcNAc and cancer, with a substantial portion of them 
related to the increase of O-GlcNAc and OGT in several types of 
tumors (32, 33). Increased protein O-GlcNAcylation and changes 
in OGT expression have been described in breast cancer, lung 
cancer, prostate cancer, pancreatic cancer, and colorectal cancer 
(16, 34–38). In addition, OGT silencing inhibits tumor growth 
in different models including breast cancer, prostate cancer, and 
pancreatic cancer (34, 37, 38), indicating that O-GlcNAcylation is 
important for tumorigenesis and suggesting that OGT represents a 
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novel therapeutic target for these types of cancers (39). Interestingly, 
a low expression of OGA is suggested as a prognostic marker for 
hepatocellular carcinoma tumor recurrence (40). Another study 
suggests that the urinary content of OGT and OGA may be useful 
for bladder cancer diagnostics (41).

Recently, Hsieh-Wilson’s group showed that PFK is 
O-GlcNAcylated at Ser529 during hypoxia (42). This glycosylation 
inhibited the PFK activity and redirected the Glc flux through the 
pentose phosphate pathway (PPP), increasing the reducing power 
of the cell by the production of nicotinamide adenine dinucleotide 
phosphate (NADPH) and glutathione (GSH). Such a shift in 
metabolic flux confers a selective growth advantage for cancer 
cells, since blocking the glycosylation of PFK at Ser529 reduced 
cancer cell proliferation in vitro and impaired tumor formation 
in vivo (42). Thus, blocking PFK1 glycosylation would provide a 
new strategy to combat cancer.

Despite evidence linking aberrant O-GlcNAcylation to cancer 
(1, 33, 43), only a few studies show how O-GlcNAc participates 
in the molecular mechanism involved in EMT. O-GlcNAcylation 
at serine 112 of Snail, the repressor of E-cadherin, blocks its 
phosphorylation by GSK3β and protects Snail from ubiqui-
tylation and degradation. Hyperglycemic condition enhances 
O-GlcNAc modification and initiates EMT by transcriptional 
suppression of E-cadherin through Snail (44). Moreover, treat-
ment of low metastatic human ovarian cancer cells (OVCAR-3) 
with the OGA inhibitors Thiamet-G and PUGNAc enhances their 
migration potential and decreases the expression of E-cadherin, 
consequently blocking the formation of the E-cadherin/catenin 
complex reducing intracellular adhesion. Whereas, when a 
high metastatic ovarian cancer cell lineage (HO-8910PM) are 
subjected to OGT silencing, the expression of E-cadherin is 
recovered and their potential migration ability is diminished 
(45). Taken together, the data demonstrate that O-GlcNAc plays 
an important role in EMT events, cell migration, and gain of 
malignancy and metastasis, which suggests it could be a potential 
target for cancer treatment.

Although OGT is a promising target against different types of 
tumors, OGT is an essential glycosyltransferase that targets specific 
sites on hundreds of protein substrates, making its inhibition a 
difficult task. Studies indicate that the specificity of OGT toward 
different substrates is modulated by transient associations with 
binding partners (46, 47). Recently, the structure of human OGT 
and the mechanism of action have been reported (48–50). Despite 
a series of new advances in structural and mechanistic features of 
OGT, the existing inhibitors for this enzyme are not as specific 
and efficient as the OGA inhibitors (51). In addition, whereas 
almost all OGT inhibitors target the UDP-GlcNAc binding site, 
they are not as potent as the reaction product UDP, which displays 
a Kd of 0.5 μM. Although studies have only been performed in 
cell culture, we highlight three OGT inhibitors: (i) ST045849  
(1; Scheme 1 in Supplementary Material) that has been used 
successfully in the inhibition of prostate cancer cell lines (16); 
(ii) ST060266 or BZX (2; Scheme 1), an irreversible inhibitor of 
OGT used in different cell types (49); and (iii) 4Ac-5S-GlcNAc, a 
cell-permeable compound that enters the HBP to be synthesized 
into UDP-5S-GlcNAc (3; Scheme 1), a potent OGT inhibitor (52). 
Interestingly, a recent OGT bisubstrate inhibitor, presenting an 

acceptor peptide linked to UDP has emerged as a new scaffold for 
the development of more specific inhibitors (53).

N-Linked Glycans

Many cell surface, lysosomal, and secreted proteins are post-
translationaly modified by the addition of a β-GlcNAc to the 
asparagine (Asn) residues (N-linked) of the evolutionary con-
served “sequon” Asn-X-Ser/Thr, where X is any amino acid except 
proline. N-linked glycans consist of a conserved pentasaccharide 
core Manα1-6(Manα1-3)Manβ1-4GlcNacβ1-4GlcNacβ1-Asn 
trimmed with different sugars, organized in up to five antennae 
branches. Such variable structures create an array of glycoforms 
with different physical and biochemical properties that confer 
functional diversity to the glycoprotein. N-glycosylation affects 
protein folding, playing a central role in protein quality control 
within the endoplasmic reticulum (ER), in metastatic potential 
and the spread of tumors (54).

Changes in the oligosaccharide structure of N-glycans have been 
described in breast, colon, prostate, lung, renal cell, hepatocellular 
carcinoma, pancreatic, and gastric cancer (55–67). Most growth 
factor receptors on the cell surface are N-glycosylated, including 
epithelial growth factor receptor (EGFR) (68), integrins (69), and 
TGF β receptor (TGFβR) (70). N-glycans are ligands for galectin 1 
and 3 (71) and siglecs (72) at the cell surface, forming lattices that 
enhance the residence time of receptors (73–75). Oncogenesis has 
been shown to upregulate the expression of N-glycans with higher 
affinity for galectins and to increase the residence time of the recep-
tors (76–79). These studies open the possibility to target surface 
distribution of growth factor receptors by modulating N-glycan 
branching. Such strategies might be useful in cancer therapy. 
Interestingly, inhibition of the N-glycan biosynthetic pathway is 
emerging as an exciting target to inhibit cancer progression.

The first steps of N-glycan biosynthesis are conserved among 
eukaryotic cells (80–82). The pathway begins at the cytoplasmic face 
of the ER membrane with the assembly of a 7-residue oligosaccha-
ride precursor linked to the lipid dolichol-phosphate. Two GlcNAc 
molecules from the highly energetic donor GlcNAc-PP-dolichol 
are the first residues incorporated into dolichol-pyrophosphate. 
The activated monosaccharide donor is synthesized by the GlcNAc 
phosphotransferase, which transfers the GlcNAc-1-phosphate 
from UDP-GlcNAc (83). The oligosaccharide is further assembled, 
step by step, by specific glycosyltransferases that add other five 
mannoses (Man) to the disaccharide. The dolichol oligosaccharide 
chain anchored to the cytosolic side is moved into the lumen of 
the ER. Within this organelle, four Man and three Glc residues 
are added to the growing glycolipid.

The mature lipid-linked precursor is further transferred as a 
single block from the dolichol to Asn residues of nascent peptide 
by the transmembrane oligosaccharyl transferase protein complex 
(82). In the next step, glucosidases trim two terminal Glc from the 
glycoprotein Asn-GlcNAc2Man9Glc3, a crucial process for proper 
protein folding. The final Glc undergoes several cycles of removal 
and reintroduction while the process of protein folding is assisted 
by two lectin chaperones, known as calnexin and calreticulin, which 
bind to terminal Glc. After correct folding, the Glc and Man unities 
are removed by α-glucosidases and α-mannosidases, respectively.
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Inhibition of protein folding in the lumen of the ER results in 
ER stress (84). ER stress activates various intracellular signaling 
pathways, known as the unfolded protein response (UPR), which 
is comprised by the inhibition of general protein translation, the 
induction of genes such as ER chaperones that increase the protein-
folding capacity of the ER, and upregulation of aberrant protein 
degradation. The severe stress induces apoptosis and elimination of 
the damaged cell. In recent years, many groups have been seeking 
to pharmacologically aggravate chronic ER stress in cancer cells in 
order to enhance apoptosis and achieve tumor cell death.

Inhibition of N-glycan biosynthesis can impact protein folding 
and is emerging as an interesting strategy to reduce receptor tyros-
ine kinase (EGFR, ERβB2, insulin-like growth factor-I receptor, and 
Met) maturation and its cell surface expression in multiple cancers, 
including squamous cell carcinomas, adenocarcinomas of the breast, 
prostate and pancreas, and malignant gliomas (85–87). Along this 
line, it has been reported that ER stress induced by tunicamycin  
(4; Scheme 1) influences chemosensitivity of tumor cells to antican-
cer drugs (88) and to radiotherapy (85, 86, 89, 90) and influences 

tumor induced angiogenesis (91). Tunicamycin is a mixture of 
homologous nucleoside antibiotics that competitively inhibits (Ki 
5 × 10–8 M) the enzyme GlcNAc phosphotransferase, which pre-
vents the formation of GlcNAc-PP-dolichol (83, 92). Tunicamycin 
inhibits cell invasion and tumorigenicity both in vitro and in vivo 
(93–99). Other antibiotics that inhibit the lipid-linked saccharide 
pathway are amphomycin (5; Scheme 1), tridecaptin (6; Scheme 1), 
flavomycin (7; Scheme 1), diumycin (8; Scheme 1), and tsushimycin 
(9; Scheme 1) (83, 100).

Inhibition of protein folding can also be achieved by inhibiting 
glycoprotein-processing enzymes ensuing anti-tumoral activity 
(101–104). Castanopermine (10; Scheme 1) inhibits glucosidase 
I and leads to altered glycoproteins with Glc3Man7GlcNAc2 
structures (105). The recent report of the first structural model 
of eukaryotic α-glucosidase (106) will improve the design and 
synthesis of novel enzyme inhibitors, which will hopefully be more 
effective against cancer.

The processed glycoprotein, therefore, moves to the Golgi where 
it is demannosylated by the Golgi α-mannosidase I forming the 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/


June 2015 | Volume 5 | Article 1386

Vasconcelos-dos-Santos et al. Targeting glycosylation against cancer

Frontiers in Oncology | www.frontiersin.org

Man5GlcNAc2 structure, which is a substrate for the acetylglucosa-
minyltrasferase-I (GnT-I), a key enzyme in the development of 
multicellular organisms (107, 108). The addition of the first GlcNAc 
residue by GnT-I generates the GlcNAcMan5GlcNAc2, substrate 
for GnT-III or α-mannosidase II (Figure 2). α-Mannosidase II 
trims two Man residues from the intermediate to form the core 
GlcNAcMan3GlcNAc2 precursor of complex N-glycans (109). 
Conversely, the action of GnT-III on the GnT-I product before 
α-mannosidase II directs the pathway to hybrid structures (110). 
Inhibition of α-mannosidase II by 1-deoxymannojirimycin  
(11; Scheme 1) generates “high mannose” type of N-glycans. 
As the pathway progresses through the Golgi, the core 
GlcNAcMan3GlcNAc2 can be further modified by a series of 
GnTs (GnT-II, IV, V, and VI) that substitute a distinct position 
of the trimannosyl core generating different branches of complex 
N-glycans (Figure 2) (109).

GnT-V expression is increased during oncogenic transformation 
(111–113), consequently, cancer cells commonly show increased 
β1-6G1cNAc-branching at the trimannosyl core of N-linked 
carbohydrates (55, 56, 58–61, 65–67, 114). GnT-III has been 
found to play an important role in the suppression of metastasis 
(115–121) as the introduction of bisecting GlcNAc suppresses β1-6 
GlcNAc branching formation catalyzed by GnT-V. In the same line, 
GnT-I knockdown suppresses N-glycan branching and the invasive 
phenotype in HeLa and PC-3-Yellow cells (122).

GnT-V expression correlates with increased cell migration (77, 
123, 124) and sensitivity to acute stimulation of growth factors 
(73). The latter effect is most probably due to the β1-6G1cNAc-
branching increasing galectin binding and retention of growth 
receptors on the cell surface (75, 124, 125). Furthermore, during 
the development of the malignant phenotype, E-cadherin expres-
sion is accompanied by an increase in its β1-6 branched N-glycan 
structures (116, 126). Pinho et al. (116) demonstrated the impor-
tance of the N-glycan structures of E-cadherin in the development 
of gastric tumors. The authors demonstrated that modifications 
in N-glycan chains of E-cadherin by GnT-III lends stability to 
the protein in the cell membrane, contributing to the formation 
of stable adherent junctions. On the other hand, modifications 
catalyzed by GnT-V promotes the destabilization of E-cadherin, 
formation of unstable adherent junctions and inhibition of cell–cell 
interactions, which promotes gastric tumor invasiveness (116).

Despite the key role GnT-V plays in cancer progression, no 
inhibitors have been described thus far. However, a very well-known 
inhibitor of the production of complex β1,6-branched N-linked 
glycans is the alkaloid swainsonine (12; Scheme 1), a transition-
state inhibitor of α-mannosidase II that removes α-1,3 and α-1,6 
Man residues from the GlcNAc-Man5GlcNAc2-peptide, causing 
the formation of hybrid structures (127). Inhibition of N-linked 
oligosaccharide processing by swainsonine in tumor cells has 
generated attention in its use as an anticancer agent, since reports 
indicate that this drug inhibits tumor growth and metastasis, aug-
ments natural killer and macrophage-mediated tumor cell killing, 
and stimulates bone marrow cell proliferation (93, 128–130). This 
drug effect was also associated with the enhanced expression of the 
metalloproteinases gene (131). Recently, it was demonstrated that 
swainsonine inhibited cancer cell growth through the activation 
of the mitochondria-mediated caspase-dependent pathway (132).

Elongation of hybrid and complex N-glycans occurs by the 
addition of a β-Gal to the β1-2 linked GlcNAc yielding the Galβ1-
4GlcNAc (LacNAc) moiety, which can be further elongated by 
the sequential addition of β1-3-linked GlcNAc and β1-4 linked 
Gal resulting in a poly-LacNAc extention. In addition, Gal can 
be substituted by a GalNAc forming the GalNAcβ1-4GlcNAc 
(LacdiNAc) sequence.

N-Glycans can be further decorated by the action of a number of 
transferases that add Gal, Fuc, sialic acid, and sulfate to the anten-
nae (see below) resulting in the mature structure on the nascent 
protein (82). Those enzymes involved in N-glycans elongation and 
decoration steps act on O-glycans and glycolipids as well, so they 
are described below in the text.

The GlcNAc adjacent to Asn in the core can be modified by 
the action of α1-6-fucosyltransferase (FucT-VIII) (133). The 
FucT-VIII is overexpressed in several types of tumors as colo-
rectal, hepatoma, ovarian, lung, and thyroid (134–137) cancer. 
Muinelo-Romay et al. showed higher activity and increase of 
FucT-VIII expression in human colorectal tissues correlat-
ing with the degree of infiltration through the intestinal and 
malignant transformation (134). FucT-VIII is also upregulated 
in non-small cell lung, correlating with tumor metastasis, 
disease recurrence, and poor survival of patients (137). 
These correlations have prompted many groups to pursue 
inhibitors of FucT-VIII as potential antitumorals. Inhibitors 
of a recombinant α1-6FucT from Rhizobium sp. have been 
described. Several racemic polyhydroxylated indolizidines 
have been tested as potential inhibitors of this enzyme. One of 
the castanopermine stereoisomers was the best inhibitor with 
an IC50 of 0.045 mM. Interestingly, this compound turned out 
to be the best mimic for the structural features of the fucose 
moiety in the presumed transition state (138, 139).

O-Glycosylation in Cancer

O-Glycosylation is a common type of PTM that consists of the attach-
ment of a αGalNAc on Thr or Ser residues from specific sequences of 
target proteins. The newborn O-GalNAc glycan can be further modi-
fied by several glycosyltransferases acting in a sequential manner in 
order to extend the glycan chain either branched or linearly according 
to substrate specificity. O-Glycans are abundantly found attached 
on the cell surface and on the ECM proteins, especially in the form 
of mucins, heavily O-glycosylated proteins in which carbohydrate 
amount can account for 50% of the molecule by weight (140). The 
biological function of mucins and mucin-like glycoproteins is deeply 
dependent on its carbohydrate chains (141). Since the synthesis of 
O-glycans is controlled by the availability of substrates and enzymes 
in subcellular compartments, without any correcting mechanisms, 
such as N-glycosylation and protein folding, it is easy to understand 
why aberrant O-glycans are usually observed in tumorigenesis and 
metastasis. Altered O-glycosylation is a universal feature of cancer 
cells, but only specific glycan changes are frequently associated with 
tumors. The specific O-glycan changes commonly found in cancer 
cells, as well as its biosynthesis and potential as a drug target are 
depicted in the following items.

In cancer, truncated glycan mucin related tumor-associated car-
bohydrate antigens (TACA), are abnormally expressed in several 
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epithelial cancers (i.e., gastric, pancreatic, colorectal, ovarian, and 
breast cancers) (142–144). In many types of cancers, enzymes 
from poly-peptidyl-αGalNAc transferase (ppGalNAcT) family 
are reported to be located throughout the Golgi, instead of being 
restricted to cis-Golgi as in normal conditions. The ppGalNAcT 
catalyzes the transfer of a α-GalNAc from UDP-GalNAc to a Ser 
or Thr residue of a glycoprotein, producing the Tn antigen. When 
the Tn antigen is generated, it can have three different fates: (i) it 
can be sialylated on C6 by a ST6GalNAcT; (ii) it can be substituted 
on C3 or C6 by a β-GlcNAc which gives rise to core 3 or core 6, 
respectively; or (iii) it can be galactosylated on C3 by the C1GalT1 
in order to form core 1, also known as Thomsen-Friedenreich (TF) 
or T antigen. The emergence of Tn antigen can be a consequence 
of some abnormality with ppGalNAc-T, C1GalT1 (also known as 
T-synthase), or with a chaperone responsible for its proper folding 
or an imbalance in the ratio of the competing downstream core 1 
processing enzymes (Figure 3) (145, 146).

Several enzymes from the T-synthase family are reported to be 
involved in many cancers in both positive and negative fashion. 
For example, ppGalNAc-T2 is overexpressed in gastric cancer and 
glioma cells, which is reported to decrease invasion and metastasis 
(147, 148), while ppGalNAc-T12 is considered to be a negative 
marker for gastric and colorectal cancer metastasis (149). On the 
other hand, other ppGalNAc-Ts are shown to be bad prognosis for 
tumor progression. Bladder cancer tissues contain high levels of 
ppGalNAc-T1 mRNA and silencing this gene significantly inhibits 
tumor growth in vivo (150). High expression of ppGalNAc-T3 is 
found in high grade tumors and correlates to poor prognosis in 
renal carcinomas, gastric carcinomas (151, 152) and in pancreas 
adenocarcinoma (153). The ppGalNAc-T6 is upregulated in the 
vast majority of breast cancers and it is suggested to disrupt mam-
malian cell carcinogenesis (154, 155). The ppGalNAc-T7 has been 
shown to play important roles in cervical cancer pathogenesis 
(156) and enhances metastatic process of melanoma cells (157). 
The ppGalNAc-T13 gene was upregulated in highly metastatic lung 
cancers (158). The ppGalNAc-T14 has been reported to contribute 
to ovarian cancer carcinogenesis through aberrant glycosylation of 
MUC13 (159) and may be a potential biomarker for breast cancer 
(160). Therefore, the ppGalNAcTs have been proposed as tumor 
diagnosis and prognosis markers, as well as foranti-cancer immu-
notherapy. In particular, ppGalNAc-T3 was shown to be recognized 
as an antigen by cytotoxic T lymphocytes from patients with brain 
tumor (161), while ppGalNAc-T6 is a marker for the prognosis of 
pancreatic cancer (162) and breast cancer metastasis (163). Besides 
the use of ppGalNAcTs as tools for diagnosis and prognosis, this 
class of enzymes is a potential target for anti-cancer chemotherapy.

Primary attempts to perform kinetic analysis of ppGalNAcT 
yielded a peptide inhibitor. The EPO-G (13; Scheme 1) consists 
of a 12-residue peptide, which differs from EPO-T, a commercial 
peptide usually utilized as an acceptor substrate of the enzyme 
by a single residue. Although EPO-G was observed to inhibit 
ppGalNAc and helped to define its mechanism of enzyme action, 
it presented an inexpressive Ki of 0.77 mM (164).

Another strategy to inhibit ppGalNAc, and consequently whole 
O-glycosylation, is to use derivatives from UDP-GalNAc. Hatanaka 
and coworkers had proposed UDP-GalNAc-based inhibitors using 
the model of tunicamycin, a well-known inhibitor of N-glycosylation. 

The authors had synthesized compounds substituting UMP with 
different length fatty acid chains (14; Scheme 1), which resulted 
in the 16 carbons-substituted UMP derivatives having a slight 
inhibition (IC50 of 0.63), of ppGalNAcT (165). Aryl-glycosides of 
GalNAc (166) were found to competitively inhibit the elongation of 
O-GalNAc chains and have been extensively used for investigating 
the role of mucin chemical composition on its biological func-
tions and its biosynthesis (167). The derivative benzyl-αGalNAc 
(15; Scheme 1) was shown to decrease the level of sialylation and 
sulfation of mucins secreted by the human colon carcinoma cell line 
HT-29 MTX (168), and also decreased the binding of treated HM7 
colon cancer cells to E-selectin [ELAM-1, recognizes sialyl Lea and 
sialyl Lex (169)], which would be a desirable effect in modifying 
the immunological and biological properties of colon cancer cells. 
However, the use of benzyl-αGalNAc as a drug is unlikely, because 
the desired effect is only reached in cell culture with a millimolar 
range. Such a compound also behaves as a competitive inhibitor 
of C1GalT1 (166), causing treated cells to express mucins with a 
high level of the cancer-associated Tn (168, 169).

Synthesis of C-glycosidic UDP-GalNAc mimics (16; Scheme 1) 
were reported, but to our knowledge, their biological activity were 
not tested (170). In vitro evaluation of the 3-, 4-, and 6-methylated 
UDP-GalNAc compounds (17; Scheme 1) effect had shown an 
inhibition pattern similar to UDP-GlcNAc (171).

Promising compounds targeted to ppGalNAcTs came from the 
work of Hang and coworkers (172), by screening an uridine-based 
library designed to target enzymes that utilize UDP-sugar substrates 
(173). Through this approach, compound 18 (Scheme 1) inhibited 
a series of ppGalNAcTs (ppGalNAcT-1 to T5, T7, T10, and T11) 
in micromolar range, suggesting selectivity against this enzyme 
family, since inverting and retaining GalTs or other UDP-sugar 
utilizing enzymes were not significantly inhibited. In addition, these 
compounds inhibited O-glycosylation but not N-glycosylation and 
induced apoptosis in two different cell types (Jurkat, a lymphoma 
cell line; and HEK293T). Therefore, compound 18 (Scheme 1) is a 
promising scaffold for O-glycan inhibition in cancer cells.

Recently, Pouilly and coworkers have employed metabolic 
engineering in order to label highly active metabolic cancer cells 
with UDP-αGalNAc analogs (19; Scheme 1). They observed that 
all compounds could be recognized by ppGalNAcT1, and that 
peracetylated GalNAc analogs with hydrophilic substitutions on 
the N-acetyl group, such as azidoacetyl and glycolyl, could be 
incorporated into cell surface glycoproteins at only slightly lower 
levels compared to the natural GalNAc. In addition, when mice 
were immunized with glycopeptides carrying the GalNAc analogs 
linked to Ser or Thr, some of them had produced an antiserum, 
which was specifically directed against GalNAzaSer/Thr, without 
cross-reactivity toward GalNAcSer/Thr. Such a result brings to 
light that this approach could be used in O-glycan biosynthesis 
research and also for passive immunotherapy of cancer directed 
at cell surface tumor-associated O-glycans (174).

The epitope O-GalNAc can be further sialylated on C6 by a 
ST6GalNAcT (175–178). The disaccharide STn is overexpressed 
in pancreas, gastric, bladder, breast, and ovarian cancer (142, 
179–182). The appearance of STn is explained by the abnormal 
expression of ST6GalNAc together with its aberrant localization 
throughout the Golgi apparatus, contributing to the overpass of 
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complex O-glycan processing enzymes resulting with expression 
of short STn-modified O-glycans (176). Overexpression of this 
sialylated antigen reduces cell–cell interactions and increases cell 
migration (183) most likely by altering cell adhesion to ECM (180, 
184). Positive correlations of STn antigen expression with cancer 
aggressiveness and poor prognosis of the patients has provoked 
great interest in the functional analyses of STn. In this respect, 
Ozaki et al. (185) demonstrated that MUC1 carries a large propor-
tion of STn in human advanced gastric cancer tissues.

ST6GalNAcT can also modify core 1 structures and its sialylated 
derivative comprises the sialyl T (ST) antigen (see below). Such a 
feature is found in breast cancer due to the increased expression 
of ST3GalT-1 combined with the low expression or absence of 
C2GnT-1 (186).

Core 1, T-Synthase, and Comsc
The peptide carrying O-linked αGalNAc can be converted to 
core 1 (Galβ1-3GalNAcα-S/T) structure by core 1 β1-3 galacto-
syltransferase, termed T-synthase or C1GalT. Cancer cells exhibit 
a high level of mucins with T and ST antigen (187). T disaccharide 
represents a cancer-associated antigen in colorectal carcinoma and 
it is suggested to act as a prognostic marker (188). T antigen is asso-
ciated with adhesion and metastasis of human breast cancer cells 
through the binding to galectin-3 (189). Moreover, the overexpres-
sion of MUC1 gene in human and murine mammary carcinoma 
cells correlates with the increase of T antigen assumedly by the 
concomitant down regulation of both C2GnT1 and ST3Gal (190), 
which also causes the loss of adhesive properties to E-selectin of 
the cells studied, but favors the binding of MUC1-overexpressing 
cells to galectin-3.

The use of T antigen as a target for anti-cancer immunotherapy 
is in progress. The T antigen or its difluoro analog were coupled to 
a glycosynthetic peptide and to a tetanus toxoid (20; Scheme 1), 
affording synthetic vaccines, which induced very strong immune 
responses in mice overriding the natural tolerance of the immune 
system. The induced antibodies were selectively directed against 
the tumor-associated MUC1 structures and strongly bind to breast 
cancer cells of the MCF-7 cell line (191). This approach can be used 
for anti-cancer immunotherapy and the difluoro analog of T antigen 
may serve as an inhibitor for O-glycan synthesis. Recently, Sclerotium 
rolfsii lectin was shown to bind to T antigen and inhibit growth of 
human colon cancer HT29 and DLD-1 cells by binding to cell surface 
glycans and inducting apoptosis through both the caspase-8 and -9 
mediated signaling (192), being an interesting possibility for therapy.

High levels of T antigen have been commonly associated with 
overexpression of T-synthase (146), or imbalance in the ratio of 
the competing downstream core 1 processing enzymes, C2GnT 
and ST6GalNAc-II (145). Remarkably, there is only a single gene 
encoding T-synthase in humans and other mammals (146), and 
enzymatic activity of this protein is dependent on its correct folding 
promoted by a unique chaperone. Cosmc is a molecular chaperone 
located in ER that promotes correct T-synthase folding and guid-
ing to Golgi (193, 194). Somatic loss-of-function mutations of 
the chaperone gene Cosmc was shown to abolish the T-synthase 
activity, leading to the appearance of Tn antigen on the surface of 
many types of tumor cells, like the highly aggressive fibrosarcoma 
cell line (195), colon cancer cell line and melanoma-derived 

FiGURe 3 | Schematic representation of biosynthesis and processing of O-linked oligosaccharides showing known inhibitors and key targets for 
inhibition.
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complex O-glycan processing enzymes resulting with expression 
of short STn-modified O-glycans (176). Overexpression of this 
sialylated antigen reduces cell–cell interactions and increases cell 
migration (183) most likely by altering cell adhesion to ECM (180, 
184). Positive correlations of STn antigen expression with cancer 
aggressiveness and poor prognosis of the patients has provoked 
great interest in the functional analyses of STn. In this respect, 
Ozaki et al. (185) demonstrated that MUC1 carries a large propor-
tion of STn in human advanced gastric cancer tissues.

ST6GalNAcT can also modify core 1 structures and its sialylated 
derivative comprises the sialyl T (ST) antigen (see below). Such a 
feature is found in breast cancer due to the increased expression 
of ST3GalT-1 combined with the low expression or absence of 
C2GnT-1 (186).

Core 1, T-Synthase, and Comsc
The peptide carrying O-linked αGalNAc can be converted to 
core 1 (Galβ1-3GalNAcα-S/T) structure by core 1 β1-3 galacto-
syltransferase, termed T-synthase or C1GalT. Cancer cells exhibit 
a high level of mucins with T and ST antigen (187). T disaccharide 
represents a cancer-associated antigen in colorectal carcinoma and 
it is suggested to act as a prognostic marker (188). T antigen is asso-
ciated with adhesion and metastasis of human breast cancer cells 
through the binding to galectin-3 (189). Moreover, the overexpres-
sion of MUC1 gene in human and murine mammary carcinoma 
cells correlates with the increase of T antigen assumedly by the 
concomitant down regulation of both C2GnT1 and ST3Gal (190), 
which also causes the loss of adhesive properties to E-selectin of 
the cells studied, but favors the binding of MUC1-overexpressing 
cells to galectin-3.

The use of T antigen as a target for anti-cancer immunotherapy 
is in progress. The T antigen or its difluoro analog were coupled to 
a glycosynthetic peptide and to a tetanus toxoid (20; Scheme 1), 
affording synthetic vaccines, which induced very strong immune 
responses in mice overriding the natural tolerance of the immune 
system. The induced antibodies were selectively directed against 
the tumor-associated MUC1 structures and strongly bind to breast 
cancer cells of the MCF-7 cell line (191). This approach can be used 
for anti-cancer immunotherapy and the difluoro analog of T antigen 
may serve as an inhibitor for O-glycan synthesis. Recently, Sclerotium 
rolfsii lectin was shown to bind to T antigen and inhibit growth of 
human colon cancer HT29 and DLD-1 cells by binding to cell surface 
glycans and inducting apoptosis through both the caspase-8 and -9 
mediated signaling (192), being an interesting possibility for therapy.

High levels of T antigen have been commonly associated with 
overexpression of T-synthase (146), or imbalance in the ratio of 
the competing downstream core 1 processing enzymes, C2GnT 
and ST6GalNAc-II (145). Remarkably, there is only a single gene 
encoding T-synthase in humans and other mammals (146), and 
enzymatic activity of this protein is dependent on its correct folding 
promoted by a unique chaperone. Cosmc is a molecular chaperone 
located in ER that promotes correct T-synthase folding and guid-
ing to Golgi (193, 194). Somatic loss-of-function mutations of 
the chaperone gene Cosmc was shown to abolish the T-synthase 
activity, leading to the appearance of Tn antigen on the surface of 
many types of tumor cells, like the highly aggressive fibrosarcoma 
cell line (195), colon cancer cell line and melanoma-derived 

FiGURe 3 | Schematic representation of biosynthesis and processing of O-linked oligosaccharides showing known inhibitors and key targets for 
inhibition.

cell lines (196). Since Cosmc is encoded by a single gene in the  
X chromosome, its susceptibility to epigenetic silencing through 
hypermethylation of its promoter (197) also leads to Tn antigen 
increase in mucins.

The role of T-synthase in tumors varies according to the type of 
cancer tissue. Whereas in breast cancer there are multiple reports 
indicating that T-synthase does not have its expression or activity 
altered, there are O-glycan modifications other than T antigen 
present, and hepatocellular carcinomas show an overexpression of 
this enzyme which is associated with poor survival of the affected 
patients. In addition, the T-synthase plays a role on HGF/MET 
signaling pathway in hepatocarcinoma cells, leading to a prolifera-
tion pattern in this cell type (198). In human colon cancer cells, 
the suppression of T-synthase by iRNA was shown to be associated 
with an increased presence of Tn, STn and core 3 glycans in this 
cells surface, since T-synthase competes with ST6Gal and C3GnT 
for substrate (199). Based on all the evidence, it would be ideal to 
either completely or partially inhibit O-glycan biosynthesis without 
altering the core 1 formation.

Core 2 and C2GnT
Core 2 β1-6 N-acetylglucosaminyltransferase (C2GnT) competes 
with ST3GalNAc for the common core 1 substrate, and the control 
of mucins decoration with whether ST or core 2-derivated antigens 
depends on the relative expression of both glycosyltransferases and 
their subcellular localization. The classification of human C2GnTs 
were primarily based on the differential enzyme activities observed 
for C2GnT extracted from leukocytes and mucin-producing cells, 
known as C2GnT-L and C2GnT-M, respectively. Lately, the human 
C2GnT variants were classified as -1, -2, and -3, of which C2GnT-1 
corresponds to L and C2GnT-2 to M.

Increased levels of C2GnT determine the increased branching 
of O-glycans and it is associated with the acquisition of invasive 
and metastatic potential rather than simply transformation of 
cancer cells (200). The expression of C2GnT-1 positively cor-
relates with the progression of prostate cancer in human patients 
(201), testicular germ cell tumor (202), endometrial carcinoma 
(203) and with bladder tumor progression (204). In addition, 
high levels of C2GnT does not necessarily indicate that O-glycan 
chains of mucins will be terminated on core 2, but that there 
is an increase in the combination of possible glyco-structures, 
since core 2 is a substrate to further modifications, such as poly-
LacNAc, sialic acid, fucose, and sulfate unities, increasing the 
variety of O-glycan chains on the cell surface and expanding 
the roles for these different glycans. Thus, high levels of C2GnT 
contributes to increases in core 2 O-glycan structures that also 
serve as substrates to ST3Gal, corroborated by the hypersialyla-
tion observed in leukemic leukocytes from chronic myelogenous 
leukemia and acute myeloblastic leukemia (205). Likewise, core 2 
O-glycans of MUC1 from bladder tumors are modified with poly-
LacNAc, which allows them to bind to galectin-3 and hamper 
the access of NK cells to the TNF-related apoptosis-inducing 
ligand present in the tumor cells surface (204). Therefore, core 2 
O-glycans modified with poly-LacNAc can protect bladder tumor 
cells from NK cell mediated death, which highly favors metastasis.

On the other hand, C2GnT expression and surface decoration 
of T cells with O-glycans rich in core 2 structures renders them 
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susceptible to galectin-1-induced cell death. It is suggested that 
this fact may be due to oligosaccharide-mediated clustering of 
CD45 molecules on the cell membrane, facilitating their bind-
ing to galectin-1 (206). Therefore, unlike in other cancer cells 
aforementioned, C2GnT expression favors T-lymphoma cell 
death by a particular mechanism and the haploinsufficiency of 
this enzyme is sufficient for loss of core 2 O-glycan expression 
and galectin-1-induced cell death resistance (207). Likewise, the 
downregulation of C2GnT-2 was observed in primary tumors 
from colorectal cancer patients as well as in colon cancer cell 
lines contrasting with normal colon tissues. The protective role of 
C2GnT-2 was demonstrated by the suppression of cell invasive-
ness and tumor growth of C2GnT-2-transfected colon cancer cells 
in vitro and in vivo (208).

Inhibiting C2GnT activity is desirable in cancer types in which 
core 2 is highly expressed and affecting in cancer progression, as well 
as in tumor cells containing the poly-LacNAc or hypersialylation 
phenotype, since C2GnT has been shown to act as a key regulator 
for such modifications (209, 210). However, a C2GnT inhibi-
tor must be carefully designed, because such an enzyme shares 
homology with many other UDP-GlcNAc:N-acetyl-glutaminyl 
transferases. In addition, the use of UDP-GlcNAc analogs could 
potentially interfere with biosynthetic pathways involved in the 
interconversion, metabolism, and transport of these sugar nucleo-
tides (211). For this reason, the first attempt to inhibit C2GnT 
was made by targeting its acceptor substrate with deoxy analogs  
(21; Scheme 1). However, they displayed a poor inhibitory effect, 
with a Ki of 0.56 mM, much higher than the enzyme Km (211). 
Kuhns and coworkers had also used several deoxy-analogs of core 1 
to inhibit C2GnTs extracted from a series of tissues. Although they 
also obtained disappointing results, they at least observed differen-
tial binding requirements for the hydroxyl groups in the substrate 
from the enzymes explored (212). All types of C2GnT seem to have 
an absolute requirement for the 4- and 6-hydroxyls of GalNAc, 
and the 6-hydroxyl of Gal in the substrate, but the recognition of 
the 3- and 4-hydroxyls of galactose and the acetamido group of 
GalNAc is variable between C2GnT-1 and C2GnT-2. Molecules 
coupled to the chemically inert, but UV-detectable p-nitrophenol 
(pNP) group would serve as photoaffinity labeling reagents. Thus, a 
PnP substituted core 1, Galβ1-3GalNAcα-pNP (22; Scheme 1), an 
acceptor substrate analog, became a potent inhibitor upon 350 nm 
irradiation (213) with little inhibition of other O-glycan processing 
enzymes, even in higher doses.

Despite its potential application in research and clinical practice, 
there is no recent progress in the design of C2GnT inhibitors, but 
interesting scaffolds may arise from the studies of UDP-GlcNAc 
epimerase inhibitors and other UDP-GlcNAc transferases. 
Meanwhile, inhibitors of core 2 or poly-LacNAc-modified core 2 
interactions with galectins are under review and may be another 
avenue to combat tumor progression promoted by these O-glycans.

Poly-N-acetyllactosamines

N-Glycans, core 1, and core 2 O-glycans can also be extended 
by N-acetylglucosaminyltransferases and galactosyltransferases 
to form sequences that represent the little i antigen. Linear poly-
LacNAc units can be branched by members of the I-branching 

β-1,6-N-acetylglucosaminyl transferase (IGnT), resulting in the 
large I antigen. Moreover, poly-LacNAc chains can be synthesized 
from core 4, which arises from the addition of a β1-6GlcNAc on 
O-GalNAc from core 3 (Figure 3).

The control of chain length depends primarily on 
β4galactosyltransferase (β4GalT). There are seven β4GalTs 
characterized to date (214–219), among which β4GalT-I and 
β4GalT-III variants are the most widely expressed (217). The 
others are expressed tissue-specifically to a minor extent (217). 
β4GalT-I was the first isolated galactosyltransferase and it is 
known to act over a variety of substrates, being responsible for 
poly-LacNAc synthesis in N- and O-glycans, Lewis structures 
and core 4 O-linked carbohydrates. β4GalT-II, -III, and -V can 
also use these types of substrates but to a lower extent. In turn, 
β4GalT-IV is the one responsible for galactosylation of core 2 
terminus from O-glycans (220). Furthermore, β4GalT-IV, but not 
β4GalT-I, drastically reduces its efficiency as the acceptors become 
longer (220), consistent with the fact that poly-LacNAcs on core 2 
branched oligosaccharides are shorter (only two LacNAc repeats) 
than those in N-glycans (220). β4GalT-VI and β4GalT-VII do not 
act on N- or O-glycans, but were shown to synthesize Galβ(1-4)
Glcβ-ceramide from Glcβ-ceramide (219) and to participate on 
proteoglycan biosynthesis (221), respectively.

The β3-N-acetylglucosaminyltransferase, which acts over 
β4Gal, was first characterized and called extension IGnT because 
it creates a new terminus for β4GalT to act upon (222). Besides 
IGnT, other β3GnTs were shown to be capable of both initiating and 
elongating poly-LacNAc chains. β3GnT-1, -2, -3, and -4 enzymes 
were found to act the same as IGnT, even though they do not share 
structural similarity with IGnT, but they do share conserved motifs 
with the β3GalT family (223, 224). These β3GnT enzymes were 
shown to act preferentially over poly-LacNAc and are suggested 
to be involved in the biosynthesis of poly-LacNAc sugar chains 
(224). In addition, their expression profiles were different among 
human tissues (223, 224).

The IGnT, creates multiple branches on the poly-LacNAc chain, 
which may serve as a mechanism for amplifying the functional 
potency of cell surface glycoproteins (225). There are three human 
isoforms of IGnT characterized thus far (226, 227), from which 
IGnT-1 and IGnT-2 showed similar tissue expression profiles, with 
the transcript expression of IGnT2 greater than that of IGnT1 and 
IGnT-3 (227). It is noteworthy that C2GnT-2 is also considered as 
an I-branching enzyme, although it exhibits only weak peridistal 
I-branching activity (228).

Increasing evidence demonstrates the association of poly-
LacNAc chains found both in O- and N-glycans with cancer. 
Thyroid papillary carcinomas were observed to present high 
heterogeneity in their poly-LacNAc chain length and branching 
status, different from those produced in other thyroid neoplasms 
(229). Poly-LacNAc substituted oligosaccharides were shown to be 
expressed in a metastasis-dependent manner on melanoma cells 
(230) and also to be important for the interaction of carcinoma 
cells with hepatic cells in the process of liver metastasis (231). In 
addition, poly-LacNAc substitutions on O-glycans render prostate 
cancer cells resistant to NK cell toxicity, cooperating for prostate 
cancer cells to survive longer in host blood circulation and favoring 
the metastasis process (232).
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Most of the associations between increased expression of 
poly-LacNAc and cancer occur through the binding of these 
oligosaccharides to galectins. Such interactions have been shown 
to mediate lung metastasis of melanoma cells through the adhesion 
of poly-LacNAc from N-glycans on galectin-3 (233) and to be 
important for tumor immune evasion, as demonstrated by the 
increase in tumor lymphocytic infiltration and tumor-specific 
cytotoxic T cells and decrease on melanoma growth in vivo after the 
treatment with a metabolic inhibitor of LacNAc biosynthesis (234).

Given the role of poly-LacNAc in cancer, it would be interesting 
to inhibit its binding to galectins, which can be achieved in two 
different manners: by inhibiting the binding itself, through block-
ing galectins, or by inhibiting enzymes involved in the LacNAc 
biosynthesis. In fact, poly-LacNAc processing enzymes have been 
shown to have a direct correlation with cancer.

For example, the overexpression of β4GalT-I, -II, and -V 
was suggested to cause the increase of galactosylation in human 
astrocytomas, which is associated with its malignancy (235). 
Particularly, β4GalT-IV was shown to behave as a strong predictor 
for tumor metastasis and is associated with poor overall survival of 
colorectal cancer patients (236). The upregulation of the expression 
of β4GalT-III in neuroblastoma (NB), correlates with advanced 
stage, unfavorable histology, and predicts a poor prognosis in 
NB patients. In addition, β4GalT-III expression increased cell 
migration, invasion, and tumor growth of NB cells possibly due to 
modified glycosylation of β1-integrin through increasing terminal 
Gal (237). Interestingly, there are an increasing number of reports 
showing that metastatic cells contain elevated levels of β4GalT-I on 
the cell surface, where it serves as an adhesion molecule (238, 239), 
whereas the Golgi levels of that protein remains the same between 
non-metastatic and metastatic cells. Elevated expression of surface 
β4GalT-I, characteristic of highly metastatic murine melanoma 
cells, contributes to their invasive phenotype in vitro and to their 
metastatic phenotype in vivo (240). The expression of β4GalT-I on 
the cell surface plays a crucial role in the proliferation of MCF-7 
cells through its activity as a membrane receptor (241). In addition, 
cell surface β4GalT-I is suggested to induce multidrug resistance 
through the hedgehog pathway in the human leukemic cell line 
(242). These results reinforce the β4GalT-I as an unexpected target 
for inhibition due to its role in the carcinogenic process at intra 
and extracellular levels.

The design of the first β4GalT-I activity inhibitors were guided 
by the substrate specificity and mutagenesis studies of commercially 
available bovine β4GalT-I. Phosphonate donor substrate analogs 
were proposed to be interesting scaffolds since the  phosphonic 
group would mimic the biphosphate of UDP and complex with 
the Mn+2 divalent ion present in the binding pocket of the enzyme. 
Nevertheless, of the synthesized adenosine 5´- phosphoric α-D-
glucopyranosylphosphonic anhydride, guanosine 5´-phosphoric 
α-D-mannopyranosylphosphonic anhydride, and uridine-5´-
phosphoric-α-galactopyranosylphosphonic anhydride (23; 
Scheme 1), only the last one inhibited β4GalT-I, with an apparent 
Ki of 165 μM. The compounds carrying hexose isomers other than 
Gal bound to purines did not display β4GalT-I inhibitory activity 
but showed slight cytotoxicity against B- and T-lymphoblastic 
leukemia cells (243), probably by a mechanism independent of 

β4GalT. The substitution of the diphosphate anhydride group by 
a hydroxylphosphinylmethylphosphate (24; Scheme 1) lowered 
the Ki value from 165 to 97 μM, but still did not show any in vitro 
antitumor activity (244). In addition, other molecular groups were 
substituted to mimic the interaction between the pyrophosphate 
of UDP and the metal ion of β4GalT active site. The substitution 
of pyrophosphate by a malonyl group yielded a compound (25; 
Scheme 1) with poor inhibitory activity, whereas the replacement 
by a Glc was more effective, resulting in a compound (26; Scheme 
1) with satisfactory inhibitory activity (Ki = 119.6 μM) (245).

A novel compound was designed based on the model of an 
SN2-like transition state of two substrates for β4GalT activity. This 
model has two strategic characteristics: the use of a natural UDP 
as the leaving group instead of phosphonate and the linking of 
the acceptor (GlcNAcβ-OMe) and the donor (Gal moiety) via a 
methylene ether. The resulting tricomponent bisubstrate analog 27 
(Scheme 1) showed a remarkably potent inhibitory activity toward 
bovine β4GalT-I, displaying Ki values of 1.35 μM for acceptor and 
3.3 μM for donor substrate (246).

In an effort to avoid nonspecific binding of UDP-Gal-based 
inhibitors to other galactosyltransferases, Chung and coworkers 
developed selective β4GalT inhibitors based on the acceptor 
substrate. Such compounds had GlcNAc attached to aromatic 
aglycone moieties (28; Scheme 1) and exhibited Ki of 3.5–9.5 μM. 
The replacement of the aromatic group to other aglycones resulted 
in poor inhibition, suggesting that the aromatic ring is responsible 
for the drastic increase in the binding affinity of inhibitors (247).

Takayama and coworkers have used rapid electrospray mass 
spectrometry to identify selective inhibitors from a library based 
on the donor-sugar nucleotide UDP-Gal. From the iminocyclitols 
and phosphonates screened the compounds (29; Scheme 1) and 
UDP-2-fluoro-Gal (UDP-2-F-Gal, 30; Scheme 1) were the most 
effective, displaying 95% and 90% of enzyme inhibition at 1 mM. 
The UDP-2-fluoro-Gal also exhibits an IC50 of 202 μM (248).

The publication of bovine β4GalT-I crystal structures present-
ing the unbound (249) and the UDP-Gal bound forms (250) was of 
outstanding importance in demonstrating that a loop containing 
the Trp314 (equivalent to Trp310 in human β4GalT-I) moves 
toward the active site upon donor substrate binding. Based on 
this information, Takaya and coworkers have substituted C2 or C6 
of Gal from UDP-Gal with a flexible trioxadecanyl group linked 
to a terminal naphthyl group in order to enhance the stacking 
interaction with Trp314 and to block the acceptor substrate 
entrance. Indeed, modification at the C6 position (31; Scheme 
1) was more effective than the C2 position (32; Scheme 1) of 
Gal residue, yielding the strongest competitive inhibitor (Ki of 
1.86 μM) against UDP-Gal (Km of 4.91 μM) thus far known (251).

Aiming to improve the design of biologically applicable inhibi-
tors of galactosylation, a large series of modifications was made 
on GlcNAc to optimize the acceptor inhibitor geometry (252). 
From these studies, Brockhausen and coworkers made several 
observations that must be taken into account on the design of 
β4GalT targeted inhibitors. However, the best Ki values obtained, 
0.06 mM for 1-thioGlcNAcβ-(2-naphthyl) (33; Scheme 1) and 
0.01  mM for 1-thio-N-butyrylGlcNAcβ-(2-naphthyl) (34; 
Scheme 1), were almost 10-fold higher than inhibitors reported 
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previously (251). The compound 1-thio-N-butyrylGlcNAcβ-(2-
naphthyl) (34; Scheme 1) was further observed to inhibit 68–95% 
of human β4GalT activity from a series of tumor cell line lysates, 
without compromising the activity of other enzymes (253). In 
addition, the specificity of (34; Scheme 1) β4GalT was confirmed 
by testing the enzyme activity of recombinant glycosyltransferases 
with and without the compound.

In contrast with galactosyltransferase, the relation of IGnTs 
or β3GnTs expression in cancer has not been investigated well. 
Only recently, a new member of IGnT family, β3GnT-VIII, was 
cloned, characterized, and shown to have its transcript levels 
significantly increased on colorectal cancer tissues compared 
to normal tissues (254). The same scenario can be observed 
for I-branching IGnTs. The pioneering work from Zhang et al. 
(255) has demonstrated that IGnT-2 is overexpressed in highly 
metastatic breast cancer cell lines of human and mouse origin 
and basal-like breast tumor samples. Moreover, IGnT-2 expres-
sion was significantly correlated to the metastatic phenotype 
in breast tumor samples and its ectopic expression enhanced 
cell detachment, adhesion to endothelial cells, cell migration, 
and invasion in vitro and lung metastasis of breast cancer cells 
in vivo. The knockdown of IGnT-2 resulted in the elimination 
of metastatic aspects making this enzyme a promising target for 
metastatic breast cancer (255).

Information on IGnTs and IGnTs inhibitors are more 
limited than reports about their biological roles. In fact, 
there are no inhibitors that target extension or branching of 
N-acetylglucosaminyltransferases by acting on O-glycans. Features  
for developing inhibitors were based on studying the characterriza-
tion of the isolated and purified enzymes activity, from which β3GnT 
was observed to be inhibited by the product UDP (~70% inhibition 
at 1  mM) and by 4-thiouridine diphosphate (256). I-branching 
β6GnT was also inhibited by UDP and UTP, indicating that the 
uracil moiety and the number of phosphodiesters appear to be 
important for the enzyme binding and activity (257). Nonetheless, 
potent inhibitors can come from tests with UDP-GlcNAc analogs 
(258), used as inhibitors of others N-acetylglucosaminyltransferases, 
or from acceptor substrate analogs, which provide potent scaffolds 
for N-glycan branching GnT-V inhibition.

Lewis and ABH Blood Group Antigens

Lewis and ABH antigens are terminal oligosaccharide structures 
that can be attached to βGal, found in O- and N-linked glycans 
and glycolipids (Figure 3). They are termed “blood group antigens” 
because they were initially discovered on red cells, although they 
were afterward observed on the surface of many other cell types, 
such as epithelial and endothelial cells (259).

There are three main types of disaccharide precursors of ABH 
and Lewis antigens found in glycoproteins: (i) type 1, Galβl-
3GlcNAcβ; (ii) type 2, Galβl-4GlcNAcβ; and (iii) type 3, Galβl-
3GalNAcα. Type 1 and type 2 are found in lacto series of glycolipids 
and in N- and O-glycans. In O-glycans, type 1 originated by the 
activity of β3-galactosyltransferase 5 (β3GalT-5), the unique iso-
form known in humans, and type 2 consists of terminal LacNAc 
moieties, synthesized by a set of β4-GalTs as already mentioned 
in the previous section. The disaccharide of type 3 represents the 

core 1 or T antigen of O-glycans and is found exclusively in these 
structures (Figure 3) (260).

The H antigen is generated by α1-2 fucosyltransferases (α1-
2FucT), encoded in humans by FUT1 and FUT2 genes, which adds 
an αFuc on terminal βGal residues of the 3 types of disaccharide 
precursors. The A and B antigens are originate from the same H 
precursor by the action of A and B enzymes that branch from the 
Galβ at C3 by adding an GalNAcα or Galα residue, respectively (261).

The increase of H-antigen correlates with the loss of A- and 
B-transferases expression and activity in red blood cells at the 
preleukemic stage (262), bladder malignant urothelium cells 
(263), and oral epithelia (264). The loss of blood group antigen 
A expression has a negative prognostic impact in stage I non-
small cell lung cancer, especially in patients with adenocarcinoma 
(265). The increase in H epitope in cancer cells is related to 
α1-2FucT overexpression. Upregulated expression of FUT1 
and β-N-acetylgalactosaminyltransferase and prostate-specific 
antigen (PSA) levels are biomarkers for prostatic cancer (266, 
267). Moreover, 1,2-fucosylated glycans, at the surface of rat colon 
carcinoma cells, were associated with increased tumorigenicity, 
resistance to natural killer cytotoxicity and apoptosis (268, 269). 
Besides, a glucose analog of H-antigen, the 2-fucosyl lactose 
(H-2g), stimulates angiogenesis in endothelial cells (270).

Lewis antigens can be derivated only from type 1 and 2 precur-
sors, by the addition of a αFuc to the position 4 or 3 of GlcNAc, 
giving the Lea or Lex antigens, respectively. Addition of other Fuc 
in the same position of the H types 1 and 2 antigens give the Leb 
and Ley antigens, respectively. The difucosylated Leb and Ley can 
also be synthesized from A and B antigens by the action of the 
same N-acetylglucosaminide: 3/4-αfucosyltransferases (α1-3/α1-
4FucT) that participate in Lea and Lex biosynthesis (Figure 3) (271).

Cancers that are known to express LeY include ovarian, pancre-
atic, esophageal, stomach, colon, rectal, and lung cancers (272–276). 
Because the expression of LeY in normal tissues is low and it is 
highly expressed in cancer cells it is a good potential therapeutic 
target (276, 277). In fact, the use of LeY in cancer vaccines (278, 
279) and immunoconjugated chemotherapy (280) are in progress. 
In addition, LeY, together with FUT1 gene upregulation, is suggested 
to be involved in cell migration required for the early steps of tumor 
angiogenesis (281). Yan et al. (272) found that overexpression of 
α1-2FucT in ovarian cancer cell line correlates with overexpression 
of LeY, increased invasiveness and poor prognosis for such types of 
cancer. FUT1 also modulates cell proliferation in the HER2-positive 
cancer cell line NCI-N87. Authors suggest that knockdown of 
FUT1 down regulates HER2 signaling via EGFR down regulation 
(282). Thus, FUT1 may serve as a new molecular target for HER2-
overexpressing human cancers with activated EGFR signaling. 
Consequently, to inhibiting α1-2FucT-mediated cancer processes is 
an important matter, which has been the aim of several researchers. 
Palcic et al. (283) designed the first bisubstrate analog inhibitor 
(35; Scheme 1), containing structural elements of both, donor and 
acceptor of α1-2FucTs. The analog of the postulated transition-state 
was a potent inhibitor of porcine submaxillary α1-2FucTs in cell free 
systems, Ki = 2.3 μM. The same group demonstrated the inhibition 
of porcine submaxillary α1-2FucTs by deoxygenated oligosaccha-
ride acceptor analogs (36; Scheme 1) with a Ki = 0.80 mM, but was 
not tested in cell systems (211).
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The sialylated variants of Lea and Lex, sialyl-Lea (SLea) and sialyl-
Lex (SLex), can be synthetized by the addition of a sialic acid in α2-3 
linkage either onto Lea or Lex antigens or onto type 1 and type 2 
precursors followed by its fucosylation on C3 or C4 of the GlcNAc 
moiety (Figure 3). Cancer cells have the ability to mimic immune 
cells, where they migrate to inflamed sites by expressing SLea and 
sialyl SLex on its surface which allows them to attach onto E- and 
P-selectins expressed by the endothelium (284, 285). Such sialylated 
oligosaccharides may also mediate metastasis by forming cellular 
thrombus through the binding to platelet-borne P-selectins, which 
can block leukocyte infiltration into tumors (285).

The expression of SLea was shown to be useful as a marker for 
colorectal carcinoma aggressiveness and prognosis (286) and is 
associated with metastasis of pancreas carcinoma cells (287), lung 
cancer cells, and liver cancer cells by the property of the saccharide 
to adhere to ELAM-1 of the endothelium (288). Overexpression of 
SLex correlates to tumor aggressiveness and prognosis in another 
set of cancer cells, consisting of prostate (289), colorectal (290), 
liver, and lung cancers (288, 291). In some types of tumors, as in 
breast cancer and melanoma, the appearance of both SLea and SLex 
is associated with the tumor emergence and higher expression of 
these epitopes correlates to the degree of malignancy (292, 293).

The increased expression of SLex and SLea antigens on tumor 
cells could be due to the upregulation of the genes encoding the 
enzymes responsible for the saccharide biosynthesis, or due to defi-
ciency in the enzymes responsible for sulfation, which normally 
lead to the generation of Sialyl 6-Sulfo Lewisx antigen and α2-6-
sialylation resulting in the production of disialyl Lea, present on the 
normal epithelium (294). In fact, mRNA levels of α1-3/1-4 FucT 
and ST3Gal are shown to be higher in colon adenocarcinoma cells 
(295). Therefore, the enzymes that participate on the biosynthesis 
of SLe antigens are targets for drug design.

There are six sialyltransferases reported to act upon C3 from 
terminal βGal residues, called ST3Gal-I to VI. Like α1-3/1-4 
FucT, sialyltransferases also exhibits preferences toward sub-
strates: ST3Gal-I and -II have a clear preference for the type 3. 
ST3Gal-III works on types 1 and 2 with a preference for type 1, 
whereas the opposite is observed for ST3Gal-IV. ST3Gal-V uses 
lactosylceramide as a substrate to generate the glycolipid GM3, 
while ST3Gal-VI works on type 2 precursors exclusively (296–298).

ST3Gal III is directly implicated in the enhancement of surface 
SLex levels in pancreatic ductal adenocarcinoma and plays a key role 
in several steps of tumor progression such as E-selectin adhesion, 
migration and metastasis formation (299). Increased expression 
of ST3Gal III in pancreatic ductal adenocarcinoma is concurrent 
with the increase of ST3Gal IV, suggesting their involvement in 
this pathology is probably due to the promotion of SLex or SLea 
biosynthesis (144).

Sialyltransferases are an evident target for drug design strate-
gies and their expression can be a useful prognostic marker of 
malignant disease. In 1975, Bernacki (300) indicated that CMP 
inhibits the transfer of Neu5Ac from CMP-Neu5Ac to appropriate 
acceptor substrates by using rat liver microsommes as the source 
of sialyltransferase. From this finding, several donor, transition-
states, bisubstrate, and acceptor analogs based on CMP-Neu5Ac 
have been synthesized and evaluated for inhibitory activity against 
sialyltransferase (301, 302). Schmidt and colleagues have extensively 

studied inhibitors of sialyltransferase based on CMP-Neu5Ac and 
its oxocarbenium transition state in ST-catalyzed reactions. They 
revealed that R-hydroxyphosphonate esters of CMP (37; Scheme 1), 
with a flattened ring system, are very strong sialyltransferase inhibi-
tors, having Ki values in the nanomolar range (303). Concerning 
the disaccharide nucleoside, two compounds, inhibited sialyltrans-
ferase on the lymphocyte surface, which resulted in the decrease 
incorporation of sialic acid into endogenous cellular acceptors or 
into exogenous desialylated glycoconjugates (304). Sialyltransferase 
inhibition by the sialic acid-nucleoside analog (38; Scheme 1) (301) 
in a colon adenocarcinoma mouse model resulted in a significant 
prevention of lung metastasis and prolonged the survival.

Non-substrate-like inhibitors have also been published as 
inhibitors of sialyltransferase activity. A lithocholic acid analog, 
Lith-O-Asp (39; Scheme 1), inhibited the sialylation of integrin-β1. 
In addition, Lith-O-Asp altered protein expression levels and the 
phosphorylation state of various proteins involved in crucial 
metastasis and angiogenesis pathways, such as vimentin and 
RNH1, which inhibited angiogenesis and tumor growth in vivo, 
through angiogenin inhibition (305). Soyasaponin I (40; Scheme 
1), a natural compound purified from soybean, has been shown to 
be a ST3Gal I inhibitor (306). It effectively inhibited breast cancer 
cells and murine melanoma cells from metastasis in vivo (307, 308). 
Since, soyasaponin I is difficult to obtain amounts large enough 
for cancer treatment, a series of lithocholic acid analogs derived 
from soyasaponin I were synthesized (41; Scheme 1) (309). The 
compound AL10 (42; Scheme 1), an ST3Gal and ST6Gal inhibitor, 
inhibited cell migration and invasion in vitro and suppressed lung 
metastasis in animal studies (310).

Whereas ST3Gal is the most obvious target among the enzymes 
that participate in Lewis biosynthesis, there is evidence that the 
inhibition of glycosyltransferases downstream can be an alternative 
for chemotherapy focused on Lewis glycans. The suppression of 
β3GalT5 gene was shown to reduce SLea expression in pancreas 
adenocarcinoma cell line (311). Other studies have correlated the 
expression of β3GalT5 with cancer epitopes, such as extended type 
1 chains on lactosylceramides of human colon carcinoma (312) 
and CA19.9 in human pancreatic cancer tissue (313). Recently, 
Gao and coworkers have reached almost 100% inhibition of 
β3GalT5 activity with bivalent imizadolium salts (43; Scheme 1), 
nevertheless, these compounds presented little specificity against 
the enzyme (314). Conversely, the variety and number of inhibi-
tors targeted to α1-3/1-4FucT is far greater than those targeted 
to β3GalT considering the extensive correlation between those 
enzymes and cancer progression.

Currently, the products of six FUT genes able to catalyze the 
addition of a Fuc residue in α1-3 or α1-4 position are known in 
humans. The FUT3 and FUT5 enzymes can use both type 1 and 2 
precursors as substrates; FUT3 has a marked preference for type 1 
and FUT5 for type 2. The FUT4, FUT6, FUT7, and FUT9 enzymes 
catalyze the addition of a Fuc exclusively onto type 2 precursor. 
In addition, FUT3, FUT4, FUT5, and FUT6 are able to fucosylate 
internal LacNAc motifs from poly-LacNAc structures (315), giving 
rise to more complex structures like dimeric Lex or trimeric Ley that 
can be further modified.

For instance, α1-3/1-4FucT protein expression was associated 
with poor prognosis in various types of cancer (316) and increased 
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E-selectin adhesion and metastatic potential of human lung 
adenocarcinoma cells (317, 318). Gene knockdown approaches in 
leukemia T cell that decreased cell adhesion to E-selectin, reinforced 
this correlation (319). Besides, downregulation of FucT-3 and -5 
through shRNA decreased levels of Lewis antigens, adhesion and 
binding capacities of gastric cells MKN45 (320). Carvalho et al. (321) 
revealed an increased expression of SLe, FUT5 and FUT6 during cell 
confluence of MKN45, which associated these enzymes with tumor 
progression. Guo et al. found that FUT6 was capable in promot-
ing hepatocellular cell growth in vivo and in vitro, by modulating 
P13K, and also suggesting FUT6 as a promising biomarker and 
a potential therapeutic target for hepatocellular carcinoma (322). 
Moreover, another study showed that FUT6 was also increased in 
prostate cancer. A significant reduction of bone metastasis in a 
FUT6-induced bone metastasis mouse model of prostate cancer 
was achieved by using a Fuc mimetic inhibitor 2-F-peracetyl-Fuc to 
inhibit fucosyltransferase enzyme activity (323). In a recent study, 
Okeley and coworkers demonstrated that oral treatment with 
2-F-Fuc provided complete protection from tumor engraftment in 
a syngeneic tumor vaccine model. The compound inhibited neutro-
phil extravasation, and delayed the outgrowth of tumor xenografts 
in immune-deficient mice (324). Zandberg and colleagues revealed 
that the mimetic inhibitor, 5T-Fuc (a peracetyletaed 5-thio-Fuc, 44; 
Scheme 1), blocked the α1-3/1-4FucT activity and decreased SLex on 
HepG2 cells. Furthermore, the group demonstrated that treatment 
with 5T-Fuc impaired selectin-mediated cell adhesion (325). The 
non-substrate related Panosialins A and B (45; Scheme 1) were used 
as an inhibitor of FUT7 and suppressed the expression of selectin 
ligands, on human leukemic lymphoma cell line (U937), which 
inhibits selectin-mediated cell adhesion (326). On the same cell line, 
a series of peracetylated N-acetyllactosamine (LacNAc) analogs  
(46; Scheme 1) exhibited an enhanced affinity by FucT- VI caused 
by a 90% inhibition of SLex expression (327).

Donor substrate mimetic compounds were widely explored as 
inhibitors of human FucTs. Unnatural sugar nucleotides, UDP-Fuc, 
ADP-Fuc and CDP-Fuc were tested against FucT-III. Unexpectedly, 
the enzyme does not only tolerate the exchange of guanosine for 
adenine but may also accept a pyrimidine base. UDP-Fuc and CDP-
Fuc were utilized with lower efficiency than UDP-Fuc, nevertheless, 
they could act as Fuc donors. A series of GDP-Fuc derivatives was 
synthesized, purified and characterized in detail for their inhibition 
kinetics. Compound 47 (Scheme 1) had a Ki of 29 nM for human 
FucT-VI (328). Addition of hydrophobic moieties to the Fuc C6 
seems to yield potent inhibitors. This strategy was explored to 
identify selective inhibitors for human recombinant FucT-V. It has 

been shown that both GDP-2F-Fuc and GDP-6F-Fuc (48; Scheme 
1) act as competitive inhibitors of FUTs 3, 5, 6, and 7 with Ki values 
in the low micromolar range (329). Peracetylation of GDP-2F-Fuc 
improved its cell permeability and dramatically reduced cell surface 
fucosylation. Treatment of human HL-60 cells with the permethyl-
ated GDP-2F-Fuc nearly abolished synthesis of LeX and SLeX and led 
to significant decreases in E- and P-selectin binding (330).

Several C-glycosides were synthesized as potential inhibitors 
of FucT (331). Among the compounds tested, the αManp1-
3CH2GalNAc (49; Scheme 1) displayed a mixed inhibition of 
FucT-VI, with respect to both the donor sugar GDP-Fuc and the 
acceptor LacNAc (332). However, a C-glycosyl ethylphosphonophos-
phate analog of GDP-Fuc (50; Scheme 1) presented only a weak 
inhibition against FUT3 (IC50 value of 2 mM). The modest activity 
was attributed to the α-anomeric configuration of this C-glycosyl 
analog, which is opposite to the β-configuration of the natural donor 
substrate GDP-Fuc (333).

Many other molecules synthesized have inhibitory activity: 
gallic acid (51; Scheme 1) and its derivates were identified as FucT-
VII inhibitor (IC50 of 60 nM) (334); stachybotrydial (52; Scheme 
1), isolated from the culture broth of the fungus Stachybotrys 
cylindrospora, were identified to be a potent FucT-V inhibitor (Ki 
of 10.7 μM) (335). Together these results point to the potential 
therapeutic applications for molecules that selectively block the 
endogenous generation of fucosylated glycan structures.

Conclusion

The potential of glycans as tools in cancer diagnosis and prognosis 
is unquestionable. This overview presents the importance of glycan 
inhibitors as possible anti-cancer drug targets. Several hundred 
targets exist for the development of inhibitors. The repertoire of 
available compounds, although extensive, contains few agents 
that have the affinity and specificity required for converting a 
laboratory reagent into a drug. However, the few drugs that have 
been developed have already proven their value as therapeutic 
agents. These success stories only represent the beginning of the 
importance of the glycobiology field to anti-cancer chemotherapy.
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