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The unfolded protein response (UPR) is an ancient stress response that enables a cell
to manage the energetic stress that accompanies protein folding. There has been a
significant recent increase in our understanding of the UPR, how it integrates physiological
processes within cells, and how this integration can affect cancer cells and cell fate
decisions. Recent publications have highlighted the role of UPR signaling components
on mediating various cell survival pathways, cellular metabolism and bioenergenics, and
autophagy. We address the role of UPR on mediating endocrine therapy resistance and
estrogen receptor-positive breast cancer cell survival.

Keywords: unfolded protein response, glucose regulated protein 78, X-box binding protein 1, estrogen receptor-α,
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The Unfolded Protein Response and Endoplasmic
Reticulum Stress

The unfolded protein response (UPR) is an endoplasmic reticulum stress pathway, activated when
unfolded or misfolded proteins accumulate within the endoplasmic reticulum lumen. Inappropri-
ately folded proteins can amass when large amounts of proteins are being synthesized and/or when
cellular energy availability is not sufficient to correctly fold the proteins being trafficked into the
endoplasmic reticulum (1, 2). A simple overview of UPR signaling is shown in Figure 1. The master
regulator of UPR signaling, glucose-regulated protein 78 (HSPA5; GRP78), activates the UPR as a
consequence of its release from the threeUPR signaling controllers, PKR-like endoplasmic reticulum
kinase (EIF2AK3; PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme
1 (ERN1; IRE1). Under most normal conditions, PERK, ATF6, and IRE1 are held inactive in the
endoplasmic reticulum membrane when bound to GRP78. Activated PERK phosphorylates eIF2α,
resulting in the inhibition of cap-dependent protein translation and the induction of activating
transcription factor 4 (ATF4) transcription. Increased ATF4 levels stimulate the activity of the pro-
apoptotic DNA-damage inducible transcription factor 3 (DDIT3; also known as CHOP). When
released from GRP78, ATF6 translocates to the Golgi complex where it is cleaved by site1/site2
proteases to form a highly active transcription factor. ATF6 induces the transcription of various
other protein chaperones, includingGRP78. Release of IRE1 fromGRP78 enables IRE1 to oligermize
and autophosphorylate. This activation of IRE1 enables its unconventional cytoplasmic splicing of
X-box binding protein 1 (XBP1); the endonuclease activity of IRE1 removes a 26-base pair intron
in XBP1 to produce its transcriptionally active form (XBP1-spliced, XBP1-S; Figure 2). XBP1-S
increases the transcription of other protein chaperones, endoplasmic reticulum-associated protein
degradation (ERAD), and inflammatory genes such as IL-6. Initial activation of UPR signaling
is usually pro-survival, resulting in a reduced rate of protein translation and increased protein
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FIGURE 1 | UPR signaling schematic. The UPR signaling pathway is an
adaptive endoplasmic reticulum response. GRP78 unbinds from the three
signaling arms (IRE1, PERK, ATF6) upon sensing the accumulation of unfolded
proteins within the lumen of the endoplasmic reticulum. PERK is a type I
transmembrane protein that phosphorylates the eukaryotic translation initiation
factor 2 α-subunit (eIF2α). Induction of ATF4 regulates the expression of several
genes, including the pro-apoptotic DNA damage-inducible transcript 3 (DDIT3;
referred to as CHOP) and antioxidant signaling responses. ATF6 is a type-II

transmembrane bZIP transcription factor in which Golgi localization signals are
blocked by GRP78 binding. Dissociation of GRP78 from ATF6 results in
translocation of ATF6 to the Golgi complex, and cleavage of ATF6 by the site-1
(SP1) and -2 proteases (SP2) to form its active p50 form. Several downstream
targets of ATF6 include GRP78, GRP94, and GRP58. Activation of IRE1α
enables the unconventional splicing of XBP1. Various downstream targets of
XBP1(S) include p58IPK, ERAD signaling components, and several protein
chaperones.

chaperone expression. These actions lessen the unfolded protein
load within the endoplasmic reticulum and promote a restora-
tion of cellular homeostasis. Prolonged activation of the UPR
can promote cell death through CHOP signaling, when this
or other prodeath signals dominate any remaining prosurvival
activities (2).

UPR Signaling in Breast Cancer

Breast cancer is the most prevalent cancer in women, with over
232,000 new cases of invasive breast cancer diagnosed annually
within the United States of America. Furthermore, over 40,000
American women die from breast cancer every year (3). The most
common breast cancer subtype, which comprises over 70% of all
breast cancers, expresses the estrogen receptor-α (ESR1; ERα).
These cancers are often treated with ERα targeted therapies,
such as receptor antagonists (antiestrogens) including tamoxifen
(TAM) or fulvestrant (ICI), or aromatase inhibitors like anastro-
zole or letrozole that inhibit ligand (17β-estradiol) production.
About half of all ERα positive tumors respond to one of these first-
line endocrine therapies, while the remainder is de novo resistant
(4). Unfortunately,many initially responsive tumors develop resis-
tance to these endocrine therapies and, overall, more women die
from ER+ breast cancer than from any other molecular subtype
(5). A better understanding of the molecular mechanism(s) of

endocrine therapy resistance is urgently needed to design new and
more effective interventions to prevent or reverse the emergence
of drug resistance.

Possiblemolecularmechanisms of resistance to endocrine ther-
apies include activation of the UPR pathway (2, 6, 7). Cancer cells
have elevated UPR signaling that seems to promote survival in the
glucose deprived and hypoxic tumor microenvironment, without
a potent activation of the pro-apoptotic signaling resulting from
prolonged UPR activation (8–10). GRP78 was shown to be ele-
vated in all breast cancer subtypes [ERα, human epidermal growth
factor receptor-2 (ERBB1; HER2) amplified, and triple negative]
when compared with the normal surrounding breast tissue, indi-
cating a critical role for GRP78 in driving breast tumorigenesis
(11). GRP78 overexpression in both breast cancer cells and in
breast tumors can confer anthracycline resistance (12). In addi-
tion, a preclinical report suggests a role for GRP78 in promoting
estrogen-dependent breast cancer cell survival under estrogen-
deprived conditions, simulating aromatase inhibitor activity. In
this model, GRP78 inhibited the BCL2 family member, Bik (13).
Through its binding of Bik, GRP78 prevents the activation of
Bax/Bak thereby inhibiting apoptosis (14). We have also shown
that knockdown of GRP78, using RNAi in ER+ breast cancer
cells, reduces overall cellular levels of anti-apoptotic BCL2, BCL-
W, and BCL-xL (11). GRP78 may also bind to pro-caspase-7,
thereby preventing caspase-dependent apoptosis (15, 16). These
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FIGURE 2 | IRE1 activation and XBP1 splicing. (A) XBP1 splicing is
performed by IRE1α, a type II transmembrane EnR protein with both
serine-threonine kinase and endonuclease activities. The endoplasmic
reticulum luminal domain of IRE1α regulates its kinase function, which is
required to activate the endonuclease. In the absence of an activated UPR,
IRE1-α is inactive and bound to GRP78. Following sensing of the UPR,
IRE1α dissociates from GRP78 and two luminal domains form a symmetric
dimer that facilitates trans-autophosphorylation This phosphorylation
promotes nucleotide binding, activating the endonuclease domain.
(B) Amino acid two stem-loop structure of XBP1. IRE1 cleavage sites at the
two CNGNNG motifs of XBP1 are indicated by arrows. (C) IRE1α removes a
26-base intron sequence from XBP1 producing a translational frameshift.

Splicing of the XBP1 mRNA creates the transcriptional activation domain and
eliminates the nuclear exclusion and degradation domains encoded in
XBP1(U). Both XBP1(S) and XBP1(U) are translated into protein; each retains
the DNA binding domain and can form XBP1(S)/XBP1(U) heterodimers. The
nuclear exclusion domain in the XBP1(U) partner may keep the heterodimer
extranuclear, whereas its degradation sequence may target both partners for
degradation. Thus, XBP1(U) acts as an endogenous dominant negative of
XBP1(S). Cytoplasmic splicing of existing XBP1(U) allows for a rapid and
efficient response to cellular stress that does not require additional XBP1
transcription. Since unspliced mRNA is eventually degraded, adaptation to
prolonged stress requires new transcription of XBP1(U) and its splicing to
XBP1(S).

data clearly illustrate a pro-survival role for GPR78 in breast can-
cer. Knockdown of GRP78 restored endocrine therapy sensitivity,
while overexpression of GRP78 prevented tamoxifen effective-
ness, further implicating GRP78 as a major regulator of endocrine
responsiveness (2, 11).

XBP1 expression is widely reported in all breast cancer subtypes
and correlates with poor prognosis (9, 10, 17). Expression of

XBP1 with that of ERα suggests that XBP1 plays an important
role in driving this subtype of breast cancer (18–20). In fact,
Perou et al. included XBP1 expression among the key molec-
ular components that may identify ER+ (luminal) breast can-
cers (21). We have shown that endocrine resistant breast can-
cer cell lines overexpress XBP1 (6), and that its overexpression
confers this phenotype (22). In human breast cancer patients,
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XBP1 mRNA levels correlate with tamoxifen responsiveness, fur-
ther supporting the role of XBP1 in endocrine therapy resis-
tance (9). Targeting XBP1 through RNAi restored endocrine ther-
apy sensitivity in resistant breast cancer cell lines (23). Over-
expression of XBP1-S in MCF7 xenograft breast tumors ren-
dered the tumors resistant to tamoxifen therapy. Moreover,
Hu et al. showed that both isoforms of XBP1 (XBP1-U and
XBP1-S) regulate NFκB activity by ERα-dependent mecha-
nism, thereby linking XBP1/NFκB/ERα signaling. Furthermore,
Hu et al. showed XBP1-S directly affects p65/RelA subunit of
NFκB independent from ERα, indicating two different mech-
anisms by which XBP1 modulate NFκB signaling and cellu-
lar proliferation (23). Taken together, these data support the
role of UPR signaling components modulating endocrine ther-
apy responsiveness. In addition to being expressed in triple
negative breast cancers (TNBC; ER-, PR-, HER2-) (10), XBP1
drives some TNBCs through modulating the HIF1α signaling
pathway (24). For example, chromatin immunoprecipitation fol-
lowed by ultra high throughput DNA sequencing (ChIP-seq) of
XBP1 in MDA-MB-231 (a TNBC cell line) indicates a signifi-
cant enrichment of HIF1α, suggesting co-localization of HIF1α
and XBP1. Inhibition of XBP1 through transfection with shRNA
in CD44highCD24low breast tumor cells prevented paclitaxel and
doxorubicin-mediated mammosphere formation. These data sug-
gest that XBP1 mediates hypoxia-induced tumor cell survival in
some TNBCs (24).

Integration of UPR and Autophagy

Autophagy is a cellular pathway of “self-eating” (25). Our
group (among others) has implicated autophagy as a mechanism
of therapeutic resistance in breast cancer (26–29). Autophagy
involves the segregation of subcellular material into double mem-
brane structures (autophagosomes) that then fuse with lyso-
somes (autolysosomes), wherein the cellular cargo is subsequently
degraded by lysosomal hydrolases (30). This process maintains
cellular integrity by the removal of aged, damaged, or unneeded
organelles including mitochondria, Golgi complex, and endoplas-
mic reticulum. The autophagic pathway also supplements cel-
lular metabolism by recycling the products of organelle degra-
dation back into cell metabolism (2). Initiation of autophagic
signaling can occur through three distinct molecular modules
(Figure 3): (i) AMPK/mTOR, (ii) Beclin-1 (BECN1)/BCL2, and
(iii) IP3R/Ca2+. In Module-1, activated mammalian target of
rapamycin (MTOR) can inhibit Unc-51 like autophagy activating
kinase 1 (ULK1). ULK1 forms a complex with autophagy related
gene 13 (ATG13) and RB1-inducible coil-coil 1 (RB1CC1; also
known as FIP200) that initiates autophagosome formation (31).
In Module 2, autophagy/beclin-1 regulator 1 (AMBRA1) or BCL2
interacts with BECN1 to either promote (AMBRA1) or inhibit
(BCL2) autophagosome formation (32). In the third module of
autophagosome initiation, calcium release from the endoplas-
mic reticulum stimulates calcium/calmodulin-dependent protein

FIGURE 3 | Modules of autophagy initiation. (A) Module 1 shows how
mTOR inhibits autophagy through modulation of Atg13 and ULK1 inactivating
the pre-autophagosomal structure (PAS)-initiation complex. AMPK and TSC1/2
inhibit mTOR activity, promoting autophagy, while active protein kinase B (AKT)
promotes mTOR activation and concurrently inhibits TSC1/2 complex inhibiting
autophagy. (B) Module 2 shows the regulation involved in BECN1 mediated
autophagy. AMBRA1 present at both the mitochondria and endoplasmic
reticulum promotes BECN1 activation and autophagy. BCL2 binds to BECN1
inhibiting activation of autophagy through the PI3K class 3 activation complex

(PIK3C3, Vsp34, Atg14, p150, and beclin-1). BCL2 can also inhibit AMBRA1
when co-localized to the mitochondria. (C) Module 3 shows IP3R/Ca2+

regulation of autophagy. Ca2+ released from the EnR through the IP3R
stimulates autophagy through activation of death associated protein kinase
(DAPK) and the resulting phosphorylation of BECN1 that promotes its
disassociation from BCL2. Regulation of autophagy by Ca2+ also occurs
through stimulation of protein kinase C θ (PKCθ) promoting LC3 to LC3-II
conversion, and through calcium/calmodulin-dependent protein kinase II beta
(CAMK2B) activation resulting in AMPK stimulation and mTOR inhibition.
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kinase kinase 2 (CaMKK2), promoting the ability of AMP-
activated protein kinase (PRKAA1; AMPK) to inhibit the
autophagic repression regulated by mTOR signaling. Concur-
rently, calcium release activates death associated protein kinase
(DAPK) to activate BECN1. Also, calcium stimulates protein
kinase C-θ (PRKCQ; PKCθ) to promote the lipidation of micro-
tubule associated protein 1 light chain 3 (MAP1LC3; LC3-II)
promoting autophagic activation (33). Therefore, cellular environ-
mental changes such as nutrient deprivation, hypoxia, or thera-
peutic intervention may stimulate autophagosome formation.

While autophagy is often downregulated early in initial tumori-
genesis, autophagy is frequently upregulated in its later stages
(2). This upregulation of autophagy has been shown to combat
the harsh negative environmental conditions in which most solid
tumors exist. However, conflicting reports define autophagy as a
“double-edge sword,” where autophagic activation may be either
pro-apoptotic or pro-survival (34, 35). Bursch et al. dosed MCF-7
(estrogen dependent, ER+ breast cancer cell line) with various
antiestrogen therapies and showed increased autophagosome
formation, and theorized that endocrine therapies promote
autophagy-mediated cell death (36). However, Samaddar et al.
suggested that what Bursch et al. observed was a failed attempt by
the cell to use autophagy to survive due to increased autophagy
observed in the surviving TAM treated MCF-7 cell population
(27). These authors then hypothesized that the duality of
autophagic signaling (either promotes survival or cell death)
may be dependent on the quantity of cellular autophagosomes,
suggesting a threshold limit. Samaddar et al. also showed that
inhibition of autophagy through Beclin1 siRNA transfection
or using a chemical inhibitor of autophagy, 3-methyladenine
(3-MA), significantly potentiated antiestrogen-induced cell death
(27). We have shown elevated levels of lipidated autophagic
protein LC3-II in antiestrogen resistant breast cancer cells when
comparedwith their therapy sensitive parental cell line, suggesting
increased basal autophagosome formation in endocrine resistant
breast cancer cells (11). Furthermore, inhibition of autophagy
through ATG5 or ATG7 silencing potentiates antiestrogen
responsiveness in ER+ breast cancer cell lines (37). Mice bearing
antiestrogen-resistant LCC9 andMCF-7RR orthotopic xenografts
were treated with a chemical inhibitor of autophagy, chloroquine
(CQ), and the results showed that inhibition of autophagy in vivo
restored tamoxifen sensitivity to resistant tumors (38). Inhibition
of mitochondria specific autophagy (mitophagy) through
PTEN inducible putative kinase 1 (PINK1) silencing restored
antiestrogen sensitivity to resistant breast cancer cell lines (39).
Moreover, endocrine-resistant breast cancer cell lines express
elevated parkin RBR E3 ubiquitin protein ligase (PARK2; parkin)
protein levels, a protein critical for the induction of mitophagy
(40). These data suggest that mitochondrial specific autophagy
also plays a key role in the development and maintenance of
antiestrogen therapy resistance in ER+ breast cancer.

Unfolded protein response and autophagy are linked through
several mechanisms. For example, interactions between the
PERK/e1F2α axis of UPR result in the cleavage of LC3 and stim-
ulation of autophagy. Also, ATF4 promotes autophagy through
transcription of ATG12. Another arm of UPR, involving the
kinase IRE1, activates autophagy via mitogen-activated protein

kinase (MAPK) c-Jun terminal kinase (JNK) stimulation (1, 30,
41).WhilemultipleUPRpathways regulate autophagy, Ogata et al.
demonstrated, through siRNA experiments in a neuroblastoma
cell line, that endoplasmic reticulum stress induced autophagy
is the result of IRE1-JNK activation, not ATF6 or PERK (42).
However, Li et al. showed that silencing of GRP78 in embryonic
kidney cells and ovarian cancer cells prevented the stimulation of
autophagy and the formation of autophagosomes (43). In addi-
tion, this group showed that XBP1 knockdown in these cells had
no effect on basal levels or the stimulation of autophagosome
formation, suggesting a critical link between GRP78, autophagy,
and survival independent of UPR (43).

We have established a novel link between GRP78 and AMPK
to regulate autophagy. We showed that overexpression of GRP78
in the endocrine sensitive cell line LCC1 resulted in the formation
of autophagosomes and promoted autophagic flux (11). Stimula-
tion of autophagy mediated by GRP78 was inhibited by tuberous
sclerosis-2 (TSC2) or AMPK silencing, demonstrating that GRP78
modulates AMPK signaling to effect autophagosome formation
(11). Moreover, silencing of GRP78 in breast cancer cell lines
decreased pro-survival BCL2 family members with no effects on
BECN1 levels, suggesting that GRP78 does not directly modulate
BECN1 to affect autophagy (11). However, BCL2 can sequester
BECN1 and GRP78-mediated changes in BCL2 expression could
indirectly regulate autophagy (2). Importantly, GRP78, IRE1, and
PERK can independently stimulate autophagy in a cell context
specific manner. The integration of UPR and autophagy is intu-
itively rational; the accumulation of unusable unfolded proteins
should trigger a means to concurrently clear or fix these proteins,
and/or recycle their components to aid in resolving the stress that
originally caused these proteins to accumulate.

Estrogen Signaling in Antiestrogen
Resistance

Over 70% of all breast cancers express ERα, and therefore,
respond to estrogens. The growth and proliferation of ERα pos-
itive breast tumors are predominately driven by the receptor’s
ligand, estrogen. Drugs targeting either the receptor (tamoxifen
or fulvestrant) or the ligand (aromatase inhibitors) have been
successful at treating this disease. Unfortunately, many of these
tumors acquired resistance and recur as endocrine insensitive
breast cancers. Therefore, understanding the ER signaling net-
work and the permutations that derive from the antiestrogen
resistance phenotype is critical to make progress in the treat-
ment of advanced breast cancers. Many growth factor signaling
pathways are implicated in the development of resistance includ-
ing MAPK, phosphoinositol 3-kinase (PI3K), epidermal growth
factor (EGF), and insulin-like growth factor (IGF) 1 receptor
signaling (44). Also, various mutations in ERα were theorized
to confer endocrine therapy independence to cells, as recently
reviewed in Ref. (45). Various clinical studies have indicated only
probably less than 25% of metastatic breast tumors harbor ERα
mutations that may drive resistance (46, 47), suggesting pertur-
bations in growth factor or other molecular signaling pathways
as major component mediating endocrine independence. Math-
ematical modeling offers a dynamic “road-map” perspective of
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integrating the behavior of cells with often contradicting signaling
components to create a molecular interaction graph (48). These
models can design the transitions between endocrine therapy
sensitive and resistant states in breast cancer (49), the switch
between estrogen receptor and growth factor signaling (50), and
model in the interactions between ERα and UPR signaling (37),
highlighting the usefulness of integrating mathematical modeling
into cancer research.

Estrogen, the Estrogen Receptor, and
Regulation of UPR and Autophagy

While estrogens primarily acting through ERα stimulate breast
cancer cell survival and growth, ERα-targeted therapies such as
tamoxifen or fulvestrant (ICI) stimulate pro-survival UPR and
autophagy signaling (37). We previously showed that the selec-
tive estrogen receptor downregulator (SERD) ICI stimulates UPR
signaling in both antiestrogen sensitive and resistant breast can-
cer cell lines. However, we found a timing differential in the
stimulation of UPR signaling between endocrine therapy sen-
sitive and resistant cell lines. UPR was activated in the resis-
tant LCC9 cells, 48–96 h before the LCC1 antiestrogen sensitive
parental cell line, suggesting a possible link between the timing
of pathway stimulation and endocrine resistance (37). Silencing
ERα through RNAi inhibited UPR signaling components while
concurrently stimulating autophagy (37). These data indicate that
endocrine-targeted therapies may act through the ability of ERα
to control autophagy but not directly to control UPR signal-
ing. Moreover, in accordance to other reports, knockout of ERα
resulted in the re-sensitization of resistant breast cancer cell lines
to endocrine-targeted therapies (51). A report describing the
effects of bortezomib (a proteasome inhibitor) in MCF7 breast
cancer cells demonstrated that ICI increased the aggregation of
ERα in the cytoplasm and increased UPR signaling, increasing
proteasome inhibitor-mediated cell death (52). We showed that
ICI increased cytoplasmic aggregation of ERα, and that endocrine
resistant LCC9 cells have elevated basal levels of cytoplasmic
ERα, when compared with their therapy sensitive parental cells,
likely explaining the increased UPR signaling observed in these
cell lines (53). Knocking out ERα prevented both antiestrogen-
mediated cytoplasmic aggregation of ERα and UPR activation.
Moreover, we showed that inhibiting UPR signaling by ERα
silencing prevented NRF2-mediated cellular antioxidant response
and increased the concentration of reactive oxygen species (ROS)
that led to more cell death (37). These data indicate that ERα
can regulate UPR and autophagy through various distinct mecha-
nisms: ERα activity, ERα localization, and through increased ROS
production.

Estrogen induces increased protein translation that may also
stimulate UPR signaling. We showed that higher concentrations
of 17β-estradiol induce CHOP signaling in both LCC1 and LCC9
breast cancer cells, suggesting estrogen may induce UPR sig-
naling (37). Recently, Andruska et al. demonstrated that 17β-
estradiol, acting through an extranuclear ERα-mediated event,
stimulates PIP2 to DAG conversion releasing cytoplasmic 1,4,5-
triphosphate (IP3) through PLC-γ activation. IP3 stimulates the
release of calcium from the endoplasmic reticulum and promotes

UPR signaling and cellular proliferation (54). These data describe
a novel role of estrogen and ERα in stimulation of UPR signaling.

The other estrogen receptor, estrogen receptor-β (ESR2; ER-
β), was recently shown to effect UPR signaling. ER-β inhibits the
growth of breast cancer cells directly opposing the proliferative
actions of ERα (55). Furthermore, ER-β reduced breast cancer cell
invasiveness, suggesting a role of ER-β inmetastasis (55, 56). Clin-
ical breast cancer data sets reported an association between better
prognosis and ER-β expression (57). Recent work by Rajapaksa
et al. indicates a novel reciprocal relationship between ER-β and
XBP1 (58). ER-β stimulates synoviolin1 (SYVN1) resulting in the
degradation of IRE1, thereby reducing XBP1 splicing and activity
(58). Reduction of XBP1 by ER-β is a novel mechanism by which
ER-β inhibits breast cancer cell growth.

UPR and Cellular Energy Sensing
Mechanisms

GRP78, or glucose-regulated protein 78, is aptly named due to
its regulation by cellular glucose and energy levels. Along with
GRP78, there are other glucose-regulated proteins in the family,
such as GRP94 (HSPA90B1), GRP170 (HYOU1), GRP75 (HSPA9;
mortalin), and GRP58 (PDIA3) (59). As with GRP78, most of
these other glucose regulated proteins are found elevated in
antiestrogen resistant breast cancer cells (Table 1), giving fur-
ther evidence of the importance of these proteins in modulating
therapeutic responsiveness. While GRP78, GRP170, and GRP94
are endoplasmic reticulum protein chaperones that play a role
in UPR signaling, the other GRPs are either located in other
cellular organelles or their molecular actions dramatically differ.
For example, GRP75 is predominately located in themitochondria
and plays a role in longevity and mitochondrial protein transport
(60), GRP58 is located in the endoplasmic reticulum lumen and
is a protein disulfide isomerase that is critical to the peptide
loading process of major histocompatibility complex (MHC) class
I pathway (61). Further investigation into these other GRP’s is
currently ongoing to determine their role in endocrine therapy
resistance in ER+ breast cancers.

We previously showed the novel regulation of GRP78 on regu-
lating AMPK and mTOR signaling to control autophagy in breast
cancer cells (11, 62). Others have linked GRP78 and AMPK sig-
naling in leukemia and ovarian cancer cells (63, 64). AMPK acti-
vating compounds, such as metformin and 5-Aminoimidazole-
4-carboxamide ribonucleotide (AICAR), were shown to increase
GRP78 protein levels in acute lymphoblastic leukemia cell lines,

TABLE 1 | Glucose-regulated proteins in antiestrogen resistance.

Glucose regulated
proteins

Gene
name

Gene fold change
LCC9 vs LCC1

Gene fold change
MCF7RR vs MCF7

GRP94 HSP90B1 1.24 Non-significant
GRP78 HSPA5 1.89 1.51
GRP75 HSPA9 1.52 2.23
GRP170 HYOU1 Non-significant 1.57
GRP58 PDIA3 1.43 1.32

Fold change mRNA levels of GRP78, GRP94, GRP170, GRP58, and GRP75 in antiestro-
gen sensitive vs resistant ER+ breast cancer cell lines.
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further supporting the molecular interaction between AMPK
and GRP78 signaling (64, 65). Vaspin, an adipokine, was shown
to bind to cell surface GRP78, creating a vaspin-GRP78-MTJ1
complex that was shown to activate AMPK in H-4-II-E-C3 cells.
Pretreatment with a GRP78 antibody blocked the formation of
the vaspin complex and prevented AMPK activation, indicating a
critical role of cell surfaceGRP78 inAMPKactivation (66). AMPK
is a critical nutrient and energy sensor activatedwhen cellularATP
levels are insufficient. AMPK is also a driver of systemic energy
balance through modulating metabolism, circadian rhythm, and
feeding behaviors (67). Therefore, it is not surprising that UPR
signaling and endoplasmic reticulum stress may impact the devel-
opment of various metabolic diseases such as diabetes, obesity,
and insulin resistance (68–71). UPR signaling is elevated in the
adipocytes of obesemice and obese non-diabetic humans (70, 72).
Previously, obese subjects that lost weight following gastric bypass
surgery exhibited significantly lower endoplasmic reticulum stress
signaling components, when compared with obese individuals, in
their subcutaneous fat and liver tissues (73). GRP78 heterozygous
mice are resistant to diet-induced obesity (74). XBP1 deficiency
prevented obesity in mice fed a high fat diet but XBP1 deficient
mice developed insulin resistance (68). PERK homozygous dele-
tion in mice is perinatal lethal due to the development of diabetes
consistent with β-cell defects (75, 76). These studies indicate the
possible roles of UPR signaling in metabolic signaling pathways
and diseases.

Therapeutic Agents Modulating UPR
Signaling

ERα targeting therapies, such as tamoxifen and fulvestrant, stim-
ulate UPR signaling resulting in breast cancer cell survival (37).
Addition of the proteasomal inhibitor, bortezomib, with fulves-
trant in ER+ breast cancer cells resulted in markedly increased
UPR signaling promoting apoptosis (52), suggesting a thresh-
old limit wherein the duration of UPR signaling determines cell
survival or death. ER-β agonists may be used to modify UPR
signaling. ER-β activation was shown to inhibit IRE1, thereby
reducing XBP1 splicing in breast cancer cell lines (58). Modified
bacterial toxins, prunustatin A(1) and versipelostatin, were shown
to cleave and inactivate GRP78 (77, 78). Humanized antibodies
against GRP78 (PAT-SM6) have been developed and are currently
in clinical trials to determinewhether targeting cell surfaceGRP78
may be an effective anti-cancer treatment (16). Moreover, natu-
ral products such as the soy phytoestrogen genistein, curcumin,
and the green tea polyphenol EGCG have been shown to inhibit
GRP78 (16), indicating a possible role of dietary interventions
modulating UPR signaling. Therapeutic agents targeting UPR
in preclinical models indicate a great potential for the treat-
ment of advanced breast cancer. Combining current breast cancer
treatment modalities with drugs that target UPR signaling may
decrease tumor formation, tumor size, distant metastases, and/or
the development of drug resistance. Further experimentation is
critical to determine the effectiveness of UPR targeting drugs and
successful combinatorial drugs regimens; however, preclinical
data are promising.

UPR and the Tumor Microenvironment

The predominant focus of many studies is on the molecular sig-
naling in tumor epithelial cells. However, breast tumors contain
many different cell types including endothelial cells, fibroblastic
cells, macrophages, and T-cells that integrate to form a com-
plex bio-infrastructure that generally supports neoplastic epithe-
lial cell growth (79). Understanding how the UPR may affect
these other cell types is critical to the design of therapeutics and
the treatment of breast cancer. A study by Dong et al. showed
that breast tumors generated in GRP78 heterozygous mice were
smaller than wild-type tumors and displayed decreased tumor
microvasculature (80, 81). Further studies indicated that GRP78
silencing in endothelial cells reduced endothelial tube formation
and inhibited endothelial cell migration, suggesting that GRP78
plays a critical role in angiogenesis (80, 81). Previous studies
by Romero-Ramirez et al., and later confirmed by Chen et al.,
showed the link between XBP1 and hypoxia (24, 82). A major
difference between these studies is their conclusions on the effects
of XBP1 on angiogenesis. Inhibition of XBP1 in an embryonic
fibroblast cell line and in fibrosarcoma cells had no effect on
the secretion of pro-angiogeneic growth factors, such as vascular
endothelial growth factor (VEGF) and basic fibroblast growth
factor (bFGF). Thus, Romero-Ramirez et al. concluded that the
molecular mechanism controlling tumor growth deficiency in
XBP1-inhibited cells is likely hypoxia sensitivity and not an inhi-
bition angiogenesis (82). However, in a later publication, these
authors showed that XBP1 inhibition reduced angiogenesis in a
pancreatic adenocarcinoma model, suggesting that the effects of
XBP1 on angiogenesis may be cell type dependent (83). In Chen
et al., inhibition of XBP1 in MDA-MB-231 breast cancer cells also
resulted in decreased tumor blood vessel density as determined
by CD31 immunoreactivity (24). These data strongly suggest a
cell context specific role for UPR signaling in mediating tumor
angiogenesis.

Increased extracellular matrix (ECM) collagen deposition was
associatedwith breast tumor progression and chemotherapy resis-
tance (79, 84). Studies in a preclinical setting demonstrate that
targeting cancer-associated fibroblasts and collagen are an effec-
tive therapeutic option in the treatment of breast tumors (85, 86).
Epithelial to mesenchymal transition (EMT) also correlates with
breast tumor progression and endocrine therapy resistance (84).
EMT is associated with an increase in cellular protein secretion;
therefore, the recent study highlighting the link between EMT
and UPR reached a logical conclusion (87). Feng et al. demon-
strated that EMT favorably stimulated the PERK/ATF4 signaling
axis of UPR (87). This EMT-mediated stimulation of PERK was
required for cancer cells to invade and metastasize (87). Recent
studies have implied a possible role of GRP78 in EMT (16, 88,
89). Knockdown of GRP78 through RNAi led to decreased cell
mobility, invasion, and ECM degradation in hepatocellular car-
cinoma cells (88). Furthermore, GRP78-mediated colon cancer
metastasizes through regulation of EMT markers by ROS/NRF2
signaling (89). XBP1 was also shown to regulate EMT through
modulation of snail family zinc finger 1 (SNAI1; snail). Snail binds
to and inhibits e-cadherin, thereby promoting EMT. Inhibition
of XBP1 inhibited snail, while concurrently increasing e-cadherin
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expression (90). Overexpression of XBP1 increased snail protein,
reduced e-cadherin levels, and increased mesenchymal markers
in breast cancer cells (90). These data highlight an important role
of UPR signaling in the tumor microenvironment and suggest
that blocking the UPR in cancer could treat both the tumor
epithelial cells and also pro-survival activities within the tumor
microenvironment.

Conclusion and Future Directions

The unfolded protein response signaling integratesmany different
cellular processes, including protein folding, rates of transcrip-
tion and translation, protein degradation, autophagy, metabolism,
and cell fate pathways. Breast cancer tumors have elevated UPR
signaling components, including GRP78 and XBP1, which drive
endocrine therapy resistance. Treatment of breast cancer cell
lines and tumors with ERα targeting therapies results in the
activation of pro-survival UPR signaling, suggesting an intrinsic
resistance mechanism. Designing drugs, which may target pro-
survival UPR components (e.g., IRE1 or GRP78), while activating
pro-apoptotic UPR signaling (CHOP) would be highly benefi-
cial for the treatment of these cancers. Estrogen and ERα both
serve as a central regulator of autophagy and UPR modulating
these signaling pathways through different molecular mecha-
nisms. Antiestrogen therapies result in the accumulation of dys-
functional ERα in the cytosol, leading to UPR activation, while
endocrine therapies direct inhibition of ERα activity promotes

autophagosome formation. Both the stimulation of autophagy and
UPR by antiestrogens promote survival and resistance. Recently,
some studies are investigating the role of UPR signaling in the
tumor microenvironment. Of particular interest is the critical
role of UPR signaling in immunity, highlighting the importance
of syngeneic models in developing UPR-targeting therapeutic
strategies. While targeting UPR may be beneficial to inhibit
tumor epithelial cells, the effect on innate and adaptive immu-
nity is less clear. Further studies are needed to clarify the role
of UPR in T-cell signaling and macrophage cytolytic capacity.
Other studies showed UPR signaling promotes changes within
the tumor microenvironment that favors migration, metastasis,
and invasiveness, clearly demonstrating why targetingUPRwould
be an effective therapeutic option for the treatment of breast
cancer.
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