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Understanding the key to targeting
the IGF axis in cancer: a biomarker
assessment
Kunal Amratlal Lodhia†, Piyawan Tienchaiananda† and Paul Haluska*

Department of Oncology, Mayo Clinic, Rochester, MN, USA

Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling
pre-clinical evidence; however, to date, this has failed to translate into patient benefit
in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity,
including hyperglycemia, which largely results from the overlap between IGF and insulin
signaling systems and associated feedback mechanisms. This has halted the clinical
development of inhibitors targeting IGF signaling, which has limited the availability of
biopsy samples for correlative studies to understand biomarkers of response. Indeed,
a major factor contributing to lack of clinical benefit of IGF targeting agents has been
difficulty in identifying patients with tumors driven by IGF signaling due to the lack
of predictive biomarkers. In this review, we will describe the IGF system, rationale
for targeting IGF signaling, the potential liabilities of targeting strategies, and potential
biomarkers that may improve success.

Keywords: insulin receptor, insulin-like growth factor receptor, IGF binding proteins, biomarker discovery, IGF
system and signaling, insulin receptor substrate proteins, endocrine system diseases, targeted therapies

Background

The type 1 insulin-like growth factor receptor (IGF-1R) and its signaling components are required
for the development of the malignant phenotype, and low IGF bioactivity protects against the
development of clinical cancers (1). IGF-1R overexpression has been consistently shown in multiple
types of cancer, including pediatric and epithelial cancer and sarcomas (2, 3). The first assessment of
IGF-1R targeted treatment used αIR-3, a mouse monoclonal antibody (mAb), which blocked IGF-1
binding to IGF-1R and inhibited growth of estrogen-independent breast cancers in vitro and in vivo
(4–6). This hasmade IGF-1R a very attractive target, and currently twomain therapeutic approaches
are being developed: anti-IGF-1R monoclonal blocking antibodies and small molecule tyrosine
kinase inhibitors (TKIs) (7–9). IGF-1R antibodies function by blocking interactions between the
ligand and receptor, subsequently leading to receptor internalization and degradation (10). Addi-
tionally, IGF-1R mAbs result in insulin receptor (INSR) downregulation in cells expressing IGF-1R-
IR hybrid receptors (HR) (10, 11). IGF-1R TKIs act by competing with ATP for binding in the kinase
domain of IGF-1R and INSR, due to the highly conserved structure (7).

Eight IGF-1R targeting mAbs have been evaluated clinically, including AVE1642, BIIB022,
cixutumumab, dalotuzumab, figitumumab, ganitumab, robatumumab, and R1507 (7). Clinical trials
using these antibodies have shown limited activity in uncommon tumors such as ovarian carcinomas
and Ewings sarcomas, as well as thymonal and adrenocortical carcinomas, but little benefit as single
agent in common cancers. In addition, IGF-1R antibodies were recently reported to have single agent
activity in recurrent ovarian cancer (12). However, in combination with other forms of therapy such
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as chemotherapy or other targets agents, they have shown some
evidence of clinical benefit (7, 9, 13). For example, the combina-
tion of IGF-1R antibody with chemotherapy has led to significant
increase in response rates, with little added toxicity in non-small
cell lung cancer (NSCLC) (14, 15). However, this approach failed
to prolong survival in unselected patients, leading to premature
discontinuation of Phase 3 trail (16).

Six small molecule inhibitors have been evaluated clinically:
BMS-754807, Insm-18 (NDGA), XL-228, OSI-906 (linsitnib),
AXL1717 (PPP), and KW-2450 (7). Small molecule inhibitors
may offer several potential advantages over blocking antibodies.
Inhibitors can be administered orally and have a shorter half-
life than antibodies, in the order of hours rather than days (17).
This property can be exploited to allow for dosing flexibility,
which can be helpful in optimizing scheduling IGF-1R inhibition
with other agents. Moreover, the small molecule inhibitors target
the tyrosine kinase domain of the IGF-1R, which shares a high
degree of homology with the insulin receptor kinase domain.
This allows for not only targeting of IGF-1R but also the INSR
isoform, insulin receptor A (INSR-A), which can mediate tumor
growth. Initial clinical experience suggests that co-inhibition of
themetabolic isoform of the INSR, insulin receptor B (INSR-B), is
tolerable (18).

It is possible that a reason for lack of success in targeting the IGF
pathway is the lack of absolute dependence on IGF signaling for
tumor survival. Alternatively, it is more likely that we simply have
not selected the correct pathways for clinical investigation. This
would be supported by anecdotal evidence of antitumor activity.
As such, the key issue for successful clinical use of IGF-1R inhibit-
ing drugs is the need to identify biomarkers that predict sensitivity
to IGF-1R inhibition, in order to better select patients that would
benefit from single agent or combine IGF-1R inhibition effectively
with chemotherapy, radiotherapy, or other targeted agents.

Insulin Receptor and Insulin-Like Growth
Factor System

The IGF system includes three ligands (IGF-1, IGF-2, and insulin)
and two homolog receptors, which are IGF-1R and INSR. Each
of these receptors are heterodimeric proteins consisting of two
extracellular α subunits and two transmembrane β subunits (19).
There are two splice variants of the INSR: INSR-A, which is
missing a 12 amino-acid sequence from exon 11, and the full
length isoform, INSR-B (20). INSR-B is predominately expressed
in insulin target tissue: liver, adipose tissue, and muscle (21, 22).
INSR-A is expressed in embryo and fetal tissue; therefore, it is
called “the fetal INSR isoform” (23–25). Both INSR isoforms
have the same affinities with insulin; however, INSR-B primarily
mediates metabolic effects (26), whereas INSR-A promotes cell
growth, proliferation, and survival (27, 28). IGF-2 binding affinity
to INSR-A is very high when compared with INSR-B. In addition,
the affinity of IGF-1 to INSR-A is 10-fold higher than INSR-B
(24, 29). Proinsulin, which has inactive metabolic function, was
recently found to be able to stimulate INSR-Awith the same affin-
ity as insulin and induced similar biological effect (30). The role
of proinsulin in malignancy is still under investigation. The major
downstream cascades of IGF system are PI3K/AKT/mTOR and

Ras/Raf/MEK/ERK (Figure 1) (31–36). Activation of INSRs also
contributes to the downregulation of PTEN, enhancing PI3K acti-
vation (37). The action of insulin on signal transductions through
INSR-A is somewhat different from those elicited by IGF-2 in
terms of regulating certain gene and intracellular mediators (38,
39). The mitogenic effect from IGF-2 binding to INSR-A (IGF-
2/INSR-A loop) is more pronounced than insulin (39). More-
over, INSRs have signaling crosstalk with β-catenin/Wnt pathway
involved in proliferation and differentiation program (40).

INSRs are overexpressed in several malignancies including
breast, colon, lung, ovary, and thyroid cancer (24, 41, 42). Addi-
tionally, INSR-A is the predominant isoform expressed in a variety
of tumors such as breast, colon, ovarian, endometrium, and lung
cancer (24, 27, 43–45). In ovarian cancer cell lines, INSR-A also
preferentially expressed andmediated signaling in response to low
dose insulin and IGF-2 (45). Moreover, activation of IGF-2/INSR-
A loop promotes invasion and metastasis in choriocarcinoma
(46), while downregulating of INSRs reduces cell proliferation,
angiogenesis, and metastasis in cancer cells both in vitro and
in vivo (27, 47). In colorectal cancer, INSRs expression was found
only in blood vessels at the peritumoral region, but not in normal
tissue, suggesting INSRs may be involved in promoting angiogen-
esis (48). These data suggest that INSRs itself can promote cell
transformation and tumor development, and that INSR-A is an
important component of IGF signaling.

Insulin growth factor signaling may also have a crucial role
in cancer stem cell survival. Work by Bendall and colleagues
identified IGF-2 as having a direct role in the survival and self-
renewal ability of pluripotent human embryonic stem cells (49).
IGF-2 has also been shown to promote stemness though INSR-
A in neural stem cells in presence of IGF-1R blockade (50, 51).
Similar observations were made in thyroid cancer and hepato-
cellular carcinoma (HCC), where undifferentiated cancer cells
preferentially expressed higher levels of INSR-A and produced
higher levels of IGF-2 in order to activate the autocrine loop (41,
52). In addition to the presence of INSR-A, a decreased ratio
of INSR-A:INSR-B was reported to be associated with thyroid
cancer, colon cancer, and HCC cell line differentiation to a more
typical epithelial phenotype (53–55). Collectively, IGF-2/INSR-
A autocrine loop has been considered as an important signaling
pathway in cancer stem cell biology, and INSR-A:INSR-B ratio
may be important in the pluripotent phenotype of cancer cells.

Recent nucleotide sequencing and gene expression analysis
reported an increased INSR-A:INSR-B ratio in cancer tissue when
compared with normal tissue in breast, colon, lung, endometrioid
uterine, HCC, clear cell renal, and papillary cell renal carcinomas
(56). Furthermore, the prevalence of high INSR-A:INSR-B ratio
was found in >93% brain tumors and acute myeloid leukemias
(56). The finding of increased INSR-A:INSR-B ratio was con-
firmed by quantitative PCR in breast, NSCLC, prostatic, HCC, and
seminoma (56–59). In these reports, INSR-A mRNA expression
level was similar in both tumor and adjacent healthy tissue, while
INSR-B mRNA expression level was significantly decreased in
tumor when compared to healthy tissue (44, 56, 57, 59, 60). Acti-
vation of the EGRF/ERK pathway was associated with increased
INSR-A:INSR-B ratio in HCC (61). In addition to expression
of INSRs, increased INSR-A:INSR-B ratio may contribute to the
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FIGURE 1 | Signaling via the IGF-1R begins with binding of its
ligands, IGF-1, IGF-2, or insulin, to the extracellular α-subunit, and
this in turn leads to phosphorylation of the intracellular β-subunits.
Recruitment of the adaptor protein IRS-1 to the activated receptor initiates
signaling via the PI3K-AKT pathway leading to such cellular responses as
protection from apoptosis, proliferation, and translation. Recruitment of

adaptor protein SHC leads to activation of the RAS-MEK pathways leading
to changes in gene expression. In addition to the formation of homodimers,
IGF-1R/IR-A hybrid receptors can be formed comprising of two half
receptors; signaling via the hybrid receptors leads to proliferation. In
contrast to IR-A, IR-B binds primarily to insulin initiating glucose
metabolism.

proliferation of various cancer types by both activation of IGF and
EGFR pathway, raising the possibility of its value as a biomarker.

Hybrid Receptors

IGF-1R and INSRs share approximately 85%homology, withmax-
imal homology in the kinase domain (62). Moreover, these two
receptors can form HR A and B (HR-A and HR-B), depending
on the respective associated INSR isoform (63, 64). This adds
an additional level of complexity in understanding the signaling
state of the IGF pathway. These HRs randomly assemble with the
two INSR isoforms and IGF-1R with the same efficiency (29, 65–
68). Thus, a marked increased in INSR leads to the formation
of HRs rather than IGF-1R homodimers. Both HR-A and HR-
B have high affinities to IGF-1 and to a lesser extent for IGF-
2 (65, 68). Cancer cells often express both IGF-1R and INSR-A
that contribute to the activation of IGFs signaling by IGF-1 and

to a lesser extent by IGF-2 (42, 66, 69). The majority of breast
cancer specimens expressed HRs rather than IGF-1R (66). In vitro
experiments treating breast cancer cell lines overexpressing HRs
with IGF-1 induced greater auto-phosphorylation compared to
IGF-1R homodimers (66). Overexpression of INRSs and HRs was
also shown on malignant prostate epithelial when compared to
benign prostate epithelium and this was shown to correlate with a
higher Gleason score associated with poorer prognosis (58).

INSRs Signaling as a Resistant Mechanism
to IGF-1R Inhibitory Agents

Insulin receptor expression may lead to a compensatory mech-
anism for tumor treated with IGF-1R targets agents. In vitro
work by Zhang and colleagues demonstrated that downregua-
tion of the IGF-1R in breast cancer cell line leads to the
increased insulin sensitivity (70). When IGF-1R was blocked,
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INSR-mediated ERK/AKT activity was increased in response to
insulin at concentrations near to physiologic levels and enhanced
INSR-A homodimer formation (71–73). In Ewing’s sarcoma cell
lines that acquired resistance to anti-IGF-1R mAbs and TKIs,
overexpression of INSR-A homodimer and/or IGF-2 production
was observed (74). Vincent and colleagues used a NSCLC model
and colleagues demonstrated that dual inhibition of IGF-1R and
INSRs more effectively reduced NSCLC cell proliferation in cells
with high and low IGF-1R:INSR expression ratio (75). In this
report, INSRs mediated NSCLC proliferation when only IGF-1R
was blocked, suggesting that the resistant mechanisms to IGF-
1R inhibitory agents may be the ability of tumor cell to switch
from IGF-2/IGF-1R to IGF-2/INSR-A dependency (75). More-
over, IGF-1 might have a negative feedback at pituitary level caus-
ing growth hormone induced hyperinsulinemia consequently to
INSR-A activation (76, 77). Altogether, INSRs play an important
role in the mitogenic effect of IGFs signaling pathway and may
contribute mechanisms of resistance to IGF inhibitory agents.

INSR-A:INSR-B Ratio as a Cancer
Biomarker

In breast cancer, increased INSR-A:INSR-B ratio, measured by
mRNAexpression, has been reported in estrogen receptor positive
(ER+) and negative (ER-) primary untreated breast tumors, and
ER+ hormone refractory breast tumors (78). In addition, high
INSR-A:INSR-B ratio was significantly higher in luminal B than
luminal A subtype. Increased INSR-A:INSR-B in breast cancer
also correlated with high proliferation index by OncotypeDx and
FAK activation (44, 60). Ratio of INSR-A:INSR-B may serve as a
useful biomarker to predict prognosis in breast cancer. In contrast
to breast cancer, in squamous cell lung carcinoma, high INSR-
A:INSR-B ratio was associatedwith lower epithelial-mesenchymal
transition (EMT) gene signature and longer survival (56). A recent
case control study of colorectal adenoma in patients found no
difference in the total INSRmRNA; however, in patients with high
plasma insulin, increased INSR-A:INSR-B ratio was associated
with increased likelihood of having adenomas (79). Therefore, the
usefulness of INSR-A:INSR-B ratio likely varies by tumor type and
should be evaluated separately.

INSRs and HRs as Cancer Biomarkers

AhighmRNA level of INSRs and phosphorylated INSRs is associ-
ated with poor prognostic features such as high-grade, advanced
stage, and deep invasion in endometrial cancers (80). Further-
more, immunohistochemical staining of NSCLC, especially squa-
mous cell carcinoma, demonstrated that overexpression of INSRs
by immunohistochemistry (IHC) correlated with poor overall
survival (OS) (81). In early stage or lymph node negative breast
cancer, high expression of INSRs was associated with favorable
progression free survival (PFS) and OS (82, 83). Contrary to a
result from unspecified breast cancer patients, total INSRs and
phosphorylated IGF-1R/INSRs overexpression by IHCwas related
to poor OS in all breast cancer subtypes including those with
acquired resistance to tamoxifen (84). These inconclusive results
of INSRs as potential prognosis biomarkers in breast cancer
warrant the need for further studies.

Anti-IGF-1R mAbs have demonstrated potent growth inhibi-
tion in breast cancer cell lines with a low HR:IGF-1R ratio (66).
Subsequent studies in breast cancer examining high HR:IGF-
1R demonstrated greater anti-tumoral activity using h7C10, a
mAb targeting HR and IGF-1R, compared to mAbs targeting
IGF-1R alone (85). High ratio of INSR:IGF-1R also conveyed
resistance to the IGF-1R mAb cixutumumab in breast cancer
cell lines (86). Hence, for breast cancer, INSR/HR:IGF-1R ratio
may predict response to mAb against IGF-1R. In vivo data
from INSRs knockout pancreatic neuroendocrine tumor cell lines
demonstrated that lack of INSR increased sensitivity to cixu-
tumumab (86). However, this was not seen in gastric cancer
and HCC cell lines. A study by Kim et al. demonstrated that
high level of IGF-1R and INSRs expression predicted favorable
sensitivity to IGF-1R inhibition by the mAb figitumumab (87).
Furthermore, transfection of low INSR expressing cells with an
INSR-expression construct resulted in increased formation of
HRs and enhanced growth inhibition from figitumumab (87).
Finally, in this report, high HR expression was a strong pre-
dictive biomarker for figitumumab efficacy (87). The role of
INSR/HRs expression as potential predictive biomarker to mAb
to IGF-1R is needed to be further evaluated because of conflicting
results.

Small molecule TKIs offer an approach to target both IGF-1R
and HR simultaneously. The dual IGF-1R/INSR small molecule
inhibitor OSI-906 demonstrated anti-proliferative effects in HCC
cells lines overexpressing INSR and IGF-2 (88). Moreover, high
mRNA expression of IGF-2/INSR correlated with EMT gene
signature, which also was associated with increased sensitivity
to OSI-906 (88). Taken together, overexpression of IGF-2/INSR
predicts the EMT phenotype and response to OSI-906 in HCC
cell lines, and offers a method targeting IGF-1R, INSR, and HR
due to the high degree of homology in the kinase domain of these
receptors.

Insulin like Growth Factor Binding Proteins

There are six high affinity superfamilies of IGF binding proteins
(IGFBPs) that function as key regulators of the IGF pathway
(Figure 1) (89). IGFBPs are an important consideration in IGF
signaling potential, as they are key regulators in the bioavailabil-
ity of circulating IGF ligands (90). More recently, IGFBPs have
intracellular roles in regulating growth and survival, and intranu-
clear roles in transcription regulation, induction of apoptosis, and
DNA damage repair (91–93). In circulation, IGFBPs 1–5 has the
same affinities to IGF-1 and IGF-2, while IGFBP-6 has a binding
preference for IGF-2 (90). The binding affinity of IGFBPs to IGF
ligand is similar to the binding affinity of IGFs to IGF-1R (94–97).
The key function of circulation IGFBPs, especially with IGFBP-
3 and to a smaller extent IGFBP-5, is to form ternary complexes,
including IGFs, IGFBPs, and the acid-labile subunit (ALS) (98).
These complexes not only account for the major circulating IGFs
but also increase the half-life of unbound IGFs from a fewminutes
up to 16–24 h (98–100). Since, IGFBPs have a sequestration affect
that limits bioavailability of circulating IGFs and competitively
inhibits IGFs to bind with IGF-1R at pericellular region, leading
to the tumor suppressor action of IGFBPs.
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IGFBP-3 and IGFBP-5 are also well established as inhibitory
effect on tumor growth via an IGF-independent mechanism
(101–103). The type V transforming growth factor-β (TGF-β)
receptor (also known as low density lipoprotein receptor-related
protein 1; LRP1) is implicated as a binding receptor of IGFBP-3
and possibly, to a lesser extent, IGFBP-5 (104). TGF-β mediates
growth inhibition by dephosphorylating insulin receptor substrate
2 (IRS-2) and stimulates Smad 2/3 (104–106). Moreover, at cell
surface, the putative IGFBP-3 receptor (also known as trans-
membrane protein 219; TMEM219) is hypothesized to be death
receptor, stimulating caspase 8 dissociating from its cytoplasmic
tail upon ligand binding, and promoting apoptosis (107, 108). In
endoplasmic reticulum, IGFBP-3 can form a complex with the
chaperone protein GRP78 that induces apoptosis by competing
with caspase 7 for GRP78 binding (109). The IGFBP-3-GRP78
complex has also been demonstrated to augment autophagy as
a result of cellular stress; however, the mechanism for these
is still unknown (109, 110). In addition, IGFBPs can be inter-
nalized to nucleus and have interactions with nuclear hormone
receptors, including retinoid X receptor, retinoic acid receptor,
and the vitamin D receptor (93, 111). Activation of these recep-
tors induces transcription of IGFBP-3, IGFBP-4, IGFBP-5, and
IGFBP-6, which results in growth inhibition (110–116). For exam-
ple, IGFBP-3 can bind to retinoid X receptor, which induces
pro-apoptotic transcription activity (93). IGFBP-3 is required
for the formation of EGRF and DNA dependent kinase (DNA-
PK) complex in nucleus to initiating DNA repair after DNA
double-stand breaks following chemotherapy (92). IGFBP-3 is
also directly phosphorylated by DNA-PK, which stimulates its
binding to EGFR and leads to induction of apoptosis (117, 118).
IGFBP-6 enhances SEMA3B, a member of class 3 semaphorins
activity to inhibit vascular epithelium growth factor (VEGF).
Therefore, expression of IGFBP-6 can result in suppression of
angiogenesis (119).

Furthermore, mounting evidences are shown that IGFBPs may
not be purely regulatory, but may also have oncogenic potential.
IGFBP-1, IGFBP-2, and IGFBP-6 stimulate cell migration and
metastasis by interacting with α5 integrin and prohibin 2 (120–
122). Similarly, in activated Kras background, overexpression of
IGFBP-2 promotes tumor growth (123). IGFBP-2 also positively
regulates β-catenin inWnt signaling and integrin β1-ERK, leading
to pro tumorigenic effects (124, 125). In addition to intracellular
activity, the nuclear import of IGFBP-2 increases activation of
VEGF transcription resulting in increased angiogenesis (126).
In the context of breast cancer, IGFBP-3 and IGFBP-5, secreted
by carcinoma-associated fibroblasts (CAFs), inhibit detachment-
induced cell death, known as anoikis, via regulation of ERK-
MAPK activation (127).

The dichotomous effect of IGFBP-3 and IGFBP-5 may be
explained by the “sphigolipid rheostat,” which determines cell
fate and their interaction with microenvironment. Ceremide and
sphigosinemediate cell cycle arrest and cell death by autophagy; in
contrast, sphigosine-1-phophate (S1P) promotes cell survival and
proliferation (128). Sphigosine kinase (SK) generates S1P from
sphigosine. S1P can transactivate various growth factor receptors,
including EGFR and IGF-1R, by transportation to extracellular
space then activating S1P receptor (129, 130). Exogenous IGFBP-5

stimulates SK in vitro, then increases the level of S1P that may
contribute to survival effect; however, when fibronectin is present
in cell culture, the survival effect of IGFBP-5 is lost (131). On
the other hand, IGFBP-3 promotes ceramide induced cell death
when cells are grown in vitro; however, when cells are grown on
fibronectin, IGFBP-3 actions were reversed (131). IGFBP-3 also
activates SK and increases phosphorylation of EGF in a triple
negative breast cancer cell line (132).

IGFBPs as Potential Predictive and
Prognostic Biomarkers

High level of circulating IGFBP-1 was associated with poor all-
cause mortality and cancer specific death in colorectal cancer
patients (CRC) (133, 134). However, in a large Phase II study,
this putative prognostic biomarker failed to be confirmed (135).
In this and subsequent other studies, serum IGFBP-1 also did not
demonstrate a predictive value for cancer risk in CRC, NSCLC,
and endometrial cancer (136–140). In prostate cancer, high level
of IGFBP-1was associatedwith increased cancer risk and a shorter
time to castration resistant prostate cancer from androgen depri-
vation therapy (ADT) and reduced OS (141, 142). This suggests
that in prostate cancer, IGFBP-1 can both serve as a prognostic
and predictive biomarker. In HCC, on the other hand, low tissue
expression of IGFBP-1, assessed by IHC, was associated with
decreased OS (143). With regards to treatment with the mAb cix-
utumumab, high serum IGFBP-1 predicted improvement in PFS
and OS in HCC patients (144). However, high circulating levels
of IGFBP-1 failed to predict response to mAb against IGF-1R,
ganitumab, in CRC (135). There are conflicting data concerning
the predictive and prognostic value of IGFBP-1 as a biomarker,
and further studies in a variety of tumor types are necessary.

There is strong evidence of an association between gliomas
and IGFBP-2. Both high levels of serum IGFBP-2 and high tissue
expression IGFBP-2 by both IHC and mRNA levels correlate with
poor PFS and OS in gliomas, including glioblastoma multiforme
(GBM) (145–149). Similarly, associations exist in CRC, where
high serum IGFBP-2 correlatedwith increasedmortality rate (135,
150, 151). Nonetheless, the prognostic potential of circulating
IGFBP-2 in CRC was not demonstrated in other studies (134,
137). In addition, circulating IGFBP-2 did not predict response to
ganitumab inCRCpatients (151).High serum levels and high IHC
score of IGFBP-2 in NSCLC were also associated with poor OS
(152, 153). In contrast, high serum level of IGFBP-2was associated
with better OS in adrenocortical carcinoma (154). Low serum
level of IGFBP-2 in advanced pancreatic cancer predicted the
improvement of OS from ganitumab and gemcitabine (155). The
role of IGFBP-2 as a potential biomarker for prostate cancer was
evaluated in a large case control study; however, serum IGFBP-
2 did not predict risk of prostate cancer (156). There was no
association between serum level of IGFBP-2 and cancer risk in
endometrial and ovarian cancer (138, 157). IGFBP-2 was shown
to contribute to ovarian cancer cells invasion in vitro (158). Clini-
cally, an elevated serum level of IGFBP-2was shown to correspond
with poorer prognosis, suggesting prognostic value of IGFBP-2 in
ovarian cancer (159). Furthermore, in vitro treatment of ovarian
cancer cells with IGFBP-2 was shown to stimulate cell growth and
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potentiated the activation of multiple signaling pathways involved
in cell proliferation (160). Similar to IGFBP-1, studies examining
the prognostic and predictive value of IGFBP-2 as a biomarker are
conflicted and require further studies to clarify its value in specific
tumor types.

The most abundant IGF binding protein is IGFBP-3, and thus,
many studies have focus on IGFBP-3 level and/or its ratio to
the IGF-1 ligand, which may represent the inactive fraction of
circulating IGF ligand. In one large case control study, high serum
IGFBP-3 was associated with lower risk of CRC; however, several
other studies failed to demonstrate this same association (133–
137, 140, 161). High serum IGFBP-3 in CRC patients also did not
predict response to ganitumab, however did correlate with poor
PFS and OS (151). In breast cancer, the data regarding IGFBP-3
are conflicting. Some studies have reported that high serum levels
of IGFBP-3 are associated with increased risk of breast cancer in
pre- and or post-menopausal women (162, 163); however, several
studies were unable to confirm this finding (164–167). The ratio
between IGF-1 and serum IGFBP-3 was associated with increased
mortality, suggesting a potential prognostic biomarker value of
this ratio in breast cancer (167). In addition, levels of IGFBP-
3 in breast cancer tissue, determined by IHC but not mRNA
levels, were associated with poor OS (168, 169). A small cohort
study in breast cancer examining serum IGFBP-3 levels before and
1week after palliative chemotherapy demonstrated that patients
who showed decreased IGFBP-3 levels after treatment showed
poorer OS (170). In prostate cancer, high serum level of IGFBP-
3 correlated with increased cancer risk and cancer specific death
(156, 171–173). Expression of nuclear IGFBP-3 in prostatic cancer
tissue was also associated with decreased PFS time (174). How-
ever, other studies have failed to confirm the predictive value of
circulating IGFBP-3 for increased risk of prostate cancer (175,
176). In NSCLC, data more consistently demonstrate that high
levels of serum IGFBP-3 are associated with a better prognosis for
PFS andOS (177–179).Moreover, decreased expression of IGFBP-
3 from stage I NSCLC tissue was associated with poor PFS (180).
In other cancer types, specifically ovarian, endometrial, pancre-
atic, gastric, and renal cancer, no association was demonstrated
between serum IGFBP-3 and cancer risk (157, 181–187). In other
cancer types, specifically in squamous cell carcinoma of esopha-
gus and tongue, gastric cancer, HCC, and ovarian endometrioid
cancer including, low tissue expression of IGBP-3 was associated
with poor disease outcome (PFS orOS) (188–192). InGBM tissue,
high IHC expression of IGFBP-3 was related to poor OS (193).
High serum level of IGFBP-3 in advanced pancreatic cancer pre-
dicted the improvement in OS as a result of combined treatment
with ganitumab and gemcitabine (155). In contrast, circulating
IGFBP-3 did not correlate with a response to ganitumab in CRC,
and the combination of cixutumumab and the mTOR inhibitor,
temsirolimus, in other solid tumor patients (151, 194).

In breast cancer, high IHC staining for IGFBP-4 was associated
with longer PFS and OS (195). However, serum IGFBP-4 was not
associated with cancer risk for NSCLC (139). Additionally, a small
study demonstrated that IGFBP-4 levels were inversely correlated
with survival across all stages of epithelial ovarian cancer (196).
There has been no work publishing relationship between IGFBP4
and response to IGF targeting agents. Unlike the other IGFBPs,

few studies exist, examining IGFBP4 as a biomarker and might
represent an under-explored biomarker for predicting response to
IGF-1R targeted therapies.

Low circulation IGFBP-5 was associated with poor PFS in
NSCLC (139). In breast cancer, high tissue expression by IHC or
mRNA levels correlated with decreased PFS and OS (195, 197,
198). Furthermore, a highmRNA ratio of IGFBP-5/IGFBP-4 from
patients’ tissue enhanced the power of its poor prognostic value,
and also predicted resistance to the IGF-1R and INSR TKI, BMS-
536924, in a breast cancer cell line (197). After tamoxifen treat-
ment, low IGFBP-5 IHC expression correlatedwith poorOS (199).
In breast cancer patients, high serum levels of IGFBP-5 correlated
with improved time to treatment failure of cixutumumab (200).
Collectively, the tissue level of IGFBP-5 in breast cancer may be
both prognostic and predictive biomarker for tamoxifen and IGF
inhibitory agents. IGFBP-5 overexpression by IHC in urothelial
carcinomas of upper urinary tracts and urinary bladder was asso-
ciated with poor prognosis (201). Recently, low IGFBP-5 mRNA
expression in 93 cancer cell lines predicted a good response to
figitumumab in vitro (202). Hence, the prognostic and predictive
value of IGFBP-5 is encouraging and further study evaluating
IGFBP-5 mRNA levels as a potential biomarker for IGF-1R mAbs
is warranted.

There is no study that directly investigated IGFBP-6 as a poten-
tial biomarker. As a biomarker, there is no consistent evidence
from pre-clinical and clinical studies suggesting the value of IGF-
BPs to predict outcome or response to IGF targeted treatments. It
may due to the considerable complexity of the IGF-IGFBPs system
and their interaction with other pathways. Despite contradictory
results of IGFBPs, further studies are needed, investigating the
potential prognostic biomarker value that might need to be tailor
for each IGFBP and cancer type.

Nuclear IGF-1R

It is nowwell recognized that RTKs can translocate to the nucleus,
and this was first shown for EGFR (203–205). Nuclear EGFR is
capable of directly regulating gene transcription and also inter-
acts with DNA-dependent protein kinase catalytic subunit (DNA-
PKcs), a protein central to DNA repair by non-homologous end
joining (NHEJ) (204, 206). Once inside the nucleus, EGFR func-
tions as a co-transcription factor for several genes involved in
cell proliferation and angiogenesis, and as a tyrosine kinase to
activate and stabilize proliferating cell nuclear antigens and DNA
dependent protein kinases (207). More recently, IGF-1R has been
shown to translocate to the nucleus in cancers for the prostate,
renal, breast, soft tissue sarcomas, and Ewing sarcomas (208–210).

Following activation, IGF-1R is known to be internalized by
clathrin- and caveolin-mediated endocytosis (211, 212). Upon
internalization, IGF-1R is transported to recycling endosomes
where it is either recycled and shuttled back to the cell sur-
face or transported to lysosomes for degradation (213). Work by
Aleksic and colleagues showed that IGF-1 can stimulate ligand-
dependent internalization and nuclear translocation of full-length
IGF-1R subunits in prostate cancer cells (208). Nuclear translo-
cation was also demonstrated in melanoma cells by Sehat et al.,
who also reported that IGF-1R nuclear translocation requires
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SUMOylation on three evolutionarily conserved lysine residues
(K1025, K1100, K1120) in the beta subunit (214). Typically, pro-
teins that are transported to the nucleus contain a nuclear local-
ization sequence (NLS), which allows binding to importins for
translocation through nuclear pores (215). The IGF-1R does not
contain an NLS; however, Packham et al. recently demonstrated
that IGF-1R first associated with the dynactin subunit p150Glued,
which transports the receptor to the nuclear pore complex, where
it co-localizes with importin-β. Similarly, the function of nuclear
IGF-1R is unclear. Sehat et al. conducted a ChIP-sequencing
experiment and identified IGF-1Rbinding sites in the genome, but
these were few (~500) and most were remote from known genes
(214). Recent studies have shown that nuclear IGF-1R can bind
to LEF1 transcription factor and increase the promoter activity
of LEF1 target genes including cyclin D1, which might be an
additional mechanism by which IGF-1R promotes proliferation
(210). In addition, IGF-1R/INSR HR are reported to localize to
the nucleus of corneal epithelial cells (216).

Work by Aleksic and colleagues showed that higher levels of
nuclear IGF-1R were associated with poor prognosis in renal
cancer, suggesting that nuclear IGF-1R contributes to an aggres-
sive phenotype (208). Recent studies in HCC treated with the
EGFR inhibitor gefitinib showed increased levels of nuclear IGF-
1R following treatment (217). The IGF-1R nuclear translocation
was enhanced under gefitinib treatment and increased in a dose-
dependent manner. This suggests that nuclear IGF-1R transloca-
tion following gefitinib treatment may contribute to resistance to
IGF-targeting agents (217). Studies in a small group of patients
with sarcomas treated with several IGF-1Rmonoclonal antibodies
found that exclusive nuclear IGF-1R was associated with bet-
ter PFS and PS (218). This suggests that exclusive nuclear IGF-
1R staining might serve as a predictive biomarker for sarcoma
patients likely to benefit from IGF-1R mAb therapy (218). Initial
studies of nuclear IGF-1R point toward a role in transcription and
regulation of the cell cycle; however, the complex role of nuclear
IGF-1R is yet to be fully understood and research identifying
its function and regulation in the nucleus will provide for the
development of rational combination treatment in cancers that
develop drug resistance.

Biomarkers Based on Genetic Alterations
Outside IGF-1R Signaling

IGF-1R accomplishes a wide range of functions via a com-
plex signaling cascade, which raises the possibility of identify-
ing biomarkers outside the immediate IGF axis. To support this
idea, a study was reported using an unbiased siRNA screen to
identify factors that regulate sensitivity to IGF-1R inhibition in
childhood sarcomas. This work used the small molecule IGF-
1R inhibitor BMS-536924 and screened a library of 88 RTKs
and 31 Insulin/IGF signaling pathways proteins and identified
ribosomal S6 and macrophage-stimulating 1 receptor tyrosine
kinase (MSTR1R) (219). In this report, BMS-536924 failed to
block RPS6 activation in resistant sarcoma cell lines; however,
this siRNA targeting RPS6 restored BMS-53924 efficacy (219).
Recently, work by Gao et al. performed an unbiased siRNA screen
to identify factors that regulate sensitivity to a IGF-1R inhibitor

(AZ12253801) in prostate cancer cells and breast cancer cells
(220). Using this approach, two candidate biomarkers were val-
idated, Dsh Homolog DVL3, apart of the WNT signaling path-
way, and RAD51 required to strand invasion step of homologous
recombination (220, 221). In both these reports, inhibition or
genetic manipulation of DVL3 or RAD51 increased the sensi-
tivity of tumor cells to IGF-1R inhibition, representing a subset
of patients who might benefit from IGF-1R inhibition. Taken
together, these studies in childhood sarcomas, and prostate, and
breast cancers suggest that more studies are needed to investigate
the potential of components outside the IGF axis to provide
valuable predictive biomarkers for IGF-1R inhibition.

In addition to these screens, the breast cancer susceptibility
genes, BRCA1 and BRCA2, have recently been shown to reg-
ular IGF-1R expression or influence the downstream signaling.
In vitro work in MCF7 breast cancer cells demonstrated that
BRCA1 knockdown induces the expression of IGF-1 mRNA in
an estrogen receptor α-dependent manner, which was shown to
correspond with increased IGF-1R activation and signaling (222).
In a study examining women with BRCA1 and BRCA2 mutation
reported significant association in variants in IGF1R and IRS1 in
BRCA1 mutant carriers and also variants in IGFBP2 for BRCA2
carriers (223). Taken together, this suggests that tumors harboring
mutations or deletions in BRCA 1/2 genes might be more sensi-
tive to IGF-1R blockade. Further studies examining BRCA1 and
BRCA2 status as a predictive biomarker for IGF-1R inhibition are
warranted.

Expression Profiles

Given the complexity of growth factor signaling, it is conceivable
that there might not be a single predictive biomarker but rather
a combination of multiple factors. The use of a gene expres-
sion patterns has been previously reported in breast cancer, in
which IGF-1 treatedMCF-7 cells were profiled for RNA transcrip-
tion 3 and 24 h following treatment (224). In this report, IGF-1
treatment induced changes in the expression of genes associated
with proliferation, metabolism, and DNA repair, and in partic-
ular, IGF-1 signature was enriched for transcriptional targets of
PI3K/AKT/mTOR and Ras/MAP pathways (224). Similar profiles
were observed in ER-negative breast tumors but also in 25%of ER-
positive tumors, and tumorswith this profile demonstrated poorer
prognosis suggesting a predictive value in breast cancer (224).
Subsequent work by Creighton et al. examined the transcriptional
profile of the IGF-1R downstream signaling molecule PI3K and
found that ER levels negatively correlated with PI3K activation
levels both at the proteomic and transcriptional level (225). Treat-
mentwith a PI3K inhibitor resulted in decreased PI3K activity and
increased ER expression in vitro, and thusmight restore sensitivity
to hormone therapy (225). This suggests that patients with ER-
negative breast cancers might benefit from treatment with IGF
inhibitory drugs, as IGF signaling is capable of directly influencing
the activation of PI3K.

Conclusion

Compelling pre-clinical data supported the use of IGF-1R targeted
therapies; however, in unselected phase 2/3 clinical trails, IGF-1R
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targeted agents have shown little-to-no benefits. It is possible that
the current generation of mAbs and small molecule inhibitors
targeting the ligand binding domain or the intracellular kinase
domain is not the correct approach, due to toxicity and hyper-
glycemia. Perhaps, a more effective approach is to limit the
bioavailability of the ligands, IGF-1 and IGF-2, which inhibits
IGF-induced IGF-1R and IR-A activation but does not affect
insulin signaling. Such approach is currently being examined
with the mAb MEDI-573 and BI 836845, which reduces pro-
liferation and survival in vitro and in vivo (226, 227). The use
of ligand mAbs as an approach to limit toxicity and hyper-
glycemia, while inhibiting IGF-1R/INSR-A mediated effects of
tumor proliferation and survival, was supported by a Phase I
trial using MEDI-573 (228). A total of 43 patients were treated
with MEDI-573 at a dose greater than 5mg/kg circulating lev-
els of IGF-1 and IGF-II were fully suppressed (228). Moreover,
BI 836845 enhanced the antitumor efficacy of rapamycin by
blocking a rapamycin-induced increase in upstream signaling

in vitro as well as in human tumor xenograft models in nude
mice (226). Additionally, the lack of clinically effective IGF
targeted therapies might be a result of the lack of predictive
biomarker. Various pre-clinical studies have suggested that IGF
targeted agents might benefit patients of specific molecular back-
ground. For example, patients with triple negative breast can-
cer or KRAS-mutant lung cancers might benefit from IGF-1R
inhibitor drugs (229–231). The challenge in unlocking the poten-
tial for IGF targeted therapies lies in the need of predictive
biomarkers.
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