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Antimicrobial peptides (AMPs) play a critical role in innate host defense against microbial 
pathogens in many organisms. The human cathelicidin, LL-37, has a net positive charge 
and is amphiphilic, and can eliminate pathogenic microbes directly via electrostatic attrac-
tion toward negatively charged bacterial membranes. A number of studies have shown 
that LL-37 participates in various host immune systems, such as inflammatory responses 
and tissue repair, in addition to its antibacterial properties. Moreover, recent evidence 
suggests that it is also involved in the regulation of cancer. Indeed, previous studies have 
suggested that human LL-37 is involved in carcinogenesis via multiple reporters, such 
as FPR2 (FPRL1), epidermal growth factor receptor, and ERBb2, although LL-37 and 
its fragments and analogs also show anticancer effects in various cancer cell lines. This 
discrepancy can be attributed to peptide-based factors, host membrane-based factors, 
and signal regulation. Here, we describe the association between AMPs and cancer with 
a focus on anticancer peptide functions and selectivity in an effort to understand potential 
therapeutic implications.

Keywords: antimicrobial peptides, anticancer, carcinogenesis, LL-37, cathelicidin

introduction

Antimicrobial peptides (AMPs) are host defense molecules of the innate immune system of all life 
forms (1, 2). According to the AMP database, there are over 2,000 such peptides (3). They can be 
divided into seven groups: (I) linear peptides; (II) cyclic peptides; (III) glycopeptides; (IV) lipoglyco-
peptides; (V) lipopeptides; and (VII) thiopeptides and chromopeptides. AMPs typically contain fewer 
than 100 amino acids and occur in many cell types. They are generally cationic and amphipathic, and 
homologous peptides exist in vertebrates, invertebrates, and plants.

Mammalian AMPs belong to the defensin and cathelicidin families. Defensins contain six con-
served cysteine residues in their sequence and exhibit characteristic β-sheet structures stabilized by 
intramolecular disulfide bonds (4). Cathelicidins are characterized by a highly conserved cathelin-
like prosequence and variable carboxyl-terminal sequences that correspond to the mature AMPs 
(5, 6). Human cationic antibacterial protein of 18 kDa (hCAP18, also called LL-37 or FALL39) is 
the only cathelicidin in humans, and is primarily found in the secondary granules of neutrophils 
(6, 7); LL-37 is released as an active domain from macrophages/monocytes and various epithelial 
cells (8, 9).

Antimicrobial peptides were initially identified as functional antimicrobial molecules. Recently, 
they have been characterized as multifunctional peptides that serve a variety of biological roles, 
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such as immune regulation, wound healing, angiogenesis, and 
anticancer functions. Their anticancer activity depends on cancer 
types. The interactions between AMPs and cancer cells influence 
apoptotic or other pathways and can result in cell death. Based 
on their multifunctional activities, there is a growing interest in 
the development of AMPs as anticancer agents. Magainins, cecro-
pins, and defensins all have anticancer effects (10). An updated 
list of anticancer AMPs is available in the Antimicrobial Peptide 
Database (APD)1. The anticancer activities of human AMPs have 
not been widely evaluated; only six members (HNP-1, HNP-2, 
HNP-3, hBD-1, LL-37, and granulysin) with anticancer effects are 
annotated in the APD. LL-37 is overexpressed in breast, ovarian, 
and lung cancers, but it occasionally suppresses tumorigenesis 
in gastric cancer (11). Considering these reports, LL-37 can be 
associated with dual aspects of cancer progression via various 
receptors, such as epidermal growth factor receptor (EGFR), FRP2, 
ERBb2, P2X7, and GAPDH, or suppression via interaction with 
peptide-based factors and cancer membrane components. This 
review is described for discussion about these functional features 
of AMPs including LL-37.

Our research group previously found that the modified 
human-derived cathelicidin-related peptide FF/CAP18 has an 
anti-proliferative effect on the squamous cell carcinoma-derived 
cell line SAS-H1 (12) and the colon cancer-derived cell line HCT-
116 (13), although the detailed mechanism underlying this effect 
is not clear. We showed that FF/CAP18 treatment inhibits the 
proliferation of these cancer cell lines, and results in apoptosis and 
cell death. The complex involvement of LL-37 and its analogs in 
various cancer types requires additional studies.

LL-37

Only one cathelicidin (hCAP18/LL-37) has been found in 
myeloid bone marrow cDNA and isolated from neutrophils (7, 
14, 15). In humans, cathelicidin exons 1–4 are located on chro-
mosome 3p21. These are transcribed as a single gene encoding 
CAMP (cathelicidin antimicrobial peptide), a cationic, 18-kDa 
pre–pro-protein, which is also referred to as hCAP18 (14, 15). 
As shown Figure 1, hCAP18 is characterized by an N-terminal 
signal peptide (30 amino acid residues), a highly conserved 
pro-sequence (103 amino acid residues) called the cathelin-
like domain, and a mature antimicrobial peptide referred to as 
LL-37 (37 amino acid residues with Leu–Leu at the N-terminus) 
at the C-terminal domain. LL-37 is expressed in almost all 
tissues and organs, such as neutrophils (15), myelocytes (16), 
testes (7), keratinocytes (17), and saliva (18). LL-37 is the 
accepted family name for mature AMPs from the C-terminal 
region rather than the full-length protein. FALL-39 (which 
differs from LL-37 by two amino acids) is analogous to PR-39 
discovered in cattle (7).

LL-37 has a net positive charge of +6 at a physiological pH, a 
hydrophobic N-terminal domain, and an α-helical conformation 
that is most pronounced in the presence of negatively charged 
lipids (6). LL-37 is produced from the C-terminal domain of 

1 http://aps.unmc.edu/AP/main.php

FiguRe 1 | hCAP18 and LL-37 in cathelicidin family. The human 
cathelicidin hCAP18 consists of signal peptide (30 amino acids), N-terminal 
domain (103 amino acids), and C-terminal domain (37 amino acids). 
C-terminal domain shows various activities as active domain, and is called 
LL-37. A number of studies have revealed that shorter peptides that removed 
amino acids from LL-37 can show its activity. Moreover, replacement of 
amino acid residues can enhance its activity compared with LL-37.

the hCAP18/LL-37 precursor protein by proteolytic cleavage. 
hCAP18/LL-37 from specific neutrophil granules is processed to 
the active peptide LL-37 following exposure to serine proteases, 
and particularly proteinase 3 from azurophil granules after exo-
cytosis. Proteinase 3 cleaves hCAP18/LL-37 between the alanyl 
and leucyl residues (6). However, proteinase 3 is only expressed 
in myeloid cells and not in epithelial cells. The serine proteases, 
stratum corneum tryptic enzyme (SCTE, kallikrein 5) and stratum 
corneum chymotryptic protease (SCCE, kallikrein 7), control the 
activation of the precursor protein hCAP18/LL-37 on the skin 
surface and influence further processing to smaller peptides with 
alternate biological activity (5). Thus, the activity of cathelicidin 
is controlled by enzymatic processing of the proform to a mature 
peptide (LL-37) and/or various short forms, such as KR20 in 
humans (Table 1). In addition, the prostate-derived proteinase 
gastricsin (pepsin C) in the presence of vaginal fluid at low pH 
can also process epididymal-derived hCAP18/LL-37 in seminal 
plasma to functionally active ALL-38 (4). The antimicrobial activ-
ity of ALL-38 against a variety of microorganisms is equal to that 
of LL-37.

induction of LL-37

Various stimuli can induce LL-37 (Table 2). Bacterial infection is a 
particularly strong inducer because AMPs are functional peptides 
against pathogens. Mycobacterium tuberculosis infection induces 
the expression and production of LL-37 in a variety of cells, 
such as epithelial cells, alveolar macrophages, neutrophils, and 
monocyte-derived macrophages (9). Furthermore, LPS induces 
strong production of LL-37. However, some studies have reported 
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TAbLe 2 | Known factors that induce LL-37.

Factor Cell types Reference

Bacterial 
infection, LPS, 
TNF-α

A549 epithelial cells, alveolar macrophages, 
neutrophils, monocyte-derived macrophages, 
and keratinocytes

(9, 36)

Vitamin D3  
(via VDR)

Neutrophil progenitors and EBV-transformed 
B cells, and cervical epithelial cells

(25–27)

Vitamin D3 and 
analogs

Myeloid leukemia, immortalized keratinocyte, 
and colon cancer cell lines

(37)

Short-chain fatty 
acids

HT-29 (colon epithelial cells) and U937 
(monocytic cells)

(29, 30)

Zn2+ Caco-2 and intestinal epithelial cells (31)
Butyrate Colon, gastric, and hepatocellular cells (32)
Curcumin U937, HL29 (35)

TAbLe 1 | LL-37, short peptides, and analogs.

AMP Sequence (type) Net 
chargea

Antimicrobial 
activity

LPS-binding 
activity

Anticancer 
activity

Reference

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 
(original)

6 + + + (7, 11, 14, 15)

LL-27 
(hCAP18109–135)

FRKSKEKIGKEFKRIVQRIKDFLRNLV (short) 7 + + + (12, 19)

LL-CAP18 FRKSKEKIGKLFKRIVQRILDFLRNLV (analog designed) 7 + (high) + (high) + (high) (12, 19)
FF-CAP18 FRKSKEKIGKFFKRIVQRIFDFLRNLV (analog designed) 7 + (high) + (high) + (high) (12, 13, 19, 20)
RK-31 RKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (short) 7 + ND ND (21)
KS-30 KSKEKIGKEFKRIVQRIKDFLRNLVPRTES (short) 6 + ND ND (21)
KR20 KRIVQRIKDFLRNLVPRTES (short) 4 + ND ND (21)
FK16 FKRIVQRIKDFLRNLV (short) 4 + ND + (22)
KR12 KRIVQRIKDFLR (short) 4 + ND ND (23)

Net charge: (K + R) − (D + E).
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that LPS has a minimal capacity to stimulate cathelicidin produc-
tion after blood mononuclear cell activation (24). This could reflect 
differences among cell types. It was found to be upregulated by 
both 1,25-hydroxyvitamin D3 and 25-hydroxyvitamin D3, and the 
cathelicidin gene is regulated by the vitamin D pathway in humans 
(25–27). Exposure to sunlight, especially ultraviolet B photons, 
initiates the conversion of the provitamin D3 to previtamin D3 
in the skin. The second step in vitamin activation is the formation 
of 1,25-dihydroxyvitamin D (active vitamin D3). LL-37 can be 
induced by ultraviolet B irradiation and is upregulated in infected 
and injured skin. Gant et al. found that ultraviolet B and vitamin 
D may reduce the risk of several autoimmune diseases and some 
cancers (28). Recently, it has been reported that LL-37 is induced by 
various stimuli, such as short-chain fatty acids (29, 30), Zn2+ (31), 
and butyrate, which is a major metabolite produced by intestinal 
bacteria (32), and curcumin. Curcumin has been found to have 
clinical therapeutic and prevention potential for various cancers 
(33). Karunagaran et al. showed that curcumin-induced apoptosis 
mainly involves the mitochondria-mediated pathway in various 
cancer cells and that it inhibits proliferation of cancer cells by 
arresting them at various phases of the cell cycle. These effects are 
similar to those of LL-37 and the analogs (34). Guo et al. reported 
that curcumin upregulated CAMP mRNA and protein levels in 
U937 and HT29 cells through a vitamin D receptor-independent 
manner. The anticancer effect of curcumin can mediate not only 
direct signaling pathway but also upregulation of CAMP mRNA/
the protein level and vitamin D receptor expression (35).

Function of LL-37 in Cancer

Cancer is a major world health problem, and it is predicted that 
there will be approximately 26 million new cancer cases and 17 mil-
lion cancer-related deaths annually by 2030 (38). The management 
of cancer currently suffers from several issues. Cancer treatment 
strategies include radiation therapy, chemotherapy, and a combina-
tion of these, chemoradiotherapy, all of which exert cytotoxicity on 
cancer cells (39, 40). In addition, specific inhibitors are available, 
which are used for cancer therapy, such as RTK or kinase inhibitors, 
in the form of monoclonal antibodies or small organic molecules 
(41–43). Although these treatments lead to improvements in 
many tumor types, they can cause severe side effects and delayed 
neurotoxicity owing to their non-specific mechanisms, which is the 
first crucial matter. The second issue is the development of resist-
ance, which is caused by a number of factors. Many conventional 
anticancer reagents target factors related to cancer cell growth and 
show poor tumor penetration, resulting in reduced sensitivity of 
hypoxic cells in tumors that are in a growth-arrested state (44). 
Furthermore, the ABCB1 (MDR-1) gene can confer multidrug 
resistance in cancer cells via P-glycoprotein (P-gp), which belongs 
to the ATP-binding cassette family of transporters (45–47). P-gp 
expression may be low before chemotherapy; however, it is induced 
by chemotherapy, resulting in the transport of anticancer reagents 
from the cell before they interact with their intracellular targets 
(48). Therefore, to combat cancer, it is necessary to develop an 
innovative and unique therapeutic strategy. Several studies have 
indicated possible new targets of cancer treatment, such as the 
mitochondria (49), hybrid tubulin-targeting compounds (50), and 
anti-angiogenesis (51). However, it is generally accepted that the 
accumulation of oncogenes and tumor suppressor gene mutations 
promotes cancer development and cellular heterogeneity. High-
throughput DNA sequencing data suggest that thousands of point 
mutations, translocations, amplifications, and deletions contribute 
to cancer development, and that the mutational range differs, even 
among tumors with identical histopathology (52). Therefore, any 
therapeutic strategy designed to target a single biological event or 
individual signaling molecules is limited with respect to its ability 
to improve current survival rates, and novel strategies are needed.

The identification and development of peptides with therapeuti-
cally useful anticancer potential can be an innovative strategy (53, 
54). AMPs function in first-line defense against infections and 
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TAbLe 3 | Possible molecular targets of LL-37.

Target Cell Types Reference

EGFR Lung carcinoma cell line, bronchial epithelial 
cell line, keratinocyte

(57, 58, 64)

FRP2 (FPRL1) 293 cells stably transfected with FPRL1, 
eosinophils, neutrophils, umbilical vein 
endothelial cells, lung cancer cell lines

(8, 59, 60, 62)

ERBb2 Breast cancer cell lines (63)
P2X7 Monocyte (65)
GAPDH Monocyte (66)
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exhibit potent cancer cell toxicity (55, 56). According to the APD1, 
more than 170 peptides have anticancer effects. Accumulating 
evidence supports the role of the human cathelicidin antimicrobial 
peptide LL-37 in carcinogenesis. LL-37 and its fragments and 
analogs show anticancer effects for various cancer cell lines. In 
this review, we introduce the role of AMPs, with a focus on LL-37 
in human cancer in the next section.

LL-37 as a Therapeutic Target

LL-37 is actively involved in physiological responses in eukaryotic 
cells, such as tissue repair and wound healing, although it was 
originally identified as an antimicrobial peptide. Previous studies 
have suggested that the possible molecular targets are involved 
in these effects (Table  3). LL-37 induces cell migration and 
downstream innate immunity via transactivation of EGFR (57, 
58), and stimulates chemotaxis and angiogenesis via G-protein-
coupled formyl-peptide receptor 2 (FRP2), also known as formyl-
peptide receptor-like 1 (FPRL1) (8, 59, 60) (Figure 2). Based on 
these findings, it is not surprising that LL-37 is linked to cancer 
progression and metastasis. Indeed, hCAP18/LL-37 is expressed 
in breast cancer cells, and its production is most markedly higher 
in the breast epithelium of high-grade tumors than in normal 
mammary epithelia or low-grade tumors (>5 ng/mg total protein) 
(61); furthermore, FPRL1 is expressed in breast cancer (8, 62). 
Heilborn et al. also revealed that transgenic expression of LL-37 
significantly increases proliferation in the human keratinocyte cell 
line (HaCaT) and HEK293. Furthermore, Weber et al. showed that 
mRNA expression of hCAP18/LL-37 is strongly correlated with 
that of ERBb2 and with the presence of lymph node metastasis in 
estrogen receptor-positive tumors from clinical samples, and LL-37 
synergistically increases ErBb2 signaling (63) (Figure 2). These 
effects can be inhibited, suggesting the possibility of therapeutic 
strategies targeting LL-37. A truncated N-terminal peptide of 
LL-37, LL-25, inhibits LL-37 signaling and induces migration and 
changes in cancer cell colony morphology. Therefore, LL-37 is a 
putative therapeutic target to prevent progression to metastatic 
disease, although the detailed molecular mechanisms remain to 
be clarified.

Interestingly, these reports indicate the involvement of a recep-
tor; AMPs generally exert effects via electrostatic interactions with 
the cell membrane. Several studies have shown that AMPs other 
than LL-37, such as SK84, a glycine-rich AMP derived from the 
larvae of Drosophila virilis, NRC-3 and NRC-7 from Atlantic floun-
der species, and Temporin-1CEa isolated from skin secretions of 

the Chinese brown frog, show breast carcinoma cytotoxicity via 
membrane destruction (67–69). Accordingly, the abovementioned 
investigations suggest the existence of signaling pathways via an 
LL-37-specific receptor, despite the lack of a detailed understand-
ing of this mechanism.

Haussen et al. reported that LL-37 is expressed in human lung 
cancer cells (20–30 ng/mL) and acts as a growth factor (64). In 
this study, the EGFR signaling inhibitor AG1478 and MEK inhibi-
tors, PD98059 and U1260, significantly inhibited LL-37-induced 
proliferation. Additionally, the activation of MAP kinases was 
detected. Thus, the effects of LL-37 on lung cancer depend on 
the EGFR pathway, and its effects on breast cancer depend on the 
downstream activation of MEK and MAP kinases (Figure 2). It is 
noteworthy that the concentration of LL-37 necessary to activate 
lung cancer cell proliferation was on the order of nanogram per 
milliliter, whereas the administration of 20 μg/mL LL-37 decreased 
rather than increased cell numbers. The LL-37 expression level in 
the lungs is increased during inflammatory and infectious lung 
diseases (70–73), and this could promote local cancer growth. 
Cigarette smoke induces chronic obstructive pulmonary disease, 
which is an inflammatory disease, and increases the risk of lung 
cancer development (74, 75). Recently, it was reported that mouse 
homolog cathelicidin-related antimicrobial peptide (CLAMP) 
expressed in myeloid cells promotes cigarette smoke-induced lung 
tumor growth by recruiting inflammatory cells (76). Therefore, 
there may be a strong association between human cathelicidin 
antimicrobial peptide LL-37, inflammation, and cancer develop-
ment, and LL-37 may have unexpected positive effects for several 
types of cancer in normal conditions.

In prostate cancer, LL-37 is also overexpressed. In vitro and 
in vivo studies have demonstrated that proliferation and invasive 
potential decreased as a result of the targeted downregulation of 
CLAMP, indicating that the targeting of LL-37 in human prostate 
cancers could be the basis for new therapeutic strategies (77).

Coffelt et al. reported that LL-37 is significantly overexpressed 
in ovarian cancers relative to normal ovarian tissue and stimulates 
ovarian cancer cell proliferation, migration, invasion, and matrix 
metalloprotease secretion (1–25 μg/mL) (78). FPR2 (FPRL1) is not 
only involved in LL-37-stimulated cell growth but also promotes 
a more aggressive phenotype in ovarian cancer cells via a number 
of transcription factors in LL-37-FPRL1 signaling, such as cAMP 
response element binding protein (CREB), which may contribute 
to the invasive behavior of ovarian cancer cells (79). These findings 
indicate that LL-37-FPRL1 interactions in ovarian cancer cells are 
a potential target for a novel therapeutic strategy (Figure 2). The 
combination of CpG oligodeoxynucleotides (CpG-ODN) and LL-37 
generates significant therapeutic antitumor effects in in vivo experi-
ments (50–100 μg/mL) (19). Chuang et al. also observed that this 
combination enhances the proliferation and activation of peritoneal 
natural killer cells, resulting in antitumor effects. LL-37 promotes 
DNA translocation and can significantly increase interferon-α 
production in plasmacytoid dendritic cells (80); thus, it potentially 
delivers CpG-ODN to peritoneal immune effectors, causing potent 
tumor cytotoxicity. Based on these reports, LL-37 can be both a 
target and a candidate for therapeutic strategies for ovarian cancer.

In the last decade, P2X7 receptor expression and activity have 
been reported in several cancers (81, 82), and LL-37 is a potential 
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FiguRe 2 | Proposed LL-37 signaling pathways involved in cancer cell 
proliferation, migration, and tumor progression. Many studies have 
suggested that the PI3K/Akt and MAPK/Erk signaling pathways are activated 

via the interaction between LL-37 and several receptors, such as FPR2 
(FRPL1), EGFR, ERBb2, and P2X7. These signaling molecules can promote 
proliferation, migration, and tumor progression in cancer cells.
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ligand (65) (Figure 2). P2X7 triggers a range of responses including 
cell proliferation via the PI3K/Akt pathway (83). These findings 
indicate that LL-37 may promote growth via the P2X7 receptor in 
several cancers (Figure 2).

Anticancer effects of LL-37 as well as its 
Fragments and Analogs

Part of the LL-37 C-terminal domain (hCAP18109–135: FRKSKEK 
IGKEFKRIVQRIKDFLRNLV) shows anti-proliferative effects on 
human squamous cell carcinoma, SAS-H1, cells (20–40 μg/mL) 
(12). Specifically, hCAP18109–135 causes apoptosis via mitochon-
drial depolarization and DNA fragmentation but not via caspase 
activation. Furthermore, analog peptides with replacements of a 
glutamic acid residue and a lysine residue with leucine (LL/CAP18: 
FRKSKEKIGKLFKRIVQRILDFLRNLV) or phenylalanine (FF/
CAP18: FRKSKEKIGKFFKRIVQRIFDFLRNLV) at positions 11 
and 20, respectively, induce apoptotic cell death to a greater extent 
than did the original peptide (10–40 μg/mL). These analog peptides 
were designed to increase antimicrobial effects (84), which are 
associated with potent hydrophobic residues. This observation 
was based on the interactions between peptides and cancer cell 
membrane. These peptides, the LL-37 fragment, and its products 
containing amino acid substitutions can cause apoptotic cell death 
in cancer cells that have a more negatively charged cell membrane 
than in non-cancerous cells.

Several studies indicate that LL-37 and its fragments and ana-
logs show cytotoxicity in other cancer cell types. LL-37 inhibits 
gastric cancer cell proliferation by the activation of bone mor-
phogenetic protein (BMP) signaling via a proteasome-dependent 

mechanism (4–40 μg/mL) (22), and also induces apoptosis via the 
mitochondrial-associated pathway in Jurkat human T leukemia 
cells (25–200 μg/mL) (20). FK-16 (FKRIVQRIKDFLRNLV), which 
is a shorter fragment of LL-37, induces caspase-independent 
apoptosis and autophagy via the common p53-Bcl-2/Bax cascade 
in colon cancer cells (20–40 μM) (85). We have also observed that 
FF/CAP18 suppresses colon cancer cell proliferation via apoptotic 
cell death and changes metabolome levels (10–40 μg/mL) (13, 86).

In all cancer cells in which it suppressed proliferation or pro-
moted apoptosis, autophagy, and cell cycle arrest, LL-37 expression 
was downregulated (87–89). In addition, cathelicidin-deficient 
mice exhibit increased susceptibility to azoxymethane-induced 
colon carcinogenesis (89). These observations suggest that LL-37 
has a direct role in the suppression of tumorigenesis in several types 
of cancer (Figure 3), but other types of cancer may be affected 
by LL-37 through receptors related to proliferation or migration. 
These characteristics are more strongly affected by targeting the 
cancer membrane than by signaling induced by LL-37-receptor 
interactions due to the anionic cancer membrane. According to 
this view, the interaction between LL-37, which has a cationic 
charge, and the negatively charged membrane of cancer cells is 
extremely important with respect to the development of new 
therapeutic strategies, and we review the current understanding 
of these interactions in the next section.

interaction between AMPs and the Cancer 
Membrane

When discussing the anticancer effects of LL-37 and its fragments 
and analogs, it is important to consider both peptide-based factors 
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FiguRe 3 | Cancer-suppressive effects of LL-37 based on previous 
studies. Cancer cells may have more negatively charged membranes 
compared with non-cancerous cells owing to their anionic cell components, 

and these components can be targets for LL-37 (which has a net positive 
charge). This electrostatic interaction causes apoptotic cell death, autophagy, 
and cell cycle arrest, resulting in the suppression of cancer cells.
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and membrane-based factors. LL-37, one of the CAMPs, has a 
helical structure associated with increased peptide concentra-
tion, anions, pH, detergent, and lipids (6, 90), and interacts with 
the membranes of eukaryotic cancer cells. Its hydrophobicity 
and amphiphilicity may contribute to these interactions (91). 
Previous studies based on designed peptides have revealed that 
hydrophobicity is a critical factor in interactions between peptides 
and target cytoplasm membranes and the associated anticancer 
activity (92, 93). Moreover, anticancer peptide designed using a de 
novo approach show high specificity, i.e., they differentiate between 
cancerous and non-cancerous cells. It is generally recognized that 
amphiphilicity is a major determinant of the ability of peptides to 
partition the membrane; many studies have shown that changes in 
the amino acid distribution that disrupt the amphiphilic structure 
decrease the activity against bacteria or bacteria-mimic vesicles of 
many α-helical AMPs (94). A net positive charge is also critical for 
the anticancer action of AMPs (95, 96). Lysine has strong prefer-
ence for anionic membranes; however, arginine, another basic 
residue, exhibits a strong binding affinity to both zwitterionic and 
anionic membranes (97). Both arginine and lysine residues have a 
+1 charge in neutral buffer, indicating that lysine residues could be 
important in determining the selectivity of cancer cell membranes, 
which are more anionic, relative to those of non-cancerous cells. 
However, these factors alone are not sufficient to predict anticancer 
activities (98); thus, cancer membrane-based factors may also be 
important.

The widely accepted model of action of AMP interactions with 
cancer cell membranes is that AMPs are involved in a bilayer 
interaction involving a membranolytic mechanism and membrane 
translocation for the utilization of intracellular sites. A number 

of studies have revealed that cancer cell membranes have distinct 
features relative to non-cancerous cells, such as cholesterol and a 
variety of anionic components (91, 96, 99). Increased cholesterol, a 
major sterol in eukaryotic cell membranes (100), inhibits the lytic 
ability of a number of α-helical peptides toward membranes of 
non-cancerous cells and their lipid mimics. Therefore, cholesterol 
plays an important role in the general lack of anticancer action on 
cell membranes (91, 101–103). Interestingly, some cancer cells have 
increased cholesterol–lipid rafts (104), indicating that the relation-
ship between AMPs and cholesterol-lipid rafts may decrease the 
cancer cell toxicity (99). The formation of cholesterol-rich lipid 
rafts may reduce cholesterol-depleted bulk membranes harboring 
phosphatidylserine that are more susceptible to peptide attacks 
owing to increased fluidity and hence less tightly packed lipids 
(96). Therefore, cholesterol-rich rafts can be a key factor in the 
anticancer effect of AMPS (Figure 3).

The main determinant of the selectivity and toxicity of AMPs 
specific to cancer cells and not non-cancerous cells appears to be 
the overexpression of anionic membrane components, including 
glycoproteins, glycolipids, proteoglycans (PGs), and phospholipids 
on the surface of cancer cells compared with non-cancerous cells. 
In cancer cells, changes in the glycosylation of glycoproteins and 
glycolipids, including the increased expression of their terminal 
sialic acids (105), contribute to the selectivity of AMPs toward 
cancer cells (91). Several studies have shown that anticancer effects 
are reduced by enzymatic digestion of sialyl residues on the surface 
of cancer cell membranes, strongly supporting this suggestion (106, 
107). Thus, sialylated components of the cancer cell membrane 
play an important role in the selectivity and toxicity (Figure 2). 
PGs, which are negatively charged, contribute to the negatively 
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charged glycosaminoglycan side chains (108). Several studies have 
suggested that the expression of PGs on cancerous cell surfaces is 
much higher than on the surfaces of non-cancerous cells (109–111). 
Zwaal et al. reported that phosphatidylserine, a negatively charged 
phospholipid, can be exposed on the surface of the outer membrane 
leaflet in cancer cells (112) (Figure 2). These factors can contribute 
to the anticancer effects of AMPs including LL-37.

Conclusion and Future Challenges

Despite the accumulation of scientific knowledge from a large 
number of studies showing that the anticancer action of LL-37 and 
other AMPs has potential applications for novel cancer treatment 
strategies, there are a few remaining challenges. In particular, its 
selectivity and toxicity are complicated and it will be important to 
consider the effects of both peptide-based and membrane-based 
factors. Furthermore, as we described in this review, there is a 
variation in the sensitivity of LL-37 among the cancer types. In 
breast, lung, and prostate cancers, LL-37 promotes proliferation, 
migration, and tumorigenesis through receptor signaling, but in 
other types of cancers, such as gastric cancer, colon cancer, and 
T-cell leukemia, it can suppress proliferation and induce apoptotic 
and autophagic cell death. There is no conclusive evidence to 
explain the opposite effects in various cancers. To resolve this issue, 
we may need to examine the effects of LL-37 on cancer cells from 
a different perspective.

It is also conceivable that LL-37 contributes to immune systems 
and exerts effects in combination with additional factors. Indeed, 

several antimicrobial agents, such as human beta defensin and 
LL-37, have synergistic antibacterial and anti-inflammatory 
activities (113–116). Therefore, LL-37 can interact with several 
factors to induce both positive and negative effects on cancer cells. 
Combination therapies with anticancer agents are a possible novel 
cancer treatment strategy.

Two receptors, FPR2 (55) and P2X7 (65), are thought to be 
involved in mediating the effects of LL-37 in various cell types. 
The glycolytic enzyme GAPDH has also been identified as a novel 
intracellular receptor, and is a direct binding partner for LL-37 
in monocytes (66). However, the functions of these receptors 
including the intracellular effects mediated by LL-37 are not fully 
understood in cancer cells. For the application of AMPs as new 
therapeutic agents, it is necessary to clarify their receptor interac-
tions and cellular mechanisms.

There are many well-known barriers to drug entry. Recently, 
new drug-delivery systems have been proposed (117). These 
approaches include mucoadhesives, viscous polymer vehicles, 
nanoparticles, and others. Local applications or missile treat-
ments are possible for AMPs, irrespective of their toxicity. 
A novel nanocarrier was used to deliver the anticancer drug 
5-fluorouracil to increase antitumor efficacy against breast 
cancer cells in vitro and in vivo (118). Eguchi et al. explained 
that magnetic anticancer drugs have the potential to greatly 
advance cancer chemotherapy for new theranostics and drug-
delivery strategies (119). Anticancer therapy with AMPs could 
be successful when used in conjunction with new drug-delivery 
systems.
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