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Transitions between epithelial and mesenchymal phenotypes – the epithelial to 
 mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition 
(MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and 
mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) 
(i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial 
(e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to 
move collectively as clusters. If these clusters reach the bloodstream intact, they can give 
rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. 
Here, we review the operating principles of the core regulatory network for EMT/MET 
that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and 
hybrid E/M – and present a theoretical framework that can elucidate the role of many 
other players in regulating epithelial plasticity. Furthermore, we highlight recent studies 
on partial EMT and its association with drug resistance and tumor-initiating potential; and 
discuss how cell–cell communication between cells in a partial EMT phenotype can enable 
the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and 
have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal 
(complete EMT) phenotype. Also, more such clusters can be formed under inflammatory 
conditions that are often generated by various therapies. Finally, we discuss the multiple 
advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete 
EMT phenotype and argue that these collectively migrating cells are the primary “bad 
actors” of metastasis.

Keywords: partial eMT, intermediate eMT, cancer stem cells, cell-fate decisions, cancer systems biology

Abbreviations: ACT, amoeboid collective transition; AMT, amoeboid mesenchymal transition; BLBC, basal-like breast cancer; 
CAT, collective amoeboid transition; CSC, cancer stem cell; CTC, circulating tumor cell; EMT, epithelial mesenchymal transition; 
FACS, fluorescence-activated cell sorting; MAT, mesenchymal amoeboid transition; MET, mesenchymal epithelial transition; 
NICD, notch intracellular domain; TNBC, triple negative breast cancer.
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introduction

Despite remarkable progress in charting the hallmarks of cancer, 
understanding the cell-fate decisions during tumor initiation, 
progression, dormancy, and relapse is a major challenge in modern 
oncology (1). These dynamic decisions enable the tumor cells to 
tolerate therapeutic assaults such as chemotherapy or radiation; 
adapt to common micro-environmental stress that they face dur-
ing cancer progression such as hypoxia, nutrient deprivation, and 
inflammation; and complete their “metastasis-invasion cascade” 
to seed tumors in distant organs at early stages; thereby posing 
unpleasant surprises in the clinical trials.

Recently, there has been rapid progress in characterizing these 
cell-fate decisions or cellular plasticity by mapping the underlying 
regulatory networks associated with the tumor–stroma ecosystem 
such as epithelial–mesenchymal plasticity, dedifferentiation of 
cancer cells to Cancer Stem Cells (CSCs), drug resistance, cell 
senescence, metabolic reprograming, response to hypoxia, and 
tumor angiogenesis (1–3). Cell-fate determination in these exam-
ples involve changes in expression of various transcription factors 
(TFs), miRNA (miRs), and epigenetic regulators that govern 
the underlying regulatory networks and consequently generate 
genome-wide distinct expression patterns of genes and proteins 
corresponding to a particular cell fate (3).

An archetypical example of cell-fate decisions or cellular plastic-
ity during tumor progression is the transition between epithelial and 
mesenchymal phenotypes – epithelial to mesenchymal transition 
(EMT) and its reverse MET. EMT marks the first step of “invasion-
metastasis cascade” where epithelial cells of the primary tumor lose 
their cell–cell adhesion and apico-basal polarity, and gain the ability 
to migrate individually and invade basement membrane and blood 
vessels. Upon intravasation, these cells stay in the bloodstream 
as circulating tumor cells (CTCs), until they exit at some distant 
organs to seed micrometastases. During seeding, they undergo the 
reverse of EMT – MET – to regain their epithelial characteristics 
and form secondary tumors or macrometastases, thereby complet-
ing their “metastasis-invasion cascade”. Therefore, EMT and MET 
enable solid tumors, over 90% of which are epithelial in nature 
(carcinomas) (4), to disseminate and colonize distant organs. 
However, EMT and MET are not exclusive to cancer, rather they 
play crucial roles in organogenesis during embryonic development, 
and wound healing or tissue regeneration where they are regulated 
tightly, but cancer cells “hijack” this developmental process for 
metastasis (5, 6) – the cause of 9 out of 10 cancer-related deaths (7).

Importantly, EMT and MET, whether in physiological or 
pathological contexts, are not binary processes (5, 6). Some cells 
can attain a hybrid epithelial/mesenchymal (E/M) phenotype, 
also referred to as partial or intermediate or incomplete EMT 
phenotype (8–10). In fact, many carcinoma cells may metasta-
size without completely losing an epithelial morphology and/
or completely attaining mesenchymal traits (4, 11). Cells in the 
hybrid E/M phenotype have both epithelial (cell–cell adhesion) 
and mesenchymal (migration) traits, hence allowing collective cell 
migration, as seen during migration of multicellular aggregates in 
the ECM (4) and clusters of CTCs in bloodstream of breast, lung, 
and prostate cancer patients (12–14) (Figure 1A). Cells in the CTC 
clusters co-express epithelial and mesenchymal markers (15), can 

exit the bloodstream more efficiently (16), are apoptosis-resistant, 
and can be up to 50 times more metastatic than individually 
migrating CTCs (17). Therefore, the ability of metastatic cells to 
attain this hybrid E/M phenotype, rather than a complete EMT 
phenotype, poses a higher metastatic risk in patients (18).

Here, we focus our review on elucidating how cells attain 
this phenotype, characterizing this hybrid E/M phenotype, and 
discussing why cells in this phenotype are the primary “bad actors” 
of cancer metastasis.

eMT Decision Making:  
The Operating Principles

Epithelial cells can undergo EMT under the influence of many 
signaling pathways such as TGFβ, EGF, HGF, Notch, FGF, Wnt, and 
IGF (19), and mechanical factors such as ECM density (20). These 
signals usually activate one of the EMT-inducing transcription 
factors (EMT-TFs) – TWIST1, SNAI1, SNAI2 (SLUG), ZEB1, 
ZEB2 (SIP1), Brachyury, Goosecoid, SIX1, and PRRX1 – that 
directly or indirectly repress E-cadherin, the hallmark of epithelial 
phenotype. Conversely, EMT can be inhibited by p53, MET-TFs 
such as GRHL2 and ELF5, and microRNA (miR) families such as 
miR-200 and miR-34 (3).

In many carcinomas, these signals converge on a core EMT 
regulatory network, also referred to as “motor of cellular plastic-
ity” owing to its coupling with many key cellular properties such 
as apoptosis, cell cycle, metabolism, and immunosuppression 
(21–25). This regulatory network is composed of two TF families – 
SNAIL and ZEB and two miR families – miR-200 and miR-34. 
The epithelial phenotype corresponds to high levels of miR-200 
and miR-34, whereas the mesenchymal phenotype corresponds 
to high levels of ZEB and SNAIL. These components form two 
interlinked mutually inhibitory feedback loops – miR-34/SNAIL 
and miR-200/ZEB (26–28), such that EMT-inducing signals such 
as TGFβ, EGF, HGF, and Notch activate ZEB and SNAIL, and p53 
activates miR-200 and miR-34 (3) (Figure 1B).

Mutually inhibitory Feedback Loops:  
A Central Motif of Cell-Fate Decision
Mutually inhibitory feedback loops between two fate-determining 
TFs are one of the simplest gene circuits, and form a central motif 
in many cell-fate decisions. For instance, CDX2 and OCT4 control 
the fate of pluripotent embryonic stem cells – CDX2 induces 
trophoectoderm (TE) fate and OCT4 induces the opposite “sister” 
fate – inner cell mass (ICM) (29). Similarly, cross-inhibitory TFs 
PU.1 and GATA.1 are situated at the branch point of erythroid 
and myeloid lineages in hematopoiesis. The mutual repression 
between the two TFs guarantees mutual exclusivity of the two 
identities (for instance, an erythroid cell cannot be a myeloid cell 
and vice versa), and hence distinct cell identities (29). Therefore, a 
mutually inhibitory loop between two TFs A and B usually behave 
as binary or bistable switches allowing two distinct cell-fates – one 
corresponding to (high A, low B) expression and the other by 
(low A, high B), or in other words, (1,0) and (0,1) states where “0” 
denotes relatively low expression, and “1” denotes high expression 
(30–32) (Figure 2).
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There can be two important variations to this bistable behavior 
of a mutually inhibitory feedback loop. First, if mutual repression 
between the two TFs is not strong enough, both A and B are co-
expressed at some intermediate level (1/2, 1/2) and the feedback 
loop does not give rise to two distinct cell fates (33, 34). Second, 
if one or both TFs auto-activate themselves strongly in addition 
to strongly repressing the other TF, the circuit can allow for three 
distinct phenotypes – (1, 0), (0, 1), and (1/2, 1/2) – or (high A, 
low B), (low A, high B), and (medium A, medium B). The (1/2, 
1/2) state can act as the “poised” state of a progenitor cell that can 
differentiate to attain either of the two lineages – (1, 0) or (0, 1) 
(31, 35) (Figure 2).

Importantly, distinct cell fates, as discussed above, are different 
than quantitative trait variation between two cells belonging to the 
same fate. For instance, CDX2 levels in two cells both belonging 
to TE are most likely to be slightly different because of cellular 
stochasticity or non-genetic heterogeneity (36). However, neither 
of these cells spontaneously, or upon a small perturbation, trans-
differentiate to adopt a different fate. Transdifferentiation often 
requires a large external signal such as overexpression of some 
cell-fate “master regulator” TFs (37, 38). This robust behavior of 
cell-fates reflects that they are “stable steady states” of the under-
lying regulatory network, characterized by a particular range of 
values of all variables (expression levels) of all the elements in the 
system (genes, chromatin states, etc.) (29). Therefore, the existence 
of distinct cell fates in a cell population is often manifested as a 
multimodal distribution of some of these elements that can be 
captured in FACS experiments (Figure 3A). Conversely, if a system 
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FiGURe 1 | eMT phenotypes and core eMT network. (A) Canonical 
morphological and functional characteristics of the three phenotypes – epithelial 
(E), hybrid epithelial/mesenchymal (E/M), and mesenchymal (M). (B) Core EMT 
regulatory network (shown in yellow box) consists of two interconnected 
mutually inhibitory feedback loops – (miR-34/SNAIL and miR-200/ZEB). Solid 
bars represent transcriptional inhibition, solid arrows represent transcriptional 

activation, and dotted lines denote miRNA-mediated regulation. Numbers 
mentioned alongside each regulation are the number of binding sites for that 
particular regulation, as experimentally determined or proposed. This core 
network receives inputs from a variety of signals (shown by I), modulates many 
cytoskeletal elements (E-cadherin, N-cadherin, Vimentin, and polarity complexes), 
and couples with many other cellular traits. [adapted from Refs. (22) and (41)]

is monostable but exhibits quantitative trait variation as a function 
of external drivers, the FACS distribution will be roughly Gaussian 
(Figure 3B). Consequently, switching cell-fates usually entails a 
discontinuous jump in the expression levels of many genes, and 
can therefore be observed only in a multistable system, but not in 
stochastic variations within a monostable system (same cell fate). 
For instance, when a bipotent progenitor cell type differentiates to 
adopt any one of the two daughter lineages, the steady state corre-
sponding to the bipotent progenitor disappears or loses its stability, 
and two new stable steady states emerge – each corresponding to 
a daughter lineage and each with a new and distinctive expression 
pattern (39) (Figure 3A).

These major qualitative as well as quantitative differences between 
distinct cell fates that emerge and then disappear as inputs are varied 
vs. quantitative trait variation of a single fate have important implica-
tions. In a typical experiment, some specific attributes of the popula-
tion are monitored as a control parameter is varied. Monostable 
systems exhibit no hysteresis and no multimodality in the population 
structure; they can however be ultrasensitive and thereby exhibit 
sharp thresholds in dose–response curve (Figure 4A). A system that 
exhibits multiple states with individual cells making fate decisions 
will in general exhibit hysteresis, will often exhibit multimodality, 
in addition to being able to exhibit sharp thresholds as the systems 
reaches points of bifurcation (Figure 4B). We shall argue below 
that the experimental data currently available for the EMT process 
strongly suggests an interpretation in terms of distinct cell fates, 
but this needs to be carefully addressed in more quantitative and 
carefully designed future experiments.
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why Two Mutually inhibitory Loops in  
the Core eMT Network?
As mentioned above, the core EMT network comprises two mutu-
ally inhibitory loops – (miR-34/SNAIL) and (miR-200/ZEB). Two 
computational models of this network have proposed different 
functions for these two loops. Tian et al. (40) have proposed that 
both the loops – (miR-34/SNAIL) and (miR-200/ZEB) – function 
as bistable or binary switches that initiate and complete EMT, 
respectively. They define the E phenotype as (high miR-200 and 
miR-34, low ZEB and SNAIL), M phenotype as (low miR-200 
and miR-34, high ZEB and SNAIL), and partial EMT as (low 
miR-34 and ZEB, high SNAIL and miR-200). On the other hand, 
we propose that miR-34/SNAIL acts as a noise-buffering inte-
grator of various EMT- and MET-inducing signals, preventing 
aberrant activation of EMT or MET due to transient signals, but 
not giving rise to any phenotypic transitions by itself. In other 
words, we argue that this subsystem would be monostable if it 
could be detached from any feedback from downstream effectors. 
Conversely, miR-200/ZEB, with input from SNAIL, behaves as a 
tristable or three-way switch allowing for the existence of three 
phenotypes – E (high miR-200, low ZEB), M (low miR-200, high 
ZEB), and E/M or partial EMT (medium miR-200, medium ZEB) 
(22, 41).

One cell 
fate

Two cell 
fates Three 

cell fates

B

A

FiGURe 2 | Dynamic characteristics of mutually inhibitory feedback 
loops. (A) (left) Weak mutual inhibition between A and B allows 
monostability where the steady state has intermediate levels of both A and 
B; (middle) Strong mutual inhibition between A and B can drive one species 
to extremely low levels, and therefore bistability, such that the two steady 
states are – (high A, low B) or (1,0), and (low A, high B) or (0,1); (right) Strong 
mutual inhibition between A and B, coupled with strong self-activation of 
both A and B can enable the system to be tristable, such that the three 
steady states are – (high A, low B) or (1,0), and (low A, high B) or (0,1), and 

(medium A, medium B) or (1/2, 1/2). Red and black curves describe 
nullclines for A and B, and their intersections are the steady states. 
Green-filled circles represent stable steady states, and green hollow circles 
show unstable steady states. The thickness of lines representing mutual 
inhibition between A and B, and self-activation of A and B represent relative 
strength of those interactions. (B) Cartoons (corresponding to the circuit 
drawn in the same column) representing the potential energy of the system, 
where valleys represent stable steady states, and crests denote unstable 
steady states.

Both existing models provide similar explanations for the E 
and M phenotypes, and can therefore be compared to experiments 
that focus on cells that undergo a complete EMT. Experiments 
showing that SNAIL can initiate repression of E-cadherin but 
ZEB is required for its complete inhibition (42), and that most 
genes repressed during EMT are inhibited by ZEB irrespective of 
the EMT-inducing signal (43), are consistent with either model; 
both approaches argue for ZEB activation to be necessary for a 
complete EMT (transition to a completely mesenchymal pheno-
type). Similarly, experiments showing that upon withdrawing the 
EMT-inducing signal, only the cells with low ZEB levels, but not 
high ZEB levels, revert to being epithelial immediately, indicate 
that ZEB activation marks a commitment point for cells to undergo 
an EMT (44) – a prediction both models make. Parenthetically, 
this lack of reversion is direct evidence in favor of the multistability 
picture (Figure 4B). Further, both the models predict that revert-
ing EMT requires suppressing the EMT-inducing signal as well as 
ZEB, and that SNAIL knockdown does not suffice. Experiments 
validating these predictions, again, fail to discriminate between 
the two models (45–47).

However, experimental studies focusing on partial EMT can 
distinguish between the two models, and appear in our opinion 
to be more consistent with (medium miR-200, medium ZEB) 
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cell fate. (A) (Left) bifurcation diagram representing variation in levels of A as 
an input is applied to a bistable mutually inhibitory circuit between A and B. At 
some threshold value of the input signal (marked by bifurcation point), the 
initial cell fate disappears and gives rise to two new stable steady state or cell 
fates. (middle) These two cell fates can be observed as different 
subpopulations in a FACS experiment. (right) Most cells attain one of the two 

cell fates, and the population distribution is bimodal with different range of 
values of A. (B) (left) Bifurcation diagram representing variation in levels of A as 
an input is applied to a monostable mutually inhibitory circuit between A and 
B. The circuit responds in an ultrasensitive manner but no bifurcation of cell 
fates observed. (middle) FACS experiments show a population with 
continuously varying levels of A without any sharp boundaries, hence (right) 
the population distribution is unimodal and broadly Gaussian.
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definition of partial EMT rather than with (high miR-200, low 
ZEB). For example, studies in mammary morphogenesis – a 
canonical case of partial EMT – identified a TF that can maintain 
the terminal end bud (TEB) cells in a partial EMT phenotype – 
OVOL, and knockdown of OVOL leads to complete EMT. Thus, 
OVOL acts as a “critical molecular brake on EMT” (48). OVOL is 
coupled with EMT core circuit in an intricate manner – it forms 
a mutually inhibitory switch with ZEB, inhibits miR-200 indi-
rectly, and self-inhibits (49–52). Adding these interactions to our 
model, we showed that OVOL expands the range of parameters or 
physiological conditions for the existence of partial EMT or hybrid 
E/M phenotype (53), thereby explaining its role in maintaining 
the partial EMT phenotype. Similarly, co-expression of ZEB1 and 
E-cadherin in cells undergoing gastrulation (another example 
of partial EMT) (54) and, as discussed later in this review, the 
association of partial EMT with high tumor-initiating potential 
(“stemness”), are more likely to correspond to the (medium miR-
200, medium ZEB) state structure for partial EMT.

The different results for partial EMT in the two models emerge 
from different modeling assumptions. The study by Tian et al (40) 
assumes simple universal forms for the various repressive interac-
tions in the double-switch circuit. This assumption ignores key 
experimentally identified differences between the architecture of 
these two loops – two binding sites of miR-34 on SNAIL mRNA vs. 
six binding sites of miR-200 on ZEB mRNA (55, 56), self-inhibition 
of SNAIL vs. (indirect) self-activation of ZEB (57, 58), and finally 
the difference in transcriptional regulation vs. translational regula-
tion by miRs (59–63). Importantly, the number of binding sites 
of a miR on an mRNA is crucial for determining the fold-change 

repression in protein expression, as shown by experiments that 
overexpression of miR-34 reduces SNAIL levels to 50% of the initial 
levels, but overexpression of miR-200 reduces ZEB levels to 10% 
(55, 56). Further, the self-inhibition of SNAIL is critical to avoid 
any aberrant activation of EMT from transient activation of signals, 
and sets a sensitivity threshold for various EMT-inducing signals 
(42). Finally, the mechanisms of transcriptional regulation and 
miR-mediated sequestration and degradation of target mRNAs are 
distinct from each other and hence typically represented by differ-
ent functional forms (31, 59–63). Nevertheless, the manifestation 
of partial EMT state can be cell line-specific (64), because, for 
instance, not all cell lines might have same number of available 
miR-200 binding sites on ZEB mRNA, therefore, more quantitative 
measurement at the single-cell level is required to decipher which 
characterization of partial EMT holds in a particular context.

Cellular Heterogeneity During eMT
Different levels of SNAIL enable different phenotypes and/or 
combinations thereof; for instance, low levels of SNAIL cannot 
induce an EMT, and very high levels can induce a complete EMT 
in almost the entire population (41). However, as observed in both 
physiological and pathological EMT contexts, the population can 
be highly heterogeneous, allowing for the emergence of distinct 
subpopulations of cells with different phenotypes. Cells in these 
distinct subpopulations may also interconvert their phenotypes 
due to intracellular stochastic fluctuations. Of course, different cell 
lines (or biological contexts) would be expected to have different 
ratios of these subpopulations (18, 65) (Figure 5A). Such cell-to-
cell heterogeneity might have crucial functional consequences, 
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especially in adaptive drug resistance, tumor dormancy, and the 
heterogeneity in CTCs (36, 66–69). These variations ride above 
purely genomic variations, which themselves can be quite exten-
sive, given the compromised genome integrity in most cancers (1).

Recently, an important quantitative metric – an “EMT score” 
– has been proposed to represent the overall proclivity of a cell 
line or primary tumor toward undergoing EMT, however, it largely 
ignores the cellular heterogeneity and possible clonal heterogene-
ity inherent to a particular cell line (70). Not surprisingly, these 
scores vary continuously. Given the evidence described above that 
the E and M states are truly different cell fates, the continuous 
variation argues in favor of additional stable intermediate states 
that occupy different positions on “EMT axis” (64, 70); otherwise, 
we would in general expect to see a sharper score variation. This 
is of course what we have already expected based on the circuit 
models and based on the analogy between pathological EMT and 
the physiological EMT examples of wound healing and branching 
morphogenesis. It remains to be investigated precisely how many 
stable intermediate states are present en route EMT and whether 
this inference is proven correct by individual cell studies. Also, it 
must be noted that unlike developmental EMT, pathological EMT 
might not necessarily involve a real lineage-switching of cells in 
an epithelial lineage to a mesenchymal one (71).

Another related important question that needs to be answered 
is that how morphologically stable is (are) the intermediate state(s) 
of EMT. Partial EMT has been usually labeled as a “metastable” 
state (10), indicating that it is less stable than pure E or pure 
M ones. However, recent experimental studies have identified 
that some epigenetic changes (72) as well as some “phenotypic 
stability factors” such as OVOL (73) can stabilize the partial EMT 
phenotype and/or fine-tune the transitions into and from it. Cells 

expressing endogenous levels of OVOL can maintain their partial 
EMT phenotype, knockdown of OVOL leads to complete EMT and 
overexpression of OVOL induces the reversal of EMT – a MET (48, 
49). These experimental findings can be unified via our theoretical 
framework by coupling OVOL to the core EMT network, where 
we show that OVOL can both act as a “critical molecular brake on 
EMT” preventing the cells “that have gained partial plasticity” to 
undergo a complete EMT, and a driver of MET when overexpressed 
(48, 53) (Figure 5B). Our work on OVOL serves as an example of 
how our theoretical framework for the core EMT network renders 
itself to analyzing the role of other regulatory players in epithelial 
plasticity (53).

eMT effects on Cellular Shape  
and Behavior

Cells that become motile as a result of (complete) EMT appear to 
come in two distinct shapes and concomitant behaviors, namely 
mesenchymal and amoeboid (74). Note that there is no guarantee 
that cells described as M from the genetic network perspective 
always have mesenchymal shapes. Cells labeled as mesenchymal 
are spindle-shaped, have lamellopodia and/or filopodia on their 
leading edge, adhere strongly to the ECM, and act as “path genera-
tors” by secreting matrix metallo-proteinases (MMPs). Conversely, 
amoeboid cells are round-shaped, often have blebby structures, 
have low adhesion to ECM, and show a higher shape plasticity 
that helps them squeeze through the gaps in ECM and act as “path 
finders” (75, 76). Further, cells can adopt a shape representing 
both amoeboid and mesenchymal traits (hybrid A/M) such as cells 
with both lamellopodia and blebs (77). In cancer, there is a rich 
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FiGURe 5 | Population distribution or multimodality in eMT response. 
(A) (Middle) bifurcation of ZEB mRNA levels in response to protein SNAIL 
(EMT-inducing signal) for the miR-200/ZEB/SNAIL circuit (shown at extreme 
left). For a certain range of SNAIL values (marked by green rectangle), cells can 
attain any of the three phenotypes – E, M, and E/M, giving rise to a trimodal 
population distribution as shown in FACS figure (left). For a different range of 
SNAIL values (marked by orange rectangle), cells can adopt either E/M or M 
phenotype, and be distributed in a bimodal manner in FACS figure (right). (B) 
Bifurcation of ZEB mRNA levels in response to protein SNAIL (EMT-inducing 

signal) for the miR-200/ZEB/SNAIL/OVOL circuit (shown at extreme left). For a 
certain range of SNAIL values (marked by yellow rectangle), cells can adopt 
either E/M or E phenotype, and be distributed in a bimodal manner (FACS 
figure, left); and for a different range (marked by brown rectangle) all cells are 
likely to be in E/M phenotype as shown in FACS figure (right). Importantly, as 
compared to the behavior of miR-200/ZEB/SNAIL circuit, miR-200/ZEB/
SNAIL/OVOL circuit allows the existence of new phases (combinations of 
phenotypes) such as {E/M} and {E, E/M}, and precludes the existence of 
phases {E, E/M, M}.
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plasticity that allows cells to adopt functional behaviors depend-
ing on external signals, phenotypic choices, and of course genetic 
changes – such as switching between amoeboid and mesenchymal 
morphologies – a mesenchymal to amoeboid transition (MAT) 
and its reverse – AMT, and direct bidirectional switching between 
hybrid E/M and A phenotypes – a collective to amoeboid transition 
(CAT) and its reverse – ACT (78–82). Presumably, this plasticity 
enables them to adapt to different environments encountered dur-
ing metastasis, and is therefore critical for tumor dissemination 
(79) (Figure 6A).

Elucidating the principles of this plasticity requires inves-
tigating the coupling between the core EMT circuits and the 
downstream effectors actually responsible for actualization of 
motility biophysics. One key piece is the mutually repressing 
feedback loop between the two GTPases – RhoA and Rac1 – 
that promote their own GTP loading and inhibit that of the 
other. Activation of RhoA increases actomyosin contractility 
resulting in membrane blebbing and facilitating a rounded 
amoeboid phenotype. Conversely, activation of Rac1 results in 
focal adhesions and actin polymerization, leading to formation 
of lamellopodia, enabling a front-back polarized spindle-shaped 
mesenchymal cell (74, 83). Importantly, these two GTPases play 
crucial roles during EMT in converting apico-basal polarity 

typical of cells in epithelial layers to front-back polarity needed 
for motion. For instance, Rac1 activation at the leading edge 
stimulates PI3K that leads to indirect self-activation of Rac1, 
therefore setting up a positive feedback loop for cytoskeletal 
reorganization necessary for cells to gain directional migration 
abilities. Similarly, RhoA promotes actin stress fiber formation 
and prevents formation of the polarity complexes PAR at the rear 
end of the cell (2). Quite reasonably, the epithelial gatekeepers 
miR-34 and miR-200 inhibit the translation of RhoA and Rac1 
(84–86) (Figure 6B). However, the resultant dynamics of this 
complex interplay remains a challenge for the future. In particu-
lar, a comprehensive understanding of cell shape dynamics and 
its coupling to EMT will require integrating live-cell imaging 
with a multi-compartment spatiotemporal model capturing the 
spatial segregation of the GTPases (87–89).

Partial eMT Allows Collective Migration 
During Development

The partial EMT phenotype – (medium miR-200, medium 
ZEB) – has been studied extensively in embryonic development 
and wound healing (8, 90, 91). A canonical process showing the 
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FiGURe 6 | Landscape of cellular shape plasticity during carcinoma 
metastasis. (A) Cartoon representation of different cell shapes/phenotypes with 
their respective places on the two-dimensional space of levels of active RhoA 
(RhoA-GTP) and active Rac1 (Rac1-GTP). As miR-34 and miR-200 inhibit both 
RhoA and Rac1, both epithelial and hybrid E/M phenotypes have low levels of 
active forms of RhoA and Rac1. The (high RhoA-GTP, low Rac1-GTP) profile 
associates with amoeboid (A) morphology with blebs [blebby amoeboid (BA)], 
whereas (low RhoA-GTP, high Rac1-GTP) associates with mesenchymal (M) 
shape – cells with lamellopodia or filopodia (LAM or FIL). Cells with (high 
RhoA-GTP, high Rac1-GTP) adopt a hybrid A/M morphology that can be 
manifested in multiple ways – lamellipoida with blebs (LB), lobopodia (LP), and 

pseudopodal amoeboid (PA). Transitions among E, E/M, and M phenotypes 
(EMT/MET) are represented by orange arrows, those between amoeboid and 
mesenchymal morphologies – A, A/M, and M – are denoted by blue arrows, and 
transitions between E/M and A phenotypes – CAT/ACT – are denoted by black 
arrows. (B) Circuits showing the coupling of core EMT circuit with RhoA and 
Rac1 – the two GTPases that are critical in regulating cell shape. They inhibit the 
GTP loading (switching from inactive GDP-bound state to active GTP-bound 
state) of each other and promote that of themselves (shown by dotted lines). 
Also, RhoA can activate itself indirectly on a transcription level (solid black lines) 
(see Ref. (74) and references therein). The microRNAs miR-34 and miR-200 
inhibit the translation of RhoA and Rac1. Figure adapted from Ref. (74).
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role of partial EMT in development is the branching morpho-
genesis of the trachea and mammary gland – a mechanism that 
enables the repeated splitting of a tubular epithelial structure to 
generate a ductal tree. During branching morphogenesis, the 
tip cells located at the cap of the TEBs of the growing tubule 
maintain cell–cell adhesion with neighbors and transiently display 
mesenchymal features such as loss of apico-basal polarity and 
increased motility in response to extracellular signals such as FGF 
(8, 9). These collectively migrating cells express P-cadherin, a 
proposed marker for partial EMT (11, 92), and form finger-like 
projections and maintain their partial EMT phenotype (i.e., do not 
proceed to a complete EMT) possibly due to the action of a “critical 
molecular brake on EMT” – the TF OVOL – whose knockdown 
leads to solitary and impaired migration (48). Similar to TEB 
migration, during sprouting angiogenesis, the “tip” endothelial 
cells display a partial endothelial to mesenchymal transition 
(pEndMT) transition and lead the collective migration of a train 
of “stalk” cells (93). Further, in wound healing, immature basal 
keratinocytes at the wound edge partially remodel their base-
ment membrane and migrate collectively in a “metastable” partial 
EMT phenotype, and finally, revert to being epithelial or, in other 
words, undergo re-epithelialization to close the wound (9, 10, 94, 
95). Collective migration in most partial EMT cases is mediated 
by SLUG (SNAIL2) (93, 96–100). Such collective migration has 
multiple advantages – it obviates the need for all cells to detect 
external signals for migration, allows coupling of mechanical 
forces among the cells, and provides them with maximum 
plasticity to be able to switch to being epithelial or mesenchymal 
(complete EMT) phenotypes (8). These advantages can be utilized 
by carcinomas during invasion and intravasation of multicellular  
strands (101).

Partial eMT enables Migration of CTC 
Clusters During Metastasis

Recent studies have highlighted the crucial significance of partial 
EMT in cancer metastasis. Cells co-expressing various epithelial 
and mesenchymal markers are present in primary breast and 
ovarian cancer (15, 102), in multiple cell lines belonging to 
ovarian, lung, and renal cell carcinoma (64, 103, 104), as well as 
in mouse models of pancreatic ductal adenocarcinoma (PDAC) 
and prostate cancer (105, 106). Importantly, among breast cancer 
subtypes, the ones with poor clinical outcomes – triple-negative 
breast cancer (TNBC) and basal-like breast cancer (BLBC) – are 
most enriched for such biphenotypic cells, indicating a strong 
association between aggressiveness and E/M phenotype (15, 107, 
108). Further, co-expression of mesenchymal marker vimentin 
and epithelial/luminal markers cytokeratins (CK) 8 and 18, 
rather than the expression of vimentin alone, correlates with 
increased invasive and metastatic potential and poor survival and 
is often observed in many aggressive tumors such as BLBC and 
melanomas (109–113). Besides, a gene signature consisting of 
both epithelial and mesenchymal genes predicts poor outcomes 
independent of breast cancer subtype (18), suggesting that the 
association of partial EMT phenotype with aggressiveness can 
be context-independent.

Cells co-expressing E and M markers can also be present in the 
bloodstream of breast, lung, colon, and prostate cancer patients 
as clusters of CTCs that contain a median level of three cells per 
cluster (12–15, 114). These clusters, also referred to as “microem-
boli”, can be apoptosis-resistant, are more likely to be trapped in 
narrow blood vessels for extravasation, and often correlate with 
poor prognosis in patients (13, 16, 17, 115). Although these clusters 
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constitute only 3% of total CTC “events” observed (97% being 
individually migrating CTCs), they contribute 50% of the total 
metastases, reflecting their increased metastatic propensity (17). 
Further, they can be found in the bloodstream of patients with 
COPD (chronic obstructive pulmonary disease) around 3 years 
before a lung nodule can be detected, and therefore they might 
be useful to identify patients at a greater risk of developing lung 
cancer (116). Importantly, the heightened metastatic potential of 
such clusters as compared to that of the same numbers of individual 
cells was recognized (117, 118) even before EMT was characterized 
as a metastasis mechanism (119).

However, CTC clusters need not necessarily contain only the 
hybrid E/M cells, and a comprehensive understanding of other 
cell types that might be present in these clusters is necessary for 
advancing the clinical application of CTCs analysis as a “liquid 
biopsy” (16, 120). There may be admixtures of E and M cells 
in a single cluster. Also, representing the cellular heterogene-
ity of the primary tumor, some of these clusters may contain 
leukocytes as well as platelets and megakaryocytes (15, 121), 
therefore true “seeds” of metastasis (metastasis-initiating cells) 
within these CTCs must be identified carefully using functional 
assays such as xenotransplantation in immunodeficient mice. 
Initial attempts in this direction have elucidated that the cancer 
cells in a hybrid E/M phenotype (identified by SNAIL+ E-cad+ 
in colon, and by EPCAM+ CD44+ CD47+ MET+ in breast 
cancer) can more efficiently act as seeds of metastasis (122, 
123), hence establishing a clinical and prognostic relevance 
of the cells in the hybrid E/M phenotype. Nonetheless, not all 
cells in a hybrid E/M phenotype might be capable of initiating 
a tumor in vivo (124).

Partial eMT, But Not Necessarily Complete 
eMT, Associates with Stemness

A subpopulation of cancer cells that seed metastasis or, in other 
words, have self-renewal as well as clonal tumor initiation ability 
along with long-term clonal repopulation potential are referred to 
as Cancer Stem Cells (CSCs). These cells with stem-cell properties 
(“stemness”) can evade cell death and cancer therapeutics, and 
may stay dormant for long periods of time (125). However, in 
the context of cancer, “stemness” is not a fixed inherent trait of a 
few privileged cells, rather CSCs and non-CSCs can interconvert 
among themselves, and this plasticity or dynamic equilibrium 
drives tumor growth as well as invasion (126–129). Functional 
assays of isolating CSCs include mammosphere-formation in vitro 
and limiting dilution assays of tumor-initiating potential in vivo in 
NOD/SCID mice. In other words, CSCs are usually characterized 
by high evolvability (capacity to give rise to heritable phenotypic 
variation) (130).

Under some conditions, cells undergoing a full EMT have been 
shown to be highly likely to gain “stemness” and behave operation-
ally as Cancer Stem Cells (CSCs). This EMT-stemness coupling was 
first reported for immortalized human mammary epithelial cells 
(131, 132). Similar findings in many carcinomas such as pancre-
atic, hepatocellular, and colorectal have strengthened this notion 
(133). Therefore, aberrant activation of EMT can serve at least 

two functions – (a) increases the invasion ability to reach distant 
organs for metastasis and (b) enhances tumor-initiating properties 
of the cells that reach the metastatic sites (134). However, this 
notion of a full EMT coupled with stemness has been challenged 
by studies showing that repression of EMT is required for effective 
tumor-initiation (135–138) and that reprograming often involves 
MET (139, 140).

A few recent studies attempt to resolve this contradiction by 
suggesting that instead of the cells in pure epithelial (E) or pure 
mesenchymal (M) states, cells in hybrid E/M or partial EMT state 
are most likely to gain stemness (18, 106, 124, 141). Grosse-Wilde 
et al. show that co-expression of E and M genes in the very same cell 
promotes mammosphere formation and stemness, independent 
of the breast cancer subtype (18). Further, Strauss et al. showed 
that some cells in hybrid E/M phenotype in primary ovarian 
cultures and tumors in situ can be multipotent, express markers 
of other lineages, and drive tumor growth in vivo by giving rise to 
another E/M subset as well as completely differentiated epithelial 
cells (124). Ruscetti et al. isolated hybrid E/M cells in vivo in a 
prostate cancer mouse model and demonstrated their comparable 
or even higher sphere formation and tumor-initiating potential 
as compared to completely mesenchymal cells (106). Also, our 
study that mathematically models the stemness-decision circuit 
(LIN28/let-7) with inputs from miR-200 and NF-κB suggests that 
especially at high levels of NF-κB, hybrid E/M state is more likely 
to gain stemness than complete EMT (141). These studies propose 
that cells undergoing partial EMT, but not necessarily complete 
EMT, can gain stemness, or in other words, the “stemness window” 
lies somewhere close to midway on the “EMT axis” (Figure 7) 
(134); and are consistent with experiments showing that more 
than 80% CTCs in men with castration-resistant prostate cancer 
(CRPC) and over 75% of CTCs in women with metastatic breast 
cancer co-express epithelial markers CK, mesenchymal markers 
N-cadherin, and stem cell markers (14).

This association of hybrid E/M phenotype with stemness is 
not specific to tumor progression, but has also been reported in 
physiological EMT examples where adult hepatic stem/progenitor 
cells (HSCs) co-express epithelial and mesenchymal genes, and 
give rise to both epithelial and mesenchymal lineages in the 
liver (142–145). Similar to HSCs, adult renal progenitors are in 
a “metastable” hybrid E/M state upon tissue injury and mediate 
renal repair and regeneration (146). Collectively, these studies 
present strong evidence for the emerging notion that CTCs in 
a semi-mesenchymal phenotype, rather than those “frozen” or 
locked in a full EMT phenotype, have the highest plasticity to 
switch between proliferative and invasive modes, are capable of 
completing the invasion-metastasis cascade, and should therefore 
be regarded as CSCs (120, 147–150).

An alternative hypothesis that attempts to resolve the connec-
tion between EMT, MET, and stemness proposes that CSCs come 
in two distinct states – “epithelial-like” and “mesenchymal-like” 
(151, 152). Importantly, these studies show that most epithelial-like 
CSCs (identified by ALDH+ by Liu et al. (151) and by CD44high 
EPCAMhigh by Biddle et al. (152)) can give rise to both epithelial-
like and mesenchymal-like populations and hence bilineage 
colonies in vitro. However, this plasticity was significantly impaired 
in the mesenchymal-like CSCs (identified by CD44+/CD24− by 
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Liu et al. (151) and by CD44high EPCAMlow by Biddle et al. (152), 
thereby contributing to the notion that cells locked in a complete 
EMT phenotype significantly lose their plasticity. Neither of these 
studies considered the possibility that there might exist hybrid 
E/M states, but did show that not all CSC’s have to have the same 
EMT properties. At present, the exact mapping between EMT 
and stemness appears to be complex and context-dependent (6, 
153), but with evidence suggesting that the major target to avoid 
tumor relapse and metastasis might be the CTCs in a hybrid E/M 
phenotype which have same degree of stemness (154). It, therefore, 
becomes essential to find a set of markers that would enable such 
cells to be identified.

Proposed CTC Markers for  
Partial eMT Cells

Identifying a robust set of markers to isolate CTCs in a hybrid E/M 
phenotype remains an open question. CTCs with an epithelial phe-
notype can be identified via cell surface markers such as EPCAM 
(epithelial cell adhesion molecule) or cytoskeletal markers such 
as CK8, CK18, and CK19. However, establishing similar markers 
for CTCs with at least a partially mesenchymal phenotype has 
been challenging because vimentin is expressed in most normal 
blood cells as well (120). A potential signature for identifying the 
“stem-like” hybrid E/M CTCs may be CD24+CD44+, the expression 
pattern for pancreatic and gastric CSCs (155, 156), because CD24 is 
a canonical epithelial marker, and CD44 is a mesenchymal stem cell 
one (157, 158), and CD24+CD44+ expression pattern overlaps with 
high levels of P-cadherin, another proposed marker of partial EMT 
phenotype (92). Recent studies have highlighted that CD24+CD44+ 
cells can have up to 10 times higher mammosphere-initiating 
capacity, and can form more aggressive tumors than CD44+/
CD24− cells (18, 66) that have been traditionally considered to be 
CSCs (159). CD24+CD44+ cells are present in multiple cell lines 
belonging to the luminal and basal-like subtypes, and their popula-
tion is enriched significantly upon exposure to an acute cytotoxic 
shock, suggesting that they represent a drug-tolerant subpopula-
tion that can repopulate a tumor (66). Collectively, these studies 
show that CD44+/CD24− expression does not necessarily correlates 
with tumorigenicity (160), and consolidate the mounting evidence 

that cells with a biphenotypic E/M expression tend to have high 
tumorigenicity in mice (156, 161–163).

While establishing a robust set of markers such as CD24+CD44+ 
for detecting the E/M cells in CTCs, at least two cautionary steps 
must be taken. First, a more quantified characterization of the pres-
ence of markers is required to identify the intermediate state(s) of 
EMT. For instance, CD24neg cells must be segregated from CD24lo 
cells, as they mark different lineages in mouse mammary gland, 
have dissimilar tumorigenic potential and respond differently 
to gamma-secretase inhibitors (GSI) due to their distinct gene 
expression profiles (158, 161). Second, the clusters of CTCs need to 
be isolated and investigated for different cell types present in them. 
Owing to their residual cell–cell adhesion, the CTCs in a hybrid 
E/M phenotype are likely to attach to cancer cells and/or stromal 
cells to form CTC clusters. Therefore, isolating CTC clusters should 
have two major advantages – (a) capturing hybrid E/M cells that 
are not necessarily present on the surface of the cluster and (b) 
revealing novel insights into the cooperation of cancer cells and/
or cancer cells and stromal cells present in the same cluster. Such 
cooperation is expected to recapitulate the tumor–stroma ecology 
seen in primary tumors and metastasis, where some stromal cells 
can be “activated” by cancer through cytokines to provide meta-
bolic synergy and signals for survival and maintaining stemness 
(164–167). “Activated” stromal cells can also be carried along as 
the “soil” by the accompanying “seed” metastatic cells to gain early 
growth advantage during  colonization (168).

Role of Cell–Cell Communication in 
Maintaining Partial eMT

Cell–cell communication among cancer cells and/or between can-
cer cells and stromal cells (fibroblasts, immune cells, endothelial 
cells, etc.) can have a significant influence on phenotypic plastic-
ity (EMT/MET), CSC self-renewal, and a dynamic equilibrium 
between CSCs and non-CSCs (125, 128). Spatial heterogeneity 
in the tumor can lead to spatial variations of secreted factors, cell 
types that are in direct contact, ECM density, etc. each of which can 
affect the “EMT score” of individual cancer cells in the tissue (20, 
169). A key signaling pathway that is involved in multiple aspects 
of this cross-talk both via cell–cell contact and via soluble factors 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
www.frontiersin.org


FiGURe 8 | Cell–cell communication and partial eMT. (A) Coupling of 
EMT circuit with Notch circuit. Notch pathway, when activated by Jagged or 
Delta, belonging to neighboring cell, can activate Jagged and Notch, but 
inhibit Delta. EMT circuit couples with Notch circuit in many ways – miR-200 
inhibits Jagged1, miR-34 inhibits both Notch and Delta, and NICD can 
activate SNAIL to drive EMT. (B) Notch-Delta signaling between two cells 
induces opposite fates in them – one cell behaves as a Sender (high Delta, 
low Notch) and the other a Receiver (high Notch, low Delta). Due to this 
lateral inhibition, it can promote “salt-and-pepper” based patterns.  
(C) Notch-Jagged signaling between two cells induces similar fates in 
them – lateral induction – and thus leads to patterns with all cells with the 
same fate. (D) (Left) cells in a partial EMT and interacting via N-D signaling 
might not be spatially close to each other, because N-D signaling inhibits two 
neighbors to adopt the same fate. (right) Cells in a partial EMT and interacting 
via N-J signaling can mutually stabilize the E/M phenotype and stay together 
as a cluster. Figure adapted from Ref. (173).
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is Notch signaling. Notch signaling can induce EMT and maintain 
stemness (170); however, our understanding of the different roles 
of the two sub-families of ligands (Delta and Jagged) of Notch 
signaling is only recent (171–173), and incomplete in the context 
of EMT and/or CSCs.

Notwithstanding this lack of knowledge, Jagged1 is emerging 
as a potential therapeutic target for its roles in maintaining and 
increasing CSCs, inhibiting apoptosis, inducing angiogenesis, 
and affecting the immune cells (171). It can both be secreted by 
endothelial cells as well as present on the membrane of stromal 
and cancer cells and can activate Notch signaling in cancer cells to 
increase the CSC population (174, 175). Further, it is implicated 
in colonization where it is present on the surface of breast cancer 
cells and can activate Notch signaling in the bone (176), correlates 
with poor survival outcome, is overexpressed in CSCs, and has 
much higher levels in the more aggressive forms of breast cancer 
such as TNBC and BLBC than in its luminal subtypes (171, 177).

Importantly, Notch-Jagged (N-J) communication might be 
the preferred mode of tumor–stroma signaling than Notch-Delta 
(N-D) signaling due to its multiple potential synergistic effects 
in the tumor ecology. Two cells interacting via N-D signaling 
usually adopt distinct fates – one cell behaves as Sender [high 
ligand (Delta), low receptor (Notch)] and the other as Receiver 
[low ligand (Delta), high receptor (Notch)], therefore allowing 
only one-directional signaling and “salt-and-pepper” cell-fate 
patterns (178) (Figure 8B). Conversely, the two cells interacting 
via N-J signaling can adopt similar fates – hybrid Sender/Receiver 
[medium ligand (Jagged), medium receptor (Notch)] that enables 
bidirectional communication between them (172, 173), and allows 
lateral induction, i.e., a cell induces its neighbor to adopt the same 
fate as that of its own (179–181) (Figure 8C). Due to this lateral 
induction mechanism observed in N-J signaling, a cluster of 
E/M cells interacting via N-J signaling might mutually stabilize 
their “metastable” phenotype and consequently maintain high 
“stemness” (172). This notion is supported by the involvement 
of Notch signaling in wound healing (182). N-J signaling in col-
lectively moving cells can induce or maintain similar fates as that 
of the neighboring cells, thereby coordinating wound healing, but 
excessive N-D signaling might impair it. Importantly, if partial 
EMT is defined as (high miR-200, low ZEB) rather than (medium 
miR-200, medium ZEB), collectively moving cells with active 
Notch signaling are likely to have suppressed N-J signaling almost 
completely because miR-200 inhibits Jagged1 strongly (183) and 
therefore might diversify their fates via N-D signaling, a phe-
nomenon that would impair wound healing (41) (Figures 8A,D).  
A tantalizing possibility nevertheless, it remains to be tested both 
experimentally and via a theoretical model of the coupled core 
EMT circuit and Notch-Delta-Jagged signaling via interactions 
such as miR-200 inhibits Jagged (183), miR-34 inhibits Delta and 
Notch (184, 185), and NICD activates SNAIL (98, 186).

Notch-Jagged signaling can also mediate tumor–stroma 
interaction via regulating the secretion of many cytokines that 
can enslave or “activate” stromal cells (125). For instance, IL-6 
secreted by cancer cells drives the activation of normal fibroblasts 
toward becoming cancer-associated fibroblasts (CAF) that in turn 
elicit an EMT response in cancer cells and increases the CSC 
population (164). Further, IL-6 can also promote the generation 

of tumor-associated macrophages (TAM) that support tumor 
metastasis (187). Many inflammatory cytokines such as IFN-γ 
and IL-6 can also increase production of Jagged and/or decrease 
that of Delta (177, 188, 189) hence possibly forming a positive 
feedback loop that rakes up N-J signaling and mediates chronic 
inflammation, a hallmark of cancer, in the stroma (1, 190).

Therefore, cancer cells can be considered as “ecological 
engineers” taking advantage of its niche in multiple ways, such 
as metabolic synergy and gaining CSC and migration traits 
(165–167). The outcome of such dynamic cross-talk can be best 
understood using an integrated computational and experimental 
approach – reconstructing the ecological dynamics of cancer via 
co-culture experiments, and building a multi-scale model combin-
ing intracellular signaling with population level spatial models. 
Such an understanding might provide valuable insights into 
therapies targeted at managing the stroma, as well as combinatorial 
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therapies targeting both the cancer and stroma to avoid tumor 
relapse (165, 191, 192).

interplay Between Partial eMT and  
Drug Resistance

EMT has been posited to be involved in drug resistance (193–195), 
however, characterizing cell lines based on EMT scores indicates 
that this correlation might not be universally applicable in all car-
cinomas (70). Importantly, most studies connecting EMT to drug 
resistance has viewed EMT as an “all-or-none” process (193–195), 
leaving little scope for assessing the possible drug resistance in 
partial EMT phenotype, and comparing it with that corresponding 
to a complete EMT phenotype. Because CSCs have been reported 
to be primarily responsible for drug resistance (196), the associa-
tion of hybrid E/M phenotype with stemness (18, 106, 124, 141) 
proposes that a hybrid E/M or partial EMT phenotype can also be 
the phenotype maximally correlated with drug resistance.

The partial EMT or “EMT-like” phenotype can associate with 
both de novo and adaptive drug resistance. Among various breast 
cancer subtypes, the TNBC contains the maximum number of 
hybrid E/M cells in the primary tumor (15), and exhibits de novo 
resistance to current standard therapies such as anthracyclines 
and taxanes (197). There is also a strong relationship to adap-
tive therapy. Significantly, a paradigm that emerges from many 
recent studies is that cancer cells that become resistant to many 
therapeutic assaults often undergo partial EMT. Development of 
tamoxifen-insensitivity in MCF7 breast cancer cells and that of 
trastuzumab resistance in HER2-overexpressing breast cancer cells 
is usually accompanied by a partial EMT (198, 199). Further, the 
radiation-resistant colorectal cancer cells generate cellular progeny 
with an “EMT-like” phenotype (200), and exposure to taxanes 
induces a phenotypic transition to a chemotherapy-tolerant state 
(CD44+CD24+) in multiple cell lines belonging to both basal-like 
and luminal subtypes (66). It must be noted that CD44+CD24+ 
expression pattern proposed is what we proposed above to be a 
hallmark of hybrid E/M cells in many cancer subtypes (18).

The underlying signaling pathways and molecular mechanisms 
of this interplay between partial EMT and drug resistance remain 
largely elusive. It is not even clear what aspects of drug resistance 
are phenotypic in character (reduction of growth rate, upregulation 
of pumps, etc.) and what depend on actual genetic changes and 
whether these are coupled via regulation of genomic instability. 
At the signaling level, key intermediary pathways involve N-J 
signaling (171), that as discussed above, can play a key role in 
shepherding the epithelial-mesenchymal plasticity by stabilizing 
a “metastable” partial EMT phenotype.

Completing the Loop: inflammation, 
Notch-Jagged Signaling, Partial eMT,  
and Stemness

A key difference in partial EMT during wound healing and that 
during tumor progression is that during wound healing, cells 
often re-epithelialize after closing the wound, thereby limiting 
their plasticity, but during tumor progression, this ubiquitous 

plasticity spearheads aggressive tumor progression (94, 201). 
Further, wound healing often elicits an acute inflammatory 
response that is resolved later (94); however, during cancer, “the 
wounds that do not heal” (202), inflammatory response is chronic 
and is a hallmark of cancer (1, 190). Therefore, inflammation can 
regulate the timespan of heightened epithelial plasticity and more 
specifically, the timespan over which a hybrid E/M or partial 
EMT phenotype can be maintained. Such a “stabilizing” effect of 
inflammation on the “metastable” partial EMT phenotype can be 
mediated largely by N-J signaling, because many inflammatory 
factors such as TNF-α, IFN-γ, and IL-6 can increase the production 
of Jagged and/or decrease that of Delta (177, 188, 189), thereby 
promoting N-J signaling that can maintain a cluster of cells in a 
partial EMT phenotype. Consistently, the breast cancer subtype 
that has maximum number of cells co-expressing E and M genes 
among all breast cancer subtypes (15) – TNBC – has elevated levels 
of Jagged1 as well as NF-kB (203).

Inflammatory stress conditions in tissues are also created by 
both chemotherapy and radiation by activating NF-κB, the central 
link between inflammation, tumor progression, and radiation 
resistance (204–207). NF-kB and Jagged can activate each other 
(188, 208), thereby forming a self-perpetuating loop that maintains 
both high levels of NF-kB and N-J signaling. NF-kB can promote 
the likelihood for hybrid E/M cells to gain stemness (141), and as 
discussed above, N-J signaling can stabilize cells in a hybrid E/M 
phenotype; therefore post-therapy inflammatory conditions can 
promote a drug-resistant subpopulation that can be in hybrid E/M 
phenotype (Figure 9).

Conclusion

Partial eMT: Primary “Bad Actors” of Metastases
Epithelial to mesenchymal transition is a fundamental process 
in embryonic development and tissue repair that is aberrantly 
activated during the progression of cancer and fibrosis. Multiple 
cycles of EMT and MET are involved in organogenesis but usually 
not during adult homeostasis (5, 6). EMT was first described as 
“epithelial-mesenchymal transformation” in the pioneering work 
by Elizabeth Hay on primitive streak formation in the chick 
(209), however, later the term “transformation” was replaced 
with “transition” with the evidence accumulating that EMT was 
different from neoplastic transformation and that it was a reversible 
process. Recently, the term “transition” is giving way to “plasticity” 
with an increasing appreciation of the notion that EMT is not an 
“all-or-none” response, rather involves intermediate state(s) with 
important functional consequences in cancer metastasis as well 
as drug resistance and subsequent tumor relapse (6, 210–212).

The appreciation of EMT not being an “all-or-none” process is 
relatively recent in EMT associated with cancer and fibrosis, but 
has been generally accepted in wound healing and collective cell 
migration during embryonic development, especially gastrula-
tion, neural crest migration, and branching morphogenesis (9, 
10, 96, 213, 214). In cancer-related EMT, the concept of partial or 
incomplete EMT was initially proposed to reconcile the paradox 
that despite a presumed role of EMT in cancer progression, most 
metastatic carcinomas had well-differentiated epithelial charac-
teristics; and it was difficult to identify cells having undergone 
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EMT within the carcinoma tissue in vivo (4). Recent experimental 
evidence about cancer cells in primary tumor, cell lines, as well as in 
circulation (CTCs) (15, 64, 103, 104) have bolstered the concept of 
partial EMT and has moved it to a focal point in the EMT research.

Cells in a partial or intermediate EMT phenotype are likely 
to score multiple advantages over cells that have completed EMT 
or crossed the full mesenchymal “tipping point”. First, these cells 
can garner advantages specific to collective sheet or cluster migra-
tion – such a migration obviates the need for all cells to respond to 
external chemotactic signals, allowing for the passive migration of 
many carcinoma cells, and underlying the unexpected association of 
E-cadherin with tumor aggression (8, 215). Second, these cells display 
sufficient plasticity to switch to enable a switch back to colonization, 
yet primed for subsequent metastatic rounds (41, 216). Third, these 
cells are likely to be clustered together in the blood and are therefore 
anoikis-resistant, an essential trait for efficient metastasis (17). Also, 
clusters have a greater chance to get trapped in narrow blood vessels, 
therefore favoring extravasation into distant organs (16). Fourth, 
these cells can be immune-resistant and chemo-tolerant; and can 
even be enriched in the population following many therapy-related 
stresses such as inflammation and radiation (66, 217, 218). Fifth, 
these cells can have a much higher (~50-times) tumor-initiating and 
metastatic potential than cells in complete EMT phenotype (17, 18, 
117, 124, 134, 141). Sixth, due to their residual cell–cell adhesion, 
these cells might form clusters of CTCs with other cell types such 
as leukocytes and fibroblasts and/or maintain the clusters via N-J 
signaling among themselves, thereby harnessing their “ecological 

engineering” skills during circulation (165). Collectively, the cells in 
a partial EMT or hybrid E/M phenotype have a much large repertoire 
of survival strategies in all stress conditions – be it shear stress in 
circulation, or stress due to therapeutic assaults; and are therefore 
better armed to seed metastases at distant organs and coordinate 
tumor relapse. Not surprisingly, these cells are being increasingly 
observed in many aggressive malignancies (105, 198, 219–228), 
strongly suggesting that partial EMT phenomena are more likely 
to happen in vivo than complete EMT (169, 229). Isolating CTC 
clusters (230) and testing them for partial EMT characteristics might 
be the most promising diagnostic approach in the clinic.
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