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Ectopic Fas-ligand (FasL) expression in tumor cells is responsible for both tumor escape
through tumor counterattack of Fas-positive infiltrating lymphocytes and tumor rejection
though inflammatory and immune responses. We have previously shown that RhoA
GTPase and its effector ROCK negatively control FasL membrane expression in murine
melanoma B16F10 cells. In this study, we found that B16F10 treatment with the ROCK
inhibitor H1152 reduced melanoma development in vivo through FasL membrane overex-
pression. Although H1152 treatment did not reduce tumor growth in vitro, pretreatment
of tumor cells with this inhibitor delayed tumor appearance, and slowed tumor growth
in C57BL/6 immunocompetent mice. Thanks to the use of mice-bearing mutated Fas
receptors (B6/lpr), we found that reduced tumor growth, observed in immunocompetent
mice, was linked to FasL overexpression induced by H1152 treatment. Tumor growth
analysis in immunosuppressed NUDE and IFN-γ-KO mice highlighted major roles for T
lymphocytes and IFN-γ in the H1152-induced tumor growth reduction. Histological anal-
yses of subcutaneous tumors, obtained from untreated versus H1152-treated B16F10
cells, showed that H1152 pretreatment induced a strong intratumoral infiltration of
leukocytes. Cytofluorometric analysis showed that among these leukocytes, the number
of activated CD8 lymphocytes was increased. Moreover, their antibody-induced depletion
highlighted their main responsibility in tumor growth reduction. Subcutaneous tumor
growth was also reduced by repeated intravenous injections of a clinical ROCK inhibitor,
Fasudil. Finally, H1152-induced ROCK inhibition also reduced pulmonary metastasis
implantation independently of T cell-mediated immune response. Altogether, our data
suggest that ROCK inhibitors could become interesting pharmacological molecules for
melanoma immunotherapy.
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Introduction

Fas (also known as CD95/Apo-1) is a transmembrane protein belonging to the TNF receptor
superfamily. It transmits apoptotic signaling in susceptible cells after being triggered by its natural
ligand Fas-ligand (FasL) (CD95L/CD178) (1). The Fas receptor is ubiquitously expressed whereas
FasL is mainly expressed in activated NK and T cells (2). Fas-mediated apoptosis is important in
various biological processes including immune homeostasis through activation-induced cell death
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in T lymphocytes and cell-mediated cytotoxicity against tumor
cells or following viral infection (3, 4). However, most cancer cells
are relatively resistant to Fas-mediated apoptosis even tumor cells
expressing high levels of Fas. Furthermore, it has recently been
shown that Fas is required for the survival of cancer stem cells, and
by amechanismof retro-differentiation, it allows the emergence of
new stemcells (5). FasL is also expressed in the eye and testiswhere
its pro-apoptotic activity contributes to the immune privilege
status of these tissues (6, 7).

Cancer progression is often associated with the acquisition
of tumor cell immune resistance (8). FasL expression by tumor
cells is one of the mechanisms responsible for this immunolog-
ical escape. Indeed, its ectopic expression allows tumor cells to
counterattack and induce apoptosis in Fas-expressing cytotoxic T
lymphocytes and natural killer cells, thereby infiltrating the tumor
microenvironment (9–12). However, although the Fas–FasL inter-
action is known to be important for human tumor progression,
several opposite mechanistic roles are been clearly established
(13). Some studies have reported that FasL tumor expression
triggers a neutrophil-mediated inflammatory response and tumor
rejection (14). However, it has also been shown that different
FasL expression levels can modulate these effects. At high levels
of expression, FasL was shown to trigger tumor rejection by a
potent neutrophil-mediated local inflammation response, which
initiates a T-lymphocyte-dependent anti-tumor-specific memory.
In contrast, at low levels, FasL enhanced tumor growth by coun-
terattacking anti-tumor effector lymphocytes (15).

Rho GTPases belong to the Ras superfamily of GTP-binding
proteins (16). After activation, the RhoA GTPase interacts with
intracellular target proteins or effectors to trigger a wide variety of
cellular responses, including reorganization of the actin cytoskele-
ton, cell cycle progression, cells death, adhesion, metastasis, and
gene transcription. One of its main effectors is ROCK kinases
(Rho-associated protein kinases) (17). ROCK kinases are well
known for modulating the actin cytoskeleton and actin–myosin
contractility through the phosphorylation of the MYPT1 protein
(18). In a previous study, we showed that RhoA GTPase and
its effectors ROCK downregulate membrane FasL expression in
B16F10 melanoma cells in vitro. We demonstrated that B16F10
cells overexpressing membrane FasL, thanks to pharmacological
inhibition of the RhoA/ROCK pathway were able to induce the
apoptosis of co-cultivated Fas-sensitive lymphocytes in vitro (19).

Many pharmacological molecules have been developed to tar-
get the RhoA/ROCK pathway. Statins inhibit the mevalonate
pathway necessary for the prenylation and activation of GTPases.
Someof themarewidely prescribed as hypocholesterolemic agents
and are now also being studied as potential anti-cancer agents
(20). Targeting ROCK proteins has been shown to be useful in
cardiovascular diseases, for example, the inhibitor Fasudil (HA
1077) is used to treat cerebral vasospasm (21) and it is intended in
the treatment of pulmonary arterial hypertension (22). Moreover,
due to their implication in migration and invasion capacities,
RhoA/ROCK inhibitors are now being evaluated as anti-tumor
therapies (23, 24).

In the present study, we have investigated the capacity of
ROCK inhibitors, H1152 and Fasudil, to modulate FasL mem-
brane expression in the B16F10 melanoma cell line and to control

tumor growth in vivo.We demonstrate that ROCK inhibition with
H1152 or Fasudil induces FasL overexpression at melanoma cell
membranes in vitro and slows tumor growth in vivo by inhibiting
melanoma cells invasion and drawing immune effector cells into
the tumor microenvironment.

Materials and Methods

Tumor Cell Lines and Animals
The murine melanoma cell line B16F10 and hybridomas against
murine CD4 and murine CD8 were obtained from ATCC and
were in vitromaintained by serial passages in RPMI 1640medium
(Lonza) supplemented with 10% FCS, 1mM glutamine, and 1%
penicillin–streptomycin–amphotericin B (Lonza). Cultures were
tested monthly to ensure that they were mycoplasm-free. About
6- to 9-week-old female C57BL/6 wt and NMRI nude mice were
obtained from Elevages Janvier. C57BL/6 IFN-γ-KO mice were
kindly provided by Pr. Jean-Charles Guéry (INSERM U1043,
Toulouse) and B6/lpr mice were kindly provided by Pr. Pierre
Bobé (CNRS UMR7592, Paris). The experiments in mice have
been done in the appropriate conditions of husbandry, experi-
mentation, and care, controlled by the Ethic Comity of the Insti-
tut Claudius Regaud under the control of the Regional Comity
of Midi-Pyrénées (France). Our protocols were validated and
received the agreement number ICR-2009-0011.

Treatment of Melanoma Cells
Melanoma cells were treated in vitro with two ROCK inhibitors:
H1152 (Calbiochem) at 1 µM for 24 h and Fasudil (Selleckchem)
for 24 h at indicated concentrations from 5 to 25 µM. Fasudil was
also injected intravenously (25mg/kg) every 2 days for 13 days in
mice-bearing subcutaneous B16F10 tumors.

Flow Cytometry Analyses
FITC-conjugated anti-Thy1.1, PE-conjugated anti-FasL, PE-
conjugated anti-CD69, PE-conjugated anti-CD4,APC-conjugated
anti-CD8 mAbs, and PE-conjugated anti-CD107a, corresponding
isotype controls and 7-aminoactinomycin D (7-AAD) were
purchased from BD Biosciences. After 30min incubation, the
stained cells were analyzed on a BD FACS Calibur (Becton
Dickinson) and results were analyzed with FlowJo software.
Results are illustrated as percentage of positive cells for each
molecule.

In Vitro Proliferation
1× 105 B16F10 cells, either untreated or pretreated for 24 h with
1 µMofH1152, were cultivated in vitro.B16F10 cells were counted
after 2, 4, 6, and 8 days of culture with Cell Counter (Coulter) to
evaluate their in vitro proliferation, which allows evaluating the
toxicity of the H1152 treatment.

Subcutaneous Tumor Growth
To study the tumor growth, all mice were injected subcutaneously
with 3× 105 B16F10 cells either untreated or pretreatedwith 1 µM
of H1152 for 24 h. Melanoma cells were washed twice in PBS
before injection. Moreover, to study tumor growth with in vivo
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Fasudil injection, all mice were injected subcutaneously with
3× 105 untreated B16F10 cells and then treated with intravenous
injections of Fasudil (25mg/kg) or PBS every 2 days for 13 days.
Animals were monitored for tumor growth every 2–3 days by
palpation and diameters of the tumors were measured using a
Vernier caliper. Tumor-bearing animals were sacrificed at day 14
after tumor injection. Results are expressed as mean surface± SD
(error bars, n= 13–16 mice).

CD4 and CD8 Cells Depletion in C57BL/6 wt Mice
Neutralizing antibodies against murine CD4 and CD8 are pro-
duced from hybridomas TIB-207 and TIB-105, respectively. Anti-
bodies were isolated and purified in our laboratory by affinity
chromatography with ÄKTA Purifier system (GE Healthcare Life
Sciences).

To validate their in vivo efficiency, these antibodies were
injected intraperitoneally in C57BL/6 wt mice daily for three
consecutives days at 200 µg for each mouse. On day 4, lymph
nodes and spleen of each mouse were recovered and crashed in a
manual manner through a Cell Strainer (Falcon). Then, extracted
cells were analyzed for CD4+ and CD8+ population by flow
cytometry.

For tumor growth experiments, anti-CD4 and anti-CD8 neu-
tralizing antibodies were injected intraperitoneally in C57BL/6 wt
mice at day 0, 1, 2, 4, 7, and 11 after tumor inoculation at 200 µg
for each mouse.

Tumor-Infiltrating Lymphocytes Analyzes
1× 106 B16F10 cells, untreated or pretreated 24 h with 1 µM
H1152, were injected subcutaneously in the flanks of C57BL/6
wt mice. Four days later, tumor masses were recovered and dis-
sociated with the GentleMACS Dissociator (Miltenyi) according
to manufacturer’s instructions. Quantification by flow cytometry
of lymphocytes was performed thanks to the staining of extracted
cells with anti-CD8, anti-Thy1.1, and anti-CD69 antibodies and
also a cell viability marker 7-AAD. Similarly, CD107a-positive
lymphocytes were quantified among CD8 T lymphocytes in the
tumor masses 7 days after B16F10 cells injection.

Cell Migration In Vitro Assays
In vitromigration studies were performed using triplicate or qua-
druplicatewells.Migration assayswere performedwith 8-µmpore
size transwell system (BD Biosciences).

B16F10 cells were untreated or pretreated 24 h with 1 µM
H1152. Then, 2.5× 104/well melanoma cells were added in RPMI
1640+ 2% FCS in the upper compartment of the filter. The
bottom chamber was filled with RPMI 1640+ 10% FCS. After
24 h, cells on the bottom surface of the filter were stained and
counted. Photos were taken with an Eclipse Ti microscope (Nikon
Instruments) and a CoolSNAP HQ2 camera (Photometrics) in
three randomized fields.

Histology
Mice tissues were taken from the area surrounding the B16F10
cells inoculation sites and fixed in formol. Tissues were then
embedded in paraffin wax and 5-µm serial sections were taken.
Sections were then stained with hematoxylin and eosin (H&E) to
estimate the tumor mass and infiltrate.

Pulmonary Metastases Implantation
To study pulmonary metastases implantation, C57BL/6 wt and
NMRI nude mice were injected intravenously (i.v.) with 2× 105

B16F10 cells either untreated or pretreated 24 h with 1 µMH1152.
The melanoma cells were washed twice in PBS before injection.
Mice were sacrificed 12 days later. Macroscopic metastases were
detected visually and double blind quantified. Then, lungs were
fixed in formalin and paraffin embedded to visualize microscopic
metastases. Photos were taken with a DMR microscope (Leica
Microsystems) and aDS-Fi1 camera (Nikon Instruments). Results
are expressed as mean± SD (error bars, n= 12 mice). The exper-
iments included four mice per group and were repeated twice.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism soft-
ware. Significance of analyses was assessed by t-test or Tukey one-
way or two-way ANOVA test. All statistic tests were two sides. The
values are expressed as means± SD in the figures. P-values <0.05
were considered statistically significant.

Results

H1152 Treatment of B16F10 Melanoma Cells
In Vitro Induces FasL Membrane Overexpression
Without Affecting Proliferation
In a previous study, we showed that RhoA/ROCK pathway inhi-
bition induced the overexpression of membrane FasL in B16F10
melanoma cell line. And in particular, inhibition of effectors
of RhoA, the ROCK kinases, with the pharmacological H1152
inhibitor at 0.5 µM for 24 h induced overexpression of membrane
FasL in B16F10 cells (19). Here, we confirm this since inhibition of
ROCK kinases, with H1152 at 1 µM for 24 h also induced overex-
pression of membrane FasL in B16F10 cells (Figure 1A). To verify
that thisH1152 treatmentwas not toxic for B16F10 cells, cells were
untreated or treated for 24 h with 1 µM H1152, then cultivated
in vitro, and counted every 2 days. H1152 by itself was not toxic
since B16F10 cells proliferated in vitro at similar rates after treat-
ment (Figure 1B). These data show that 1 µMofH1152 is not toxic
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FIGURE 1 | Inhibition of ROCK increases FasL membrane expression
on B16F10 melanoma cells without cell toxicity. B16F10 cells were
treated or not with 1µM of H1152 for 24 h then membrane FasL expression
was quantified using flow cytometry (A). B16F10 cells were treated or not
with 1µM of H1152, then these cells were put in culture and every 2 days
pretreated or untreated B16F10 cells were counted to evaluate the in vitro
proliferation (B). Results are expressed as mean±SD (error bars, n= 3
experiments).
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for these melanoma cells and that membrane FasL overexpression
does not interfere with B16F10 cell in vitro proliferation.

H1152 Pretreatment Reduces Local B16F10
Melanoma Growth In Vivo in a Fas/FasL
Pathway-Dependent Manner
Based on previous studies reporting an ambiguous role for
FasL in tumor development (14, 25), we wondered whether
H1152-induced FasL membrane overexpression would modulate
tumor growth in vivo. We performed subcutaneous injection of
3× 105 B16F10 cells, either untreated or pretreated with 1 µM
H1152 for 24 h, into the flank of C57BL/6 wild-type mice. The
resulting tumors showed that B16F10 cells pretreated with H1152
grew significantly slower than untreated cells (Figure 2A). In
addition, the appearance of tumors in mice was delayed by 5 days
(Figure 2B). We then investigated whether the B16F10 melanoma
deceleration observed in immunocompetent mice was dependent
on FasL overexpression. For this purpose, we used C57BL/6 mice
naturally carrying the lpr mutation, which leads to a truncated
and inactive form of the Fas receptor (B6/lpr mice) (26). In these
mice, we performed the same subcutaneous injections of 3× 105

B16F10 cells, either untreated or pretreated with 1 µM H1152 for
24 h. Unlike our observations in immunocompetent mice, we did
not observe either a reduction in tumor growth rate (Figure 2C)
or a delay in tumor appearance (Figure 2D). These results
confirm an essential role for membrane FasL overexpression in
B16F10 cells in reducing tumor growth in vivo after pretreatment
with H1152.

ns 

Untreated

H1152 1 M 

C57BL/6 wt C57BL/6 wt

C57BL/6 lpr C57BL/6 lpr

A B 

C D 

FIGURE 2 | Inhibition of ROCK reduces in vivo melanoma growth
through Fas/FasL pathway. 3×105 B16F10 cells pretreated or not with
1µM H1152 for 24 h were injected subcutaneously in C57BL/6
immunocompetent mice (n= 20 mice for each group). In vivo tumor growth
was monitored regularly (A) and number of tumor-free mice was also
assessed (B). Same experiments were performed in Fas-deficient C57BL/6
lpr mice (C,D) (n= 16 mice for each group). Results are expressed as
mean±SD. ***P<0.001 versus control using the Tukey ANOVA test.

Slowing Down of Melanoma Growth After H1152
Pretreatment is Dependent on the
IFN-γ-Mediated T Cell Immune Response
To further investigate the immune mechanisms implicated in
FasL-mediated B16F10 melanoma slower growth in vivo, 3× 105

B16F10 cells were pretreated or not with 1 µM H1152 for 24 h
then subcutaneously injected into the flank of IFN-γ-KOC57BL/6
mice and NMRI nude immunosuppressed mice. Tumor growth
rate monitoring revealed no reduction in NMRI nude mice
(Figure 3A) or IFN-γ-KO C57BL/6 mice (Figure 3C) when
B16F10 cells were pretreated with H1152 compared to controls.
No delay in tumor appearance was observed in the same mice
(Figures 3B,D). These results strongly implicate a role for the
adaptive immune response in the reduction of H1152-induced
FasL-over-expressing B16F10 tumor growth through an IFN-γ-
dependent mechanism.

Pretreatment with H1152 Induces a Massive
Leukocytes Infiltration into the Tumor Site,
Including Activated TCD8+ Lymphocytes
Since the immunological status of mice appeared to be essential
for observing the biological effects of ROCK inhibition-induced
FasL overexpression on B16F10 tumor growth, we next performed
histological and flow cytometric analyses to visualize any modi-
fications of the immune microenvironment in our model. First,
double-blind analysis of tumoral and surrounding tissues stained
by hematoxylin and eosin (H&E) was carried out. To prepare
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NMRI nu/nu NMRI nu/nu 

C57BL/6 IFN- -KO C57BL/6 IFN- -KO C D 

A B 

FIGURE 3 | An IFN-γ-dependent lymphocytes response is involved in
the in vivo melanoma shrinkage observed in C57BL/6
immunocompetent mice following ROCK inhibition. 3×105 B16F10
cells pretreated or not with 1µM of H1152 for 24 h were injected
subcutaneously in nude NMRI mice (n= 12 mice for each group). In vivo
tumor growth was monitored regularly (A) and number of tumor-free mice
was also assessed (B). Same experiments were performed in IFN-γ-KO
C57BL/6 mice (C,D) (n= 16 mice for each group). Results are expressed as
mean±SD. ns versus control using the Tukey ANOVA test.

Frontiers in Oncology | www.frontiersin.org July 2015 | Volume 5 | Article 1564

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive


Teiti et al. ROCK inhibition-induced melanoma control

these samples, 1× 106 B16F10 cells pretreated or not with 1 µM
H1152 for 24 h were injected subcutaneously into C57BL/6 mice.
Four days after tumor inoculation, tumors were recovered and
embedded in paraffin. Examination of the H&E stained tumor
sections revealed that H1152 pretreatment induced a massive
infiltration of leukocytes into the tumors whereas injection with
control cells led to a weak infiltration with leukocytes located
at the tumor periphery (Figure 4A). These leukocytes could be
monocytes, lymphocytes, or granulocytes, mainly neutrophils, as
previously described (27). In addition, in contrast to control cells,
pretreated tumors showed a lower mitotic index, reduced cohe-
sion, and the presence of large cell death areas (Figure 4A). Flow
cytometry analysis showed the infiltration of CD8+ lymphocytes
in these tumors. In a separate experiment, 4 days after tumor
inoculation under the same conditions, tumors were recovered,
dissociated with a GentleMACS dissociator, and cells were then
analyzed by flow cytometry. Results showed a stronger infiltration
of activated CD8+ T lymphocytes (CD3+CD8+CD69+ cells) in
pretreated tumors compared to control tumors (Figure 4B). We
also checked that this tumoral infiltration was not due to a global
higher amount of CD8+ T lymphocytes present in these mice (as
shown in Figure 4C). To know whether these infiltrating lympho-
cytes have cytotoxic capacities, in another separate experiment,
7 days after tumor inoculation under the same conditions, tumors
were recovered, dissociated with a GentleMACS dissociator, and
membrane CD107a expression was analyzed by flow cytometry
on CD8 T lymphocytes. Results showed a significant increase in
the infiltration of cytotoxic CD107a+ lymphocytes in pretreated
tumors compared to control tumors (Figure S1 in Supplementary
Material).

Depletion of CD8+ and CD4+ Cells Limits the
In Vivo Melanoma Slowing Down Observed After
H1152 Pretreatment
The above results in immunocompetent mice showed that the
control of tumor cells growth following ROCK inhibition-induced
FasL overexpression occurs by the establishment of an adaptive
immune response that ismainlymanaged by TCD8+ andTCD4+
cells. We therefore investigated the role of these immune popu-
lations in our model by specifically depleting C57BL/6 mice of
CD8+ or CD4+ cells using the neutralizing antibodies TIB-105
and TIB-207, respectively, which are derived from hybridoma.
Either neutralizing antibodies or control antibodies were injected
intraperitoneally intomice at 200 µg per injection ondays 0, 1, 2, 4,
7, and 11 after tumor inoculation. On day 0, 3× 105 B16F10 cells,
pretreated or not with 1 µM H1152 for 24 h, were subcutaneously
injected into these mice and then tumor growth was monitored.
The in vivo efficiency of the TIB-105 and TIB-207 neutralizing
antibodies on depleting the CD8+ and CD4+ cell populations in
our conditions was assessed 4 days after injection. Results con-
firmed that these antibodies efficiently depleted their respective
cell populations in the spleen and lymph nodes (Figures S2A–D
in Supplementary Material). As initially observed, B16F10 cells
pretreated with H1152 had a slower in vivo growth compared to
control cells (Figure 5A). Interestingly, depletion of the CD8+
population completely abolished this reduction in the rate of
tumor growth (Figure 5A).Depletion of theCD4+ cell population

FIGURE 4 | H1152 pretreatment recruits a massive infiltration of
immune cells into the tumor site. B16F10 cells pretreated or not with 1µM
of H1152 for 24 h were injected subcutaneously in C57BL/6 mice. Four days
later, mice were killed and tumors were collected for histology. Hematoxylin
and eosin-stained 5-µm paraffin-mounted sections were generated (A).
Also, tumor masses were recovered and tumor-infiltrating cells were extracted
with the Gentle MACS Dissociator according to manufacturer’s instructions,
and TIL Thy1.1+CD8+CD69+7-AAD− were analyzed by flow cytometry (B).
In the same mice, spleens were recovered, splenic cells were extracted by
manual dissociation through a Cell Strainer, and CD8+ cells were analyzed
by flow cytometry (C). Results are expressed as mean±SD. *P<0.05
versus control using the Student t-test (B,C).

had an intermediate effect on H1152-induced melanoma slowing
down since it did not completely restore tumor growth to that of
the control conditions (Figure 5B). Thus, these results show an
important role for CD8+ lymphocytes in the control of H1152-
pretreated tumor growth and a lesser role for CD4+ cells.

Fasudil Intravenous Injections Reduce Local
B16F10 Melanoma Growth In Vivo
We next analyzed the impact of repeated intravenous injections
with the clinically used ROCK inhibitor, Fasudil (HA 1077)
on B16F10 melanoma growth in vivo. We first performed a
dose–response analysis of in vitro treatment with Fasudil on
membrane FasL expression in B16F10 cells. Results showed a
Fasudil-induced overexpression of membrane FasL at 20 and
25 µM (Figure 6A). Then 3× 105 untreated B16F10 cells were
subcutaneously injected into the flank of C57BL/6 wild-type
mice, which were then treated with intravenous injections of
Fasudil (25mg/kg) or PBS every 2 days for 13 days. The resulting
tumors showed that B16F10 tumors grew significantly slower
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A B 

FIGURE 5 | Infiltration of T CD8+ cells in tumors is mainly responsible
for B16F10 tumor growth slowing down and TCD4+ cells are lightly
involved. B16F10 cells pretreated or not with 1µM of H1152 for 24 h were
injected subcutaneously in C57BL/6 mice (13< n<22 mice for each group).
Mice received five intraperitoneal injections of anti-CD8 (A) or anti-CD4
(B) neutralizing antibody or control antibody at 200µg between day 0 and day
11 after tumor injection. Then, in vivo tumor growth was monitored regularly
until sacrifice at day 14. Results are expressed as mean±SEM. *P<0.05;
***P<0.001 versus control using the Tukey ANOVA test (A,B).

PBS 

Fasudil

C57BL/6 wtB A 

FIGURE 6 | Fasudil treatment induces membrane FasL overexpression
on B16F10 cells and reduces tumor growth after intravenous
administration in mice. B16F10 cells were treated or not with Fasudil at
indicated concentrations for 24 h and then membrane FasL expression was
quantified using flow cytometry (A). 3×105 B16F10 cells were
subcutaneously injected in C57BL/6 mice and then mice were injected
intravenously with Fasudil (25mg/kg) or PBS every 2 days for 13 days (n= 13
mice for each group) (B). Results are expressed as mean±SD. ***P<0.001
versus control using the Tukey ANOVA test.

in Fasudil-injected mice than in control mice, confirming the
ROCK inhibitors capacity to reduce melanoma growth in vivo
(Figure 6B). As FasL, used systemically, induce apoptosis in hepa-
tocytes, we controlled that no damages were detectable in the liver
of Fasudil-injected mice.

Pretreatment with H1152 Inhibits In Vitro
Migration and Reduces Pulmonary Metastasis
Implantation of B16F10 Cells
In melanoma pathology, metastasis is the most dangerous clinical
step and current therapies have limited efficiency at this stage.
Moreover, ROCK kinases are well recognized as regulators of cell
migration and cell invasion through their modulation of the actin
cytoskeleton (18, 24). Therefore, we analyzed the impact of H1152
treatment on B16F10 cell motility and invasion. First, in vitro
transwell assayswere used to show thatH1152 pretreatment (1 µM
for 24 h) inhibited the migration of B16F10 cells (Figure 7A).
Then, B16F10 cells either untreated or pretreated with H1152

were injected intravenously into the tail vein of C57BL/6 wild-
type mice and lungs were recovered 12 days later. Macroquan-
tification revealed a lower number of metastases in the lungs
of mice injected with H1152-pretreated B16F10 cells compared
to control cells (Figure 7B), showing that H1152 pretreatment
decreased themetastatic implantation capacity of melanoma cells.
Figure 7C illustrates the lung H&E staining of a representative
experiment allowing microquantification of lung metastases. We
wondered whether this reduction in metastasis implantation was
dependent on an adaptive immune response. Therefore, the same
experiments were performed in NMRI nude mice. The number
of lung metastases was decreased in NMRI nude mice injected
with H1152-pretreated B16F10 cells versus untreated cells. More-
over, the ratio between the number of metastases obtained with
untreated versus H1152-pretreated B16F10 cells (3.7-fold) was
similar in immunocompetent and immunocompromised mice
(Figure 7D), strongly suggesting that T lymphocytes were not
involved in the H1152-dependent reduction of metastasis. There-
fore, we concluded that this decrease in metastatic potential was
intrinsically linked to ROCK inhibition.

Discussion

Melanomas are immunogenic tumors, which express tumor anti-
gens and other molecules that are recognized by the effectors of
the innate and adaptive immune responses. This recognition can
be avoided viamanymechanisms leading to the immune escape of
tumors. One of thesemechanisms is the ectopic expression of FasL
on tumor cellmembranes that triggers a counterattack against Fas-
expressing lymphocytes (13, 28). However, this FasL-mediated
tumor counterattack can be reversed as FasL overexpression in
cancer cells is also known to elicit anti-tumor effects (14, 15, 29).

The aim of this study was to find out whether treatment with
ROCK inhibitors, such as H1152 and Fasudil, could induce a
melanoma overexpression of FasL capable of promoting tumor
rejection. If this was the case, such inhibitors might therefore be
of interest for the treatment of metastatic melanoma. Recently, a
study reported that the ambivalent role of FasL in cancer could
be related to the timing of its expression. In fact, they showed
that when FasL was initially expressed in injected cancer cells, it
elicited anti-tumor activity, but when FasL expression was delayed
after tumor implantation, the tumormicroenvironment abrogated
the FasL-mediated anti-tumor activity (27). Moreover, a separate
previous publication suggested that the ambivalent role of FasL
in melanoma is instead connected to its level of expression, with
a high expression favoring tumor rejection and a low expression
inducing tumor escape through FasL counterattack (15).

Altogether, the experiments presented here show that treatment
of B16F10 melanoma cells with H1152 induces FasL membrane
overexpression without interfering with proliferation in vitro.
Moreover, the clinically used ROCK inhibitor, Fasudil, is also able
to reducemelanoma growth by intravenous injections. Previously,
another ROCK inhibitor (Y27623) was used in vivo and it inhib-
itedmelanoma growth when it was injected intraperitoneally (30).
In our experiments, the ROCK inhibition-induced FasL overex-
pression triggers a protective immune tumor-microenvironment
in vivo. Indeed, we show that tumor development from injected
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FIGURE 7 | ROCK inhibition with H1152 reduces in vitro cell migration
and in vivo metastases’ establishment in lung without implication of T
lymphocytes. In vitro migration of B16F10 cells untreated or pretreated with
H1152 1µM for 24 h was analyzed using transwell assays (A). B16F10 cells
untreated or pretreated with H1152 1µM for 24 h were injected intravenously in
C57BL/6 mice. Twelve days after inoculation, lungs were recovered and
macroscopic pulmonary metastases were quantified (B). Lung

photomicrographs are shown for representative lungs of C57BL/6 mice (C).
Results are expressed as mean±SD. **P<0.005; ***P<0.001 versus control
using the Student’s t-test. B16F10 cells untreated or pretreated with H1152
1µM for 24 h were injected intravenously in nude NMRI mice (D). Twelve days
after inoculation, lungs were recovered and macroscopic pulmonary metastases
were quantified. Results are expressed as mean±SD. **P<0.005 versus
control using the Student’s t-test.

H1152-treated B16F10 cells was significantly reduced in vivo.
This effect is dependent on the Fas/FasL pathway and is mainly
mediated by the immune response of IFN-γ-T CD8+ lympho-
cytes. Activated macrophages could also be involved as previously
shown in mice-bearing intraocular tumors (31) or infected by
Leishmaniamajor (32). In thesemice, a synergy between Fas–FasL
pathway and IFN-γ was necessary to eliminate the tumors or for
resolution of parasite-induced lesions by activated macrophages.
Our results are consistent with studies reporting that FasL over-
expression is an inducer of anti-tumor immune responses (15,
27, 29, 33). However, FasL has already been involved in CD8T-
cell infiltration into tumors, but contrary to what we describe
here with melanoma cells overexpressing FasL in membrane,
FasL expression on endothelial cells causes reduced CD8T-cell
infiltration into the tumor (34).

Tumor-infiltrating CD8 lymphocytes play a major role in the
reduction of growth of B16F10 cells over-expressing FasL. Indeed,
activated CD8 lymphocytes mainly infiltrate these tumors and
were responsible for the reduction in the rate of tumor growth,
since the specific in vivo depletion of the CD8+ population
restored tumor growth from H1152-pretreated B16F10 cells even
when FasLwas overexpressed in these cells. On the other hand, the
specific depletion of CD4+ cells had an intermediate effect and
partially restored tumor growth. This intermediate effect could
be explained by the diversity and opposing effects of the CD4+
T cell subsets present in the tumor microenvironment, includ-
ing anti-tumoral Th1 cells and immunosuppressive T regulatory

(Treg) cells (35). Using B16F10 cells transfected with FasL, it
has previously been shown that Treg cells limit the inflamma-
tory response by inhibiting neutrophils accumulation and sur-
vival, thereby favoringmelanoma growth (36). Here, we generated
FasL overexpression through ROCK inhibition, and our depletion
experiments show that the selective elimination of CD8+ cells is
sufficient to restore normal tumor growth.

We also demonstrate here that H1152-induced slowing down
of melanoma growth is associated with a massive infiltration
of leukocytes. Our flow cytometric analyses showed that the
number of activated CD8+ lymphocytes is increased in these
leukocytes. These results are consistent with those of Erdag et al.
who demonstrated that higher densities of CD8+ T cells corre-
late with a better survival in melanoma patients (37). Moreover,
studies led by Prof. Galon’s team have linked a good survival
prognosis for colorectal cancer patients with infiltration of T
CD8+ CD45RO+ memory cells (38, 39). Memory immunity has
not been evaluated in our present study but we can speculate
that the H1152-induced increase in tumor-infiltrating activated
CD8+ lymphocytes could generate CD8+ CD45RO+ memory
cells.

Our final results show that ROCK inhibition reduces cell
migration and pulmonary metastasis implantation. These effects
are mainly due to the intrinsic capacity of the H1152 ROCK
inhibitor to reduce ROCK kinase-mediated control of cell migra-
tion and cancer cell invasion (18). These observations were rein-
forced by our experiments carried out in immunosuppressed
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NMRI nude mice, which revealed that an adaptive immune
response involving T lymphocytes was not responsible for the
reduction in metastasis. In agreement with this, some studies
have now recognized FasL as an inducer of cell invasion and
cell migration in addition to its well-established role in inducing
apoptosis (40). However, it is well known that NK cells play an
important role in the control of metastatic processes (41), so
since the mutation present in NUDE mice does not affect NK
cell generation and activity, a ROCK inhibition-induced innate
immunity-dependent effect onmetastasis development cannot yet
be excluded.

In conclusion, our results show that Rho-kinase inhibitors,
H1152 and Fasudil, decreasemelanoma growth, and pretreatment
of B16F10 melanoma cells with H1152 inhibitor promotes an
anti-tumor immune response through increased FasL expression.

Therefore, these inhibitors could become interesting pharmaco-
logical molecules for melanoma immunotherapy.
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