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Obesity is a chronic and multifactorial disorder that is reaching epidemic proportions. It
is characterized by an enlarged mass of adipose tissue caused by a combination of size
increase of preexisting adipocytes (hypertrophy) and de novo adipocyte differentiation
(hyperplasia). Obesity is related to many metabolic disorders like hypertension, type
2 diabetes, metabolic syndrome, and cardiovascular disease, and it is associated
with an increased risk of cancer development in different tissues including breast.
Adipose tissue is now regarded as not just a storage reservoir for excess energy, but
rather as an endocrine organ, secreting a large number of bioactive molecules called
adipokines. Among these, adiponectin represents the most abundant adipose tissue-
excreted protein, which exhibits insulin sensitizing, anti-inflammatory, and antiatherogenic
properties. The serum concentrations of adiponectin are inversely correlated with body
mass index. Recently, low levels of plasma adiponectin have been associated with
an increased risk for obesity-related cancers and development of more aggressive
phenotype, concomitantly with alterations in the bioavailability of insulin-like growth factor-
I (IGF-I) and IGF-I receptor (IGF-IR) signaling pathways. In this review, we discuss the
cross-talk between adiponectin/AdipoR1 and IGF-I/IGF-IR in breast cancer.
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Introduction

Breast cancer is one of the most common forms of female malignancy in the world. Many epidemi-
ological studies suggest an important, but still controversial, role for obesity and adipose tissue
mass in breast cancer risk and an association with tumor phenotypes (1). The latter event has
been suggested to relay on the increased estrogen production in peripheral fat deposits, through
the aromatization of androgens, secreted by the adrenal gland (2). However, on the basis of many
recent studies, the contribution of obesity to the development of breast carcinoma cannot be
ascribed to the increased estrogen levels only. In more recent years, it has been demonstrated that
autocrine, endocrine, and paracrine-acting adipocytes-derived factors, known as adipocytokines,
may contribute to the regulation of breast cancer development and progression (3). As a member of
the adipocytokine family, adiponectin is synthesized and secreted almost exclusively by the adipose
tissue (4), and its plasma concentration is inversely correlated with adiposity (5). Adiponectin
exhibits anti-inflammatory activity, a protective effect against metabolic disorders, such as insulin
resistance, fatty-acid oxidation, and insulin sensitivity.

Furthermore, recent clinical studies have implicated that the reduction of circulating adiponectin
levels is a risk factor not only for type 2 diabetes and cardiovascular diseases but also for several types
of cancers, including breast cancer (6, 7). However, conflicting observations have been reported on
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the effects elicited by adiponectin on breast cancer cell growth.
It has been extensively demonstrated that adiponectin induces
an anti-proliferative response in human estrogen receptor alpha
(ERα)-negative breast cancer cells (8–10), while controversial
data are reported in ERα-positive cells (11–16). The possible
mechanisms through which adiponectin exerts anticancer effects
may include activation of AMP-activated kinase and decrease of
mTOR signaling (12). This addresses how a network of different
signaling pathways is involved in the adiponectin-mediated effects
in breast cancer, and the response to adiponectin seems to be
dependent on breast cancer phenotypes.

Obesity and Breast Carcinogenesis

Breast carcinoma represents the highest incidence of cancers
affecting women, and it is the second most fatal cancer type (17,
18). Aside from the genetic predisposition, a myriad of other
factors can contribute to the pathogenesis of breast cancer (19).
Among the modifiable factors, obesity not only represents a seri-
ous risk for breast carcinogenesis but also positively correlated
with a poor outcome (20).

It is now widely accepted that obesity may promote breast
tumor through several mechanisms (Figure 1). Traditionally, the
adverse effect of obesity on breast cancer prognosis has been
linked to the higher estrogen levels produced, consequent to a
greater aromatase activity due to the excess of adipose tissue
(21). Despite the well documented relationship between obesity
and estrogenic activity, it is evident that this cannot fully explain
the association between body weight and breast cancer risk and
prognosis.

Estrogen-independent mechanisms for which there are both
experimental and epidemiological supports involve insulin resis-
tance, hyperinsulinemia, greater bioavailability of insulin-like
growth factor-I (IGF-I), which represents the more relevant
obesity-related growth factor, and dysregulation of insulin-like
growth factor-I receptor (IGF-IR) downstream signaling path-
ways (22).

Apart from these mechanisms, another important element
in obesity-mediated breast carcinogenesis is represented by the
interaction between tumor cells and the surrounding microen-
vironment, which comprises stromal cells, soluble factors, sig-
naling molecules, and extracellular matrix that can promote

tumorigenesis, and make the tumor resistant from host immunity
and therapeutic response. Importantly, obesity is also character-
ized by multiple changes in the adipose tissue biology.

Particularly, white adipose tissue in obese individuals exhibits
chronic mild inflammatory status, mostly defined by infiltra-
tion of leukocytes, including macrophages (23). For instance,
stromal adipocytes directly influence breast cancer cells growth
and progression through the secretion of several biologically
active polypeptides known as adipokines (24, 25), which have a
chemo-attractant action, causing the recruitment ofmacrophages.
The activated macrophages release proinflammatory molecules,
including TNFα, IL-1β, and IL-6. These cytokines play both local
and systemic actions, contributing to insulin resistance and breast
cancer tumorigenesis (26, 27).

Adiponectin

Adiponectin, one of the most important adipokines, is pro-
duced exclusively in white adipocytes. The human gene encoding
adiponectin maps to chromosome 3q27, a region associated with
susceptibility for developing metabolic syndrome and type 2 dia-
betes in Caucasians (28). Adiponectin gene spans 16 kb and con-
tains three exons and two introns (29). Several single nucleotide
polymorphisms (SNPs) in the coding region were identified,
which are associated with alterations of adiponectin function and
important clinical conditions. In particular, SNPs are associated
with the strengthening of adiponectin effects on insulin resistance,
type 2 diabetes, obesity, dyslipidemia, and many obesity-related
malignancies (30).

Structurally, themolecule of human adiponectin consists of 244
amino acid residues and contains four distinct domains; at the N-
terminus, there is an 18 amino acid long-signal peptide followed
by a short-hypervariable region without homology to any known
sequences and a collagen domain with 22 repeated motifs; C-
terminal contains globular domain homologous to C1q molecule
of complement cascade (Figure 2A). The C-terminal globular
domain also shows homology with TNF-α trimeric cytokines
family (31, 32).

Once synthesized, adiponectin undergoes posttranslational
hydroxylation and glycosylation modifications (33) and before
secretion it forms trimers (low-molecular weight, LMW) that
oligomerize to produce hexame-rich middle molecular weight

FIGURE 1 | Relationship between obesity and breast cancer. Principal mechanisms through which the obesity condition may promote breast cancer
development and progression.
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FIGURE 2 | Cross-talk between adiponectin and IGF-IR in breast cancer:
overview of mechanisms. (A) Schematic structure of adiponectin monomer
with different domains and proteolytic cleavage site indicated. fAd and gAd
indicate full length and globular adiponectin, respectively. (B) In ERα-positive

breast cancer cells, adiponectin, produced by adipocytes, binds to AdipoR1,
and establishes cross-talk with membrane ERα and with IGF-IR. The enhanced
phosphorylation of MAPK may allow the activation of IGF-IR, IRS-1, and ERα,
which contribute to breast tumor growth and progression.

(MMW) and high-molecular weight (HMW) forms. Adiponectin
circulating in plasma exists as the full-length protein (fAd) or
a proteolytic cleavage fragment known as globular adiponectin
(gAd) (34–36), which is probably generated by elastase digestion
(37, 38) (Figure 2A).

The levels of this adipokine are abundant in human plasma,
with concentrations ranging from 3 to 30 µg/ml (39), and they
are about two to three times lower in male compared to female,
due to the lower amounts of HMW form (40, 41). Its con-
centration is inversely correlated with body mass index (42).
Indeed, unlike most of the other adipokines, plasma adiponectin

levels are found to be lower in obese than in lean individu-
als (3). Moreover, low-circulating levels are found in type 2
diabetes (43), and mice lacking adiponectin develop metabolic
syndrome, with insulin resistance, glucose intolerance, hyper-
glycemia, and hypertension (44, 45). The mechanisms respon-
sible for the adiponectin downregulation are still unclear. It
has been speculated that its reduced levels in obesity may
be caused by the enhanced production of proinflammatory
cytokines, in particular, by the tumor necrosis factor α (TNFα)
(46). However, another potential explanation indicates a negative
feedback of adiponectin on its own production and probably
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on the expression of its receptors during the development of
obesity (47).

Adiponectin Receptors

Adiponectin exerts many of its cellular effects through binding to
two receptor isoforms, the adiponectin receptor 1 (AdipoR1) and
2 (AdipoR2) (48). AdipoR1 and AdipoR2 contain seven trans-
membrane domains with internal N-terminus and external C-
terminus regions; thus, they are both structurally and functionally
distinct fromG-protein-coupled receptors (GPCR) (49). AdipoR1
presents high affinity for gAd and low affinity for the full-size lig-
and (50), and it is expressed ubiquitously but abundantly in skele-
talmuscle and endothelial cells. AdipoR2 has intermediate affinity
for both forms of adiponectin and is predominantly expressed
in the liver (51). Since AdipoR1 is the predominant receptor
in skeletal muscle, while AdipoR2 is predominantly expressed
in liver, this correlated with the fact that gAd exerts its insulin
mimetic and insulin-sensitizing effect more effectively compared
to fAd in skeletal muscle and vice versa (52).

A non-classical third potential adiponectin receptor is T-
cadherin, which was also found to competitively bind only the
hexameric andHMWforms of adiponectin (53–55). Various stud-
ies have suggested the involvement of T-cadherin, which plays
an important role in cell adhesion and in calcium-mediated cell
to cell interactions and signaling (53), in mediating functional
effects of adiponectin. T-cadherin lacks an intracellular domain
needed for signal transduction; thus, it has been suggested that
it may function as a coreceptor by competing with AdipoR1 and
AdipoR2 receptors for adiponectin binding or interfering with
adiponectin signal transduction (56).

Adiponectin Signaling Pathways

Adiponectin activates various signaling molecules when bound to
its receptors. Several adiponectin receptor binding proteins have
now been identified (57). Among these, the first and best char-
acterized is the adaptor protein APPL1, containing a pleckstrin
homology domain, a phosphotyrosine binding (PTB) domain,
and a leucine zippermotif (57, 58). AdipoR1 andAdipoR2 interact
with the PTB domain of APPL-1 through their N-terminal intra-
cellular region, thereby inducing adiponectin actions through the
sequential activation of downstream signaling. It has emerged that
APPL1 plays an important role inmediatingmany of adiponectin’s
effects, including metabolic, antiinflammation, antiatherogenic,
and cytoprotection responses (59, 60).

Adiponectin exerts its effects through the activation of AMPK,
mTOR, PI3K/Akt, MAPK, PPAR-α, STAT3, and NF-kB (47, 59).

Most of its effects aremediated through the cellular energy sen-
sorAMPK (61, 62), which promotes glucose utilization that results
in an increased fatty-acid oxidation, increased glucose uptake
at the skeletal muscle level, and reduced gluconeogenesis in the
liver (47). In addition, adiponectin exerts its insulin-sensitizing
effects through the activation of PPAR-α, thereby enhancing fatty-
acid combustion and energy consumption, leading to a tissue
decrease content of triglycerides in the liver and skeletal muscle,
and improving insulin sensitivity in vivo (63).

Adiponectin and Breast Cancer

Adiponectin is emerging as an important factor in carcinogene-
sis. Many clinical investigations suggested that low-adiponectin
concentrations are associated with an increased risk for obesity-
related cancer, such as prostate, colon, endometrial, and breast
cancer (47). Epidemiological studies address that, in women with
low-circulating adiponectin levels, breast tumors may present a
more aggressive phenotype, exemplified by large tumor size, high-
histological grade, estrogen receptor negativity, and increased
angiogenesis and metastasis (6). Recently, through a transcrip-
tomic profiling, Merdad and co-workers evidenced a downreg-
ulation of adiponectin and other molecules involved in lipid
metabolism in surgically resected breast tumors patients. The
results address how some ethnic groups are more susceptible to
breast cancer occurrence (64).

It has beenwell documented that the pathogenesis ofmammary
cancer is not only dependent on genetic alterations but also largely
on the interactions between malignant cells and components of
the breast microenvironment, which exerts an important influ-
ence on the phenotype of the neoplastic cells and on tumor
progression.Microenvironmentalmolecules, such as chemokines,
cytokines, and growth factors, could influence tumor progression
by three major, non-mutually exclusive, mechanisms. The first is
by further increasing the genetic instability of tumor cells. The
second is by inducing signaling cascades in tumor cells via tumor-
associated receptors thereby controlling gene expression in these
cells. The third mechanism is by exerting selective pressures on
the cells (24, 65).

Thus, the malignant cell phenotype is regulated not only by
autonomous signals originating from cancer cells but also by the
effects of the surrounding stromal cells, which influence mam-
mary epithelial cell growth and differentiation (24). The close
association betweenmammary epithelial cells and adipocytesmay
favor a more direct action of adipokines on such tissue (11).

However, the role of this adipokine on breast tumorigene-
sis is still unclear, and it seems to be dependent on cell types.
Low-adiponectin doses mediate an anti-proliferative response in
ERα-negative breast cancer cells through the regulation of genes
involved in cell cycle, such as p53, Bax, Bcl-2, c-myc, and Cyclin
D1 (66). In addition, in these cells, the adipokine is able to acti-
vate the AMPK, which in turn inhibits mTOR, through tuberous
sclerosis complex 2 (TSC2), thus counteracting carcinogenesis
(67, 68). Moreover, activated AMPK plays a crucial role in the
regulation of growth arrest and apoptosis by stimulating p21 and
p53 (69). On the other hand, it is emerging that adiponectin, at
low concentrations, increases proliferation in ERα-positive breast
cancer cells (15, 16). This occurs through the activation of ERα
at both genomic and non-genomic levels (70), together with the
positive regulation of cyclin D1 expression (71).

On the basis of these observations, adiponectinmay represent a
promising diagnostic and prognostic biomarker to identify high-
susceptibility individuals for developing obesity-related tumors.
Recently, it has developed an adiponectin-based short peptide,
ADP 355, acting as AdipoR1 agonist, and able to modulate
several signaling pathways (AMPK, Akt, STAT3, and ERK1/2) in a
manner similar to gAd. In breast cancer cells, ADP 355 reproduces
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the adiponectin-induced anti-proliferative activity both in vitro
and in vivo (3, 72, 73).

IGF-IR in Breast Cancer

Insulin-like growth factor-I receptor is an evolutionary conserved,
ubiquitous transmembrane tyrosine kinase structurally similar to
the insulin receptor. IGF-IR regulates different biological pro-
cesses, such as proliferation, survival, differentiation, transfor-
mation, cell-substrate, and cell–cell interactions (74–79). More
recently, it has been highlighted that the role of the IGF-IR in
the development and maintenance of the cancer stem cells, in
epithelial–mesenchymal transition, and in the regulation of the
tumor microenvironment (80). The first evidence that IGF-IR is
critical in tumorigenesis was provided by the observation that
constitutive overexpression of IGF-IR induced the transformed
phenotype in cultured cells (81, 82).

It is now quite evident that IGF-IR plays a multifaceted and
complex role in the development and progression of a malignant
disease. Numerous clinical and experimental data indicated that
IGF-IR is overexpressed in several subtypes of breast cancer (83),
and many conditions lead to the activation of IGF-IR tyrosine
kinase activity (84), allowing interaction with its main substrates,
such as insulin receptor substrates (IRS) and the Src-homology-2-
containing protein SH2 (SHC) (74). Once phosphorylated, these
proteins act as docking molecules that bind to and activate cel-
lular kinases, initiating different downstream signaling pathways.
In this regard, IGF-IR induces activation of Ras/raf/MAPK and
PI3K/Akt signaling, which alter the expression of genes involved
in cell proliferation and survival (85), thus contributing to breast
carcinogenesis.

In hormone-dependent breast cancer cells, the IGF-IR and
ERα are co-expressed and IGF-I acts in synergy with estradiol to
stimulate proliferation (74). Indeed, estradiol up-regulates IGF-IR
mRNA and protein levels as well as its tyrosine phosphorylation
(73, 74, 86). Furthermore, estradiol significantly stimulates the
expression of IRS-1 in ERα-positive cells (87).

Elevated expression of IGF-IR or IRS-1 appears to increase
drug and radio resistance of breast cancer cells and favor cancer
recurrence in patients (88, 89). In addition to promote cell growth,
IGF-IR counteracts apoptosis in ERα-positive cells, activating the
IRS-1/PI3K pathway (74, 89). For these reasons, IGF axis has been
validated for developing targeted therapy for cancer prevention
and treatment (80, 90, 91).

Adiponectin and IGF-IR Interaction
in Breast Cancer

Insulin-like growth factors and IGF-IR are involved in the
metabolic cellular response to adiponectin inmany cell types (63).
It has beenwidely demonstrated that IGF-IR increases growth and
survival of neoplastic cells, altering the expression of specific genes
regulated through the activation of Akt andMAPK pathways (92).

Emerging evidences address the existence of a cross-talk
between adiponectin/AdipoR1 and IGF-IR in breast cancer. It has
been previously demonstrated that adiponectin increases IGF-IR-
β subunit tyrosine phosphorylation and the downstream MAPK

activation in granulosa cells (93). More recently, it has been
shown that low concentrations of adiponectin rapidly increase
IGF-IR phosphorylation in ERα-positive breast cancer cells, con-
comitantly with ligand-independent activation of ERα (70). It is
worth to note that in MCF-7 cells, upon adiponectin treatment,
knockdown of ERα reduces IGF-IR phosphorylation, whereas
a specific siRNA for IGF-IR prevents adiponectin-induced ERα
transactivation (70).

Moreover, IGF-IR takes part in the formation of a protein
complex involved in the induction of ERα-positive breast cancer
cell growth. Indeed, adiponectin enhances the coimmunoprecipi-
tation ofAdipoR1,APPL1, ERα, IGF-IR, and c-Src inMCF-7 cells.
The formation of this multiprotein complex leads, via c-Src, to
MAPK activation, which is abrogated in the presence of specific
RNA silencers targeting ERα or IGF-IR (70). On the other hand,
in ERα-negative MDA-MB-231 cells adiponectin is no longer
able to induce MAPK phosphorylation, but it increases activation
of AMPK, which mediates anti-proliferative effect in these cells
(70, 71). In this concern, it has been well documented how in
breast cancer cells the adiponectin-induced activation of AMPK
is concomitant with inactivation of MAPK (12).

Interestingly, our unpublished data demonstrate that
adiponectin enhances phosphorylation and protein expression of
IRS-1 inERα-positive breast cancer cells, thus amplifying the IGF-
I/IGF-IR growth signaling. All these data address the existence
of a possible cross-talk between Adiponectin/AdipoR1, ERα, and
IGF-IR involved in the positive regulation of ERα-positive breast
cancer cell growth. These data are supported by other papers
showing that adiponectin, via its adapter protein APPL1, is able
to induce phosphorylation of IRS-1, which mediates the effect of
activated IR/IGF-IR in normal and tumoral cells (63, 94).

Our preliminary results surprisingly show that adiponectin at
low concentrations is able to potentiate IGF-I-induced anchorage-
independent growth in ERα-positive breast cancer cells. In con-
trast, adiponectin is able to elicit opposite action in antagonizing
the stimulatory effects induced by IGF-I in ERα-negative breast
cancer cells. In the same vein, wound healing assays evidence
that in ERα-positive breast cancer cells, adiponectin, and IGF-I
enhance cell motility and the co-treatment results in an addi-
tive effect, addressing how adiponectin may synergize with IGF-
IR signaling. On the contrary, in ERα-negative breast cancer
cells adiponectin counteracts the IGF-I-induced cell migration
(manuscript in preparation). These results well fit with recent
findings demonstrating that adiponectin is able to regulate migra-
tion and invasion in different breast cancer cells (95–97).

Conclusion

Adiponectin is emerging as a crucial adipokine involved in
breast carcinogenesis in women with obesity. In ERα-positive
breast cancer cells, the interaction of adiponectin with its
specific receptor induces the activation of multiple pathways,
through the interplay between ERα and IGF-IR. This leads to
(i) increased activation of MAPK and upregulation of genes
involved in proliferation and inhibition of apoptosis, (ii) induction
of cell migration (Figure 2B). On the basis of these findings,
we may conclude that adiponectin differently modulates IGF-I
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stimulatory effect in breast cancer cells in relationship to ERα
status. Indeed, the antagonistic effects exerted by adiponectin on
IGF-IR signaling are evident only in ERα-negative breast cancer
cells. Thus, only in the latter circumstance, adiponectin sounds
to be exploited in novel therapeutic strategies for breast cancer
treatment.

Acknowledgments

This work was supported by Associazione Italiana Ricerca sul
Cancro [AIRC; IG grant 11595 andMy First AIRCGrant (MFAG)
6180].We are grateful to Dr. Sturino (University of Calabria, Italy)
for his assistance with English revision.

References
1. James FR, Wootton S, Jackson A, Wiseman M, Copson ER, Cutress RI. Obesity

in breast cancer – what is the risk factor? Eur J Cancer (2015) 51(6):705–20.
doi:10.1016/j.ejca.2015.01.057

2. Catalano S, Mauro L, Marsico S, Giordano C, Rizza P, Rago V, et al. Leptin
induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha
inMCF-7 cells. J Biol Chem (2004) 279:19908–15. doi:10.1074/jbc.M313191200

3. Surmacz E. Leptin and adiponectin: emerging therapeutic targets in breast
cancer. J Mammary Gland Biol Neoplasia (2013) 18:321–32. doi:10.1007/
s10911-013-9302-8

4. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev
(2005) 26:439–51. doi:10.1210/er.2005-0005

5. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with
insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab (2001)
86:1930–5. doi:10.1210/jcem.86.5.7463

6. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM,
et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metab (2004)
89:1102–7. doi:10.1210/jc.2003-031804

7. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al.
Association of serum adiponectin levels with breast cancer risk. Clin Cancer
Res (2003) 9:5699–704.

8. Kang JH, Lee YY, Yu BY, Yang BS, ChoKH, YoonDK, et al. Adiponectin induces
growth arrest and apoptosis ofMDA-MB-231 breast cancer cell.Arch PharmRes
(2005) 28:1263–9. doi:10.1007/BF02978210

9. Dos Santos E, BenaitreauD,DieudonneMN, LeneveuMC, SerazinV, Giudicelli
Y, et al. Adiponectinmediates an antiproliferative response in humanMDA-MB
231 breast cancer cells. Oncol Rep (2008) 20:971–7. doi:10.3892/or_00000098

10. Grossmann ME, Nkhata KJ, Mizuno NK, Ray A, Cleary MP. Effects of
adiponectin on breast cancer cell growth and signaling. Br J Cancer (2008)
98:370–9. doi:10.1038/sj.bjc.6604166

11. Körner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara
A, et al. Total and high-molecular-weight adiponectin in breast cancer: in vitro
and in vivo studies. J Clin Endocrinol Metab (2007) 92:1041–8. doi:10.1210/jc.
2006-1858

12. DieudonneMN, BussiereM, Dos Santos E, LeneveuMC, Giudicelli Y, Pecquery
R. Adiponectin mediates antiproliferative and apoptotic responses in human
MCF7 breast cancer cells. Biochem Biophys Res Commun (2006) 345:271–9.
doi:10.1016/j.bbrc.2006.04.076

13. Jardé T, Caldefie-Chézet F, Goncalves-Mendes N, Mishellany F, Buechler C,
Penault-Llorca F, et al. Involvement of adiponectin and leptin in breast cancer:
clinical and in vitro studies. Endocr Relat Cancer (2009) 16:1197–210. doi:10.
1677/ERC-09-0043

14. Treeck O, Lattrich C, Juhasz-Boess I, Buchholz S, Pfeiler G, Ortmann O.
Adiponectin differentially affects gene expression in human mammary epithe-
lial and breast cancer cells. Br J Cancer (2008) 99:1246–50. doi:10.1038/sj.bjc.
6604692

15. Pfeiler GH, Buechler C, NeumeierM, Schäffler A, Schmitz G, OrtmannO, et al.
Adiponectin effects on human breast cancer cells are dependent on 17-beta
estradiol. Oncol Rep (2008) 19:787–93. doi:10.3892/or.19.3.787

16. Landskroner-Eiger S, Qian B, Muise ES, Nawrocki AR, Berger JP, Fine EJ,
et al. Proangiogenic contribution of adiponectin toward mammary tumor
growth in vivo. Clin Cancer Res (2009) 15:3265–76. doi:10.1158/1078-0432.
CCR-08-2649

17. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin
(2012) 62:10–29. doi:10.3322/caac.20138

18. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer
J Clin (2011) 61:409–18. doi:10.3322/caac.20134

19. Singletary SE. Rating the risk factors for breast cancer. Ann Surg (2003)
237:474–82. doi:10.1097/00000658-200304000-00007

20. Loi S, Milne RL, Friedlander ML, McCredie MR, Giles GG, Hopper JL, et al.
Obesity and outcomes in premenopausal and postmenopausal breast cancer.
Cancer Epidemiol Biomarkers Prev (2005) 14:1686–91. doi:10.1158/1055-9965.
EPI-05-0042

21. McTiernan A, Rajan KB, Tworoger SS, Irwin M, Bernstein L, Baumgartner R,
et al. Adiposity and sex hormones in postmenopausal breast cancer survivors.
J Clin Oncol (2003) 21:1961–6. doi:10.1200/JCO.2003.07.057

22. Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microen-
vironment: links to cancer. J Carcinog (2013) 12:19. doi:10.4103/1477-3163.
119606

23. Osborn O, Olefsky JM. The cellular and signaling networks linking the
immune system and metabolism in disease. Nat Med (2012) 18:363–74. doi:10.
1038/nm.2627

24. Andò S, Catalano S. Themultifactorial role of leptin in driving the breast cancer
microenvironment. Nat Rev Endocrinol (2011) 8:263–75. doi:10.1038/nrendo.
2011.184

25. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine and autocrine
factors in breast cancer risk and progression. Endocr Relat Cancer (2007)
14:189–206. doi:10.1677/ERC-06-0068

26. Wolin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist (2010)
15:556–65. doi:10.1634/theoncologist.2009-0285

27. Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways:
adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer
Res (2013) 19:6074–83. doi:10.1158/1078-0432.CCR-12-2603

28. Comuzzie AG, Funahashi T, Sonnenberg G, Martin LJ, Jacob HJ, Black AE,
et al. The genetic basis of plasma variation in adiponectin, a global endophe-
notype for obesity and the metabolic syndrome. J Clin Endocrinol Metab (2001)
86:4321–5. doi:10.1210/jcem.86.9.7878

29. Saito K, Tobe T, Minoshima S, Aakawa S, Sumiya J, Yoda M, et al. Organization
of the gene for gelatin-binding protein (GBP28).Gene (1999) 229:67–73. doi:10.
1016/S0378-1119(99)00041-4

30. Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, et al.
Genomic structure and mutations in adipose-specific gene, adiponectin. Int J
Obes Relat Metab Disord (2000) 24:861–8. doi:10.1038/sj.ijo.0801244

31. Shapiro L, Scherer PE. The crystal structure of a complement-1q family protein
suggests an evolutionary link to tumor necrosis factor.Curr Biol (1998) 8:335–8.
doi:10.1016/S0960-9822(98)70133-2

32. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al.
Adiponectin, a new member of the family of soluble defense collagens, nega-
tively regulates the growth of myelomonocytic progenitors and the functions of
macrophages. Blood (2000) 96:1723–32.

33. Wang Y, Xu A, Knight C, Xu LY, Cooper GJ. Hydroxylation and glycosylation
of the four conserved lysine residues in the collagenous domain of adiponectin:
potential role in the modulation of its insulin-sensitizing activity. J Biol Chem
(2002) 277:19521–9. doi:10.1074/jbc.M200601200

34. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T,
et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/
adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem
(2003) 278:9073–85. doi:10.1074/jbc.M207198200

35. Tsao TS, Murrey HE, Hug C, Lee DH, Lodish HF. Oligomerization
state-dependent activation of NF-kappa B signaling pathway by adipocyte
complement-related protein of 30 kDa (Acrp30). J Biol Chem (2002)
277:29359–62. doi:10.1074/jbc.C200312200

36. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, et al. Impaired mul-
timerization of human adiponectin mutants associated with diabetes. Molec-
ular structure and multimer formation of adiponectin. J Biol Chem (2003)
278:40352–63. doi:10.1074/jbc.M300365200

Frontiers in Oncology | www.frontiersin.org July 2015 | Volume 5 | Article 1576

http://dx.doi.org/10.1016/j.ejca.2015.01.057
http://dx.doi.org/10.1074/jbc.M313191200
http://dx.doi.org/10.1007/s10911-013-9302-8
http://dx.doi.org/10.1007/s10911-013-9302-8
http://dx.doi.org/10.1210/er.2005-0005
http://dx.doi.org/10.1210/jcem.86.5.7463
http://dx.doi.org/10.1210/jc.2003-031804
http://dx.doi.org/10.1007/BF02978210
http://dx.doi.org/10.3892/or_00000098
http://dx.doi.org/10.1038/sj.bjc.6604166
http://dx.doi.org/10.1210/jc.2006-1858
http://dx.doi.org/10.1210/jc.2006-1858
http://dx.doi.org/10.1016/j.bbrc.2006.04.076
http://dx.doi.org/10.1677/ERC-09-0043
http://dx.doi.org/10.1677/ERC-09-0043
http://dx.doi.org/10.1038/sj.bjc.6604692
http://dx.doi.org/10.1038/sj.bjc.6604692
http://dx.doi.org/10.3892/or.19.3.787
http://dx.doi.org/10.1158/1078-0432.CCR-08-2649
http://dx.doi.org/10.1158/1078-0432.CCR-08-2649
http://dx.doi.org/10.3322/caac.20138
http://dx.doi.org/10.3322/caac.20134
http://dx.doi.org/10.1097/00000658-200304000-00007
http://dx.doi.org/10.1158/1055-9965.EPI-05-0042
http://dx.doi.org/10.1158/1055-9965.EPI-05-0042
http://dx.doi.org/10.1200/JCO.2003.07.057
http://dx.doi.org/10.4103/1477-3163.119606
http://dx.doi.org/10.4103/1477-3163.119606
http://dx.doi.org/10.1038/nm.2627
http://dx.doi.org/10.1038/nm.2627
http://dx.doi.org/10.1038/nrendo.2011.184
http://dx.doi.org/10.1038/nrendo.2011.184
http://dx.doi.org/10.1677/ERC-06-0068
http://dx.doi.org/10.1634/theoncologist.2009-0285
http://dx.doi.org/10.1158/1078-0432.CCR-12-2603
http://dx.doi.org/10.1210/jcem.86.9.7878
http://dx.doi.org/10.1016/S0378-1119(99)00041-4
http://dx.doi.org/10.1016/S0378-1119(99)00041-4
http://dx.doi.org/10.1038/sj.ijo.0801244
http://dx.doi.org/10.1016/S0960-9822(98)70133-2
http://dx.doi.org/10.1074/jbc.M200601200
http://dx.doi.org/10.1074/jbc.M207198200
http://dx.doi.org/10.1074/jbc.C200312200
http://dx.doi.org/10.1074/jbc.M300365200
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive


Mauro et al. Adiponectin and IGF-IR in breast cancer

37. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al.
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein
increases fatty acid oxidation inmuscle and causes weight loss inmice. Proc Natl
Acad Sci U S A (2001) 98:2005–10. doi:10.1073/pnas.98.4.2005

38. Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, et al. Generation of
globular fragment of adiponectin by leukocyte elastase secreted by monocytic
cell line THP-1. Endocrinology (2005) 146:790–6. doi:10.1210/en.2004-1096

39. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than
just another fat cell hormone? Diabetes Care (2003) 26:2442–50. doi:10.2337/
diacare.26.8.2442

40. Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC,
et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the
adipocyte-specific secretory protein adiponectin. Diabetes (2003) 52:268–76.
doi:10.2337/diabetes.52.2.268

41. Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, et al. Testosterone
selectively reduces the high molecular weight form of adiponectin by inhibiting
its secretion from adipocytes. J Biol Chem (2005) 280:18073–80. doi:10.1074/
jbc.M414231200

42. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol
Cell Endocrinol (2010) 316:129–39. doi:10.1016/j.mce.2009.08.018

43. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key
adipocytokine inmetabolic syndrome.Clin Sci (2006) 110:267–78. doi:10.1042/
CS20050182

44. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al.
Disruption of adiponectin causes insulin resistance and neointimal formation.
J Biol Chem (2002) 277:25863–6. doi:10.1074/jbc.C200251200

45. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H,
et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.Nat
Med (2002) 8:731–7. doi:10.1038/nm724

46. Tilg H,Moschen AR. Adipocytokines: mediators linking adipose tissue, inflam-
mation and immunity. Nat Rev Immunol (2006) 6:772–83. doi:10.1038/nri1937

47. Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in
cancer: a review of current evidence. Endocr Rev (2012) 33:547–94. doi:10.1210/
er.2011-1015

48. Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD, Palin
MF. Adiponectin action from head to toe. Endocrine (2010) 37:11–32. doi:10.
1007/s12020-009-9278-8

49. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of
adiponectin receptors thatmediate antidiabeticmetabolic effects.Nature (2003)
423:762–9. doi:10.1038/nature01705

50. Wang H, Zhang H, Jia Y, Zhang Z, Craig R, Wang X, et al. Adiponectin receptor
1 gene (ADIPOR1) as a candidate for type 2 diabetes and insulin resistance.
Diabetes (2004) 53:2132–6. doi:10.2337/diabetes.53.8.2132

51. Chen X,Wang Y. Adiponectin and breast cancer.MedOncol (2011) 28:1288–95.
doi:10.1007/s12032-010-9617-x

52. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al.
Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient
mice from atherosclerosis. J Biol Chem (2003) 278:2461–8. doi:10.1074/jbc.
M209033200

53. HugC,Wang J, AhmadNS, Bogan JS, TsaoTS, LodishHF. T-cadherin is a recep-
tor for hexameric and high-molecular-weight forms of Acrp30/adiponectin.
Proc Natl Acad Sci U S A (2004) 101:10308–13. doi:10.1073/pnas.0403382101

54. Asada K, Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, et al. Crosstalk
between high-molecular-weight adiponectin and T-cadherin during liver fibro-
sis development in rats. Int J Mol Med (2007) 20:725–9. doi:10.3892/ijmm.20.5.
725

55. Chan DW, Lee JM, Chan PC, Ng IO. Genetic and epigenetic inactivation
of T-cadherin in human hepatocellular carcinoma cells. Int J Cancer (2008)
123:1043–52. doi:10.1002/ijc.23634

56. Lee MH, Klein RL, El-Shewy HM, Luttrell DK, Luttrell LM. The adiponectin
receptors AdipoR1 andAdipoR2 activate ERK1/2 through a Src/Ras-dependent
pathway and stimulate cell growth. Biochemistry (2008) 47:11682–92. doi:10.
1021/bi801451f

57. Buechler C, Wanninger J, Neumeier M. Adiponectin receptor binding pro-
teins – recent advances in elucidating adiponectin signalling pathways. FEBS
Lett (2010) 584:4280–6. doi:10.1016/j.febslet.2010.09.035

58. Mao X, Kikani CK, Riojas RA, Langlais P,Wang L, Ramos FJ, et al. APPL1 binds
to adiponectin receptors andmediates adiponectin signalling and function.Nat
Cell Biol (2006) 8:516–23. doi:10.1038/ncb1404

59. Obeid S, Hebbard L. Role of adiponectin and its receptors in cancer.Cancer Biol
Med (2012) 9:213–20. doi:10.7497/j.issn.2095-3941.2012.04.001

60. Deepa SS, Dong LQ. APPL1: role in adiponectin signaling and beyond.
Am J Physiol Endocrinol Metab (2009) 296:E22–36. doi:10.1152/ajpendo.90731.
2008

61. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involve-
ment of AMP-activated protein kinase in glucose uptake stimulated by the
globular domain of adiponectin in primary rat adipocytes. Diabetes (2003)
52:1355–63. doi:10.2337/diabetes.52.6.1355

62. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted
disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding
and metabolic actions. Nat Med (2007) 13:332–9. doi:10.1038/nm1557

63. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-
derived hormone adiponectin reverses insulin resistance associated with both
lipoatrophy and obesity. Nat Med (2001) 7:941–6. doi:10.1038/90984

64. Merdad A, Karim S, Schulten HJ, Jayapal M, Dallol A, Buhmeida A, et al.
Transcriptomics profiling study of breast cancer fromKingdom of Saudi Arabia
revealed altered expression of adiponectin and fatty acid binding protein4: is
lipid metabolism associated with breast cancer? BMC Genomics (2015) 16:S11.
doi:10.1186/1471-2164-16-S1-S11

65. Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and
the tumor microenvironment. J Clin Invest (2011) 121:3804–9. doi:10.1172/
JCI57099

66. Wang Y. Adiponectin and breast cancer. Med Oncol (2011) 28:1288–95. doi:10.
1007/s12032-010-9617-x

67. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control
cell growth and survival. Cell (2003) 115:577–90. doi:10.1016/S0092-8674(03)
00929-2

68. Luo Z, Saha AK, Xiang X, Ruderman NB. AMPK, the metabolic syndrome and
cancer. Trends Pharmacol Sci (2005) 26:69–76. doi:10.1016/j.tips.2004.12.011

69. Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, et al.
Adenosinemonophosphateactivated protein kinase suppresses vascular smooth
muscle cell proliferation through the inhibition of cell cycle progression. Circ
Res (2005) 97:837–44. doi:10.1161/01.RES.0000185823.73556.06

70. Mauro L, Pellegrino M, De Amicis F, Ricchio E, Giordano F, Rizza P, et al.
Evidences that estrogen receptor α interferes with adiponectin effects on breast
cancer cell growth. Cell Cycle (2014) 13:553–64. doi:10.4161/cc.27455

71. Mauro L, Pellegrino M, Giordano F, Ricchio E, Rizza P, De Amicis F, et al.
Estrogen receptor-α drives adiponectin effects on cyclinD1 expression in breast
cancer cells. FASEB J (2015) 29:2150–60. doi:10.1096/fj.14-262808

72. Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in
obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor
Rev (2013) 24:503–13. doi:10.1016/j.cytogfr.2013.10.001

73. Surmacz E, Otvos L. Molecular targeting of obesity pathways in cancer. Horm
Mol Biol Clin Investig (2015) 22(2):53–62. doi:10.1515/hmbci-2015-0007

74. Surmacz E. Function of the IGF-I receptor in breast cancer. J Mammary Gland
Biol Neoplasia (2000) 5:95–105. doi:10.1023/A:1009523501499

75. Baserga R. The contradictions of the insulin-like growth factor 1 receptor.
Oncogene (2000) 19:5574–81. doi:10.1038/sj.onc.1203854

76. Mauro L, Bartucci M, Morelli C, Andò S, Surmacz E. IGF-I receptor-induced
cell-cell adhesion of MCF-7 breast cancer cells requires the expression of
junction protein ZO-1. J Biol Chem (2001) 276:39892–7. doi:10.1074/jbc.
M106673200

77. Le Roith D. Regulation of proliferation and apoptosis by the insulin-like
growth factor I receptor. Growth Horm IGF Res (2000) 10:S12–3. doi:10.1016/
S1096-6374(00)90005-4

78. Mauro L, Salerno M, Morelli C, Boterberg T, Bracke ME, Surmacz E. Role of
the IGF-I receptor in the regulation of cell-cell adhesion: implications in cancer
development and progression. J Cell Physiol (2003) 194:108–16. doi:10.1002/
jcp.10207

79. Mauro L, Surmacz E. IGF-I receptor, cell-cell adhesion, tumour develop-
ment and progression. J Mol Histol (2004) 35:247–53. doi:10.1023/B:HIJO.
0000032356.98363.a2

80. Seccareccia E, Brodt P. The role of the insulin-like growth factor-I receptor in
malignancy: an update. Growth Horm IGF Res (2012) 22:193–9. doi:10.1016/j.
ghir.2012.09.003

81. Kaleko M, Rutter WJ, Miller AD. Overexpression of the human insulinlike
growth factor I receptor promotes ligand-dependent neoplastic transformation.
Mol Cell Biol (1990) 10:464–73.

Frontiers in Oncology | www.frontiersin.org July 2015 | Volume 5 | Article 1577

http://dx.doi.org/10.1073/pnas.98.4.2005
http://dx.doi.org/10.1210/en.2004-1096
http://dx.doi.org/10.2337/diacare.26.8.2442
http://dx.doi.org/10.2337/diacare.26.8.2442
http://dx.doi.org/10.2337/diabetes.52.2.268
http://dx.doi.org/10.1074/jbc.M414231200
http://dx.doi.org/10.1074/jbc.M414231200
http://dx.doi.org/10.1016/j.mce.2009.08.018
http://dx.doi.org/10.1042/CS20050182
http://dx.doi.org/10.1042/CS20050182
http://dx.doi.org/10.1074/jbc.C200251200
http://dx.doi.org/10.1038/nm724
http://dx.doi.org/10.1038/nri1937
http://dx.doi.org/10.1210/er.2011-1015
http://dx.doi.org/10.1210/er.2011-1015
http://dx.doi.org/10.1007/s12020-009-9278-8
http://dx.doi.org/10.1007/s12020-009-9278-8
http://dx.doi.org/10.1038/nature01705
http://dx.doi.org/10.2337/diabetes.53.8.2132
http://dx.doi.org/10.1007/s12032-010-9617-x
http://dx.doi.org/10.1074/jbc.M209033200
http://dx.doi.org/10.1074/jbc.M209033200
http://dx.doi.org/10.1073/pnas.0403382101
http://dx.doi.org/10.3892/ijmm.20.5.725
http://dx.doi.org/10.3892/ijmm.20.5.725
http://dx.doi.org/10.1002/ijc.23634
http://dx.doi.org/10.1021/bi801451f
http://dx.doi.org/10.1021/bi801451f
http://dx.doi.org/10.1016/j.febslet.2010.09.035
http://dx.doi.org/10.1038/ncb1404
http://dx.doi.org/10.7497/j.issn.2095-3941.2012.04.001
http://dx.doi.org/10.1152/ajpendo.90731.2008
http://dx.doi.org/10.1152/ajpendo.90731.2008
http://dx.doi.org/10.2337/diabetes.52.6.1355
http://dx.doi.org/10.1038/nm1557
http://dx.doi.org/10.1038/90984
http://dx.doi.org/10.1186/1471-2164-16-S1-S11
http://dx.doi.org/10.1172/JCI57099
http://dx.doi.org/10.1172/JCI57099
http://dx.doi.org/10.1007/s12032-010-9617-x
http://dx.doi.org/10.1007/s12032-010-9617-x
http://dx.doi.org/10.1016/S0092-8674(03)00929-2
http://dx.doi.org/10.1016/S0092-8674(03)00929-2
http://dx.doi.org/10.1016/j.tips.2004.12.011
http://dx.doi.org/10.1161/01.RES.0000185823.73556.06
http://dx.doi.org/10.4161/cc.27455
http://dx.doi.org/10.1096/fj.14-262808
http://dx.doi.org/10.1016/j.cytogfr.2013.10.001
http://dx.doi.org/10.1515/hmbci-2015-0007
http://dx.doi.org/10.1023/A:1009523501499
http://dx.doi.org/10.1038/sj.onc.1203854
http://dx.doi.org/10.1074/jbc.M106673200
http://dx.doi.org/10.1074/jbc.M106673200
http://dx.doi.org/10.1016/S1096-6374(00)90005-4
http://dx.doi.org/10.1016/S1096-6374(00)90005-4
http://dx.doi.org/10.1002/jcp.10207
http://dx.doi.org/10.1002/jcp.10207
http://dx.doi.org/10.1023/B:HIJO.0000032356.98363.a2
http://dx.doi.org/10.1023/B:HIJO.0000032356.98363.a2
http://dx.doi.org/10.1016/j.ghir.2012.09.003
http://dx.doi.org/10.1016/j.ghir.2012.09.003
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive


Mauro et al. Adiponectin and IGF-IR in breast cancer

82. Pietrzkowski Z, Lammers R, Carpenter G, Soderquist AM, Limardo M, Phillips
PD, et al. Constitutive expression of insulin-like growth factor 1 and insulin-like
growth factor 1 receptor abrogates all requirements for exogenous growth
factors. Cell Growth Differ (1992) 3:199–205.

83. Law JH, Habibi G, Hu K, Masoudi H, Wang MY, Stratford AL, et al. Phos-
phorylated insulin-like growth factor-1/insulin receptor is present in all breast
cancer subtypes and is related to poor survival. Cancer Res (2008) 68:10238–46.
doi:10.1158/0008-5472.CAN-08-2755

84. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and
neoplasia. Nat Rev Cancer (2004) 4:505–18. doi:10.1038/nrc1387

85. Stewart AJ, Johnson MD, May FE, Westley BR. Role of insulin-like growth fac-
tors and the type I insulin-like growth factor receptor in the estrogen-stimulated
proliferation of human breast cancer cells. J Biol Chem (1990) 265:21172–8.

86. Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E,
Osborne CK, et al. Enhancement of insulin-like growth factor signaling in
human breast cancer: estrogen regulation of insulin receptor substrate-1 expres-
sion in vitro and in vivo. Mol Endocrinol (1999) 13:787–96. doi:10.1210/mend.
13.5.0274

87. Mauro L, Salerno M, Panno ML, Bellizzi D, Sisci D, Miglietta A, et al. Estradiol
increases IRS-1 gene expression and insulin signaling. Biochem Biophys Res
Commun (2001) 288:685–9. doi:10.1006/bbrc.2001.5815

88. Salerno M, Sisci D, Mauro L, Guvakova MA, Andò S, Surmacz E. Insulin
receptor substrate 1 is a target for the pure antiestrogen ICI 182,780 in
breast cancer cells. Int J Cancer (1999) 81(299–304):1999. doi:10.1002/(SICI)
1097-0215(19990412)81:2<299::AID-IJC21>3.3.CO;2-#

89. Lanzino M, Morelli C, Garofalo C, Panno ML, Mauro L, Andò S, et al. Interac-
tion between estrogen receptor alpha and insulin/IGF signaling in breast cancer.
Curr Cancer Drug Targets (2008) 8:597–610. doi:10.2174/156800908786241104

90. Gao J, Chang YS, Jallal B, Viner J. Targeting the insulin-like growth factor
axis for the development of novel therapeutics in oncology. Cancer Res (2012)
72(1):3–12. doi:10.1158/0008-5472.CAN-11-0550

91. Janssen JA, Varewijck AJ. IGF-IR targeted therapy: past, present and future.
Front Endocrinol (2014) 5:224. doi:10.3389/fendo.2014.00224

92. LeRoith D, Roberts CT. The insulin-like growth factor system and cancer.
Cancer Lett (2003) 195:127–37. doi:10.1016/S0304-3835(03)00159-9

93. Chabrolle C, Tosca L, Dupont J. Regulation of adiponectin and its recep-
tors in rat ovary by human chorionic gonadotrophin treatment and potential
involvement of adiponectin in granulosa cell steroidogenesis. Reproduction
(2007) 133:719–31. doi:10.1530/REP-06-0244

94. Ryu J, Galan AK, Xin X, Dong F, Abdul-Ghani MA, Zhou L, et al. APPL1
potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin
receptor. Cell Rep (2014) 7:1227–38. doi:10.1016/j.celrep.2014.04.006

95. Jia Z, Liu Y, Cui S. Adiponectin induces breast cancer cell migration and
growth factor expression.Cell BiochemBiophys (2014) 70:1239–45. doi:10.1007/
s12013-014-0047-9

96. Saxena NK, Sharma D. Metastasis suppression by adiponectin: LKB1 rises up
to the challenge. Cell Adh Migr (2010) 4:358–62. doi:10.4161/cam.4.3.11541

97. Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D.
LKB1 is required for adiponectin-mediatedmodulation of AMPK-S6K axis and
inhibition of migration and invasion of breast cancer cells. Oncogene (2009)
28:2621–33. doi:10.1038/onc.2009.129

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Mauro, Naimo, Ricchio, Panno and Andò. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org July 2015 | Volume 5 | Article 1578

http://dx.doi.org/10.1158/0008-5472.CAN-08-2755
http://dx.doi.org/10.1038/nrc1387
http://dx.doi.org/10.1210/mend.13.5.0274
http://dx.doi.org/10.1210/mend.13.5.0274
http://dx.doi.org/10.1006/bbrc.2001.5815
http://dx.doi.org/10.1002/(SICI)1097-0215(19990412)81:2<299::AID-IJC21>3.3.CO;2-
http://dx.doi.org/10.1002/(SICI)1097-0215(19990412)81:2<299::AID-IJC21>3.3.CO;2-
http://dx.doi.org/10.2174/156800908786241104
http://dx.doi.org/10.1158/0008-5472.CAN-11-0550
http://dx.doi.org/10.3389/fendo.2014.00224
http://dx.doi.org/10.1016/S0304-3835(03)00159-9
http://dx.doi.org/10.1530/REP-06-0244
http://dx.doi.org/10.1016/j.celrep.2014.04.006
http://dx.doi.org/10.1007/s12013-014-0047-9
http://dx.doi.org/10.1007/s12013-014-0047-9
http://dx.doi.org/10.4161/cam.4.3.11541
http://dx.doi.org/10.1038/onc.2009.129
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive

	Cross-talk between adiponectin and IGF-IR in breast cancer
	Introduction
	Obesity and Breast Carcinogenesis
	Adiponectin
	Adiponectin Receptors
	Adiponectin Signaling Pathways
	Adiponectin and Breast Cancer
	IGF-IR in Breast Cancer
	Adiponectin and IGF-IR Interaction in Breast Cancer
	Conclusion
	Acknowledgments
	References


