
July 2015 | Volume 5 | Article 1701

Review
published: 29 July 2015

doi: 10.3389/fonc.2015.00170

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Victoria Virador,  

Virador and Associates, USA

Reviewed by: 
Silvia Pastorekova,  

Slovak Academy of Sciences, 
Slovakia  

Keith R. Laderoute,  
SRI International, USA  

Michelle Annette Digman,  
University of California Irvine, USA

*Correspondence:
 Kandice Tanner,  

Laboratory of Cell Biology, Center for 
Cancer Research, National Cancer 

Institute (NIH), 37 Convent Drive, 
Bethesda, MD 20892, USA  

kandice.tanner@nih.gov

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology, a 
section of the journal  
Frontiers in Oncology

Received: 09 March 2015
Accepted: 08 July 2015
Published: 29 July 2015

Citation: 
Kim J and Tanner K (2015) 

Recapitulating the tumor ecosystem 
along the metastatic cascade using 

3D culture models.  
Front. Oncol. 5:170.  

doi: 10.3389/fonc.2015.00170

Recapitulating the tumor ecosystem 
along the metastatic cascade using 
3D culture models
Jiyun Kim1,2 and Kandice Tanner1*

1 Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 
MD, USA, 2 Nano System Institute, Seoul National University, Seoul, South Korea

Advances in cancer research have shown that a tumor can be likened to a foreign spe-
cies that disrupts delicately balanced ecological interactions, compromising the survival 
of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, 
experimental approaches from ecology are becoming more frequently and successfully 
applied by researchers from diverse disciplines to reverse engineer and re-engineer 
biological systems in order to normalize the tumor ecosystem. We present a review on 
the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the 
tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution 
of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance.
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introduction

Patient survival following the diagnosis of certain types of cancers has significantly improved 
due to our current understanding of the molecular basis of tumor etiology (1–4). Tissue biopsies 
remain the first line of diagnosis for solid cancers (5). Histopathology provides physicians with local 
genetic and epigenetic information that guides the choice of an appropriate therapeutic regimen 
(5). Unfortunately, this initial intervention against a single molecular pathway or a specific mutant 
type may not be an effective way to treat the tumor as a whole or emerging phenotypes. Delivering 
targeted therapy that is consistently effective as the tumor evolves remains challenging (6, 7). One 
limitation may be due to the fact that a biopsy may not be representative of the larger tumor mass or 
is not predictive of a distant lesion in the event of metastatic disease. The other is that treatment in 
itself may select for tumor cells harboring less than desirable traits that represented a small fraction of 
cells in the original tumor (6, 7). Intratumoral heterogeneity is thought to allow for rapid adaptation 
to external stress, selecting for emergent phenotypes that can adapt to the foreign environments of 
distal organs and are drug-resistant (8). Regrettably, intratumoral heterogeneity persists after tumor 
cells have left the primary site and disseminated to establish metastatic lesions. Although many 
disseminated tumor cells (DTCs) circulate within the bloodstream, only a small subset of these will 
actually form a lesion. Ostensibly, many do not survive environmental pressures experienced during 
hematogenous or lymphatic spread (9). A subset of those that establish metastatic lesions may remain 
dormant for periods of time ranging from several months to decades (9) These quiescent DTCs may 
then awaken due to perturbations of the microenvironment (10–12) leading to tumor recurrence 
with inter- and intra-tumoral heterogeneity, largely resistant to drug intervention. Therefore, select-
ing for cells that either do not survive after dissemination or remain quiescent are possible areas for 
therapeutic intervention to prevent metastasis and increase treatment efficacy (9, 13, 14).
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For some hematological cancers, such as acute myeloid 
leukemia, cancer stem cells (CSCs) or tumor-initiating cells are 
thought to drive the observed heterogeneities (15, 16). CSCs 
employ mechanisms such as self-renewal and differentiation into 
multiple tumor cell types to drive tumor growth, causing relapse, 
metastasis, and sometimes even recovery following therapeutic 
intervention (15, 17). Thus, CSCs increase the adaptive capability 
as they drive the evolution of distinct cancer cell populations to 
shape the tumor ecosystem. In such cases, targeting and remov-
ing the CSC population may sufficiently suppress the evolution 
of phenotypic and genotypic heterogeneities. Cairns and Nowell 
provided conceptual models that allow these observed tumor 
heterogeneities to be described by Darwinian principles (18, 19).

However, in most solid cancers, the evolution of heterogene-
ity is largely stochastic (20). The resultant genomic instability 
(21) and epigenetic changes are driven by heterotypic cell 
interactions within a dynamic extracellular milieu in response 
to external perturbations such as changes in oxygen tension, 
stiffness, or nutrient, and pH gradients (22). Diversity arises due 
to proliferation of sub-clones that survive selective pressures 
and environmental perturbations such as hypoxia, drug treat-
ment, and reduced nutrients and evolve to increase phenotypic 
and functional heterogeneity within the tumor (22–24). Simply 
put, intratumoral heterogeneity does not merely develop from 
a random collection of mutated cells with uniform levels of 
proliferation (25). It also stems from interactions with the biotic 
(biochemical) and abiotic (physical) components of the envi-
ronment. Drawing from lessons learned in the field of ecology, 
genetically reduced populations are more vulnerable to disease 
outbreaks, other environmental stresses (26), and the accumula-
tion of deleterious mutations (27). So how do we design a therapy 
to reduce tumor heterogeneity?

The microenvironment is emerging as a critical factor in 
malignant progression, metastasis, and tumor etiology (20, 28, 
29). The physical properties of the microenvironment, including 
the stiffness, dimension, and topography, work in concert with 
biochemical signals to have profound impacts on cell fate, tissue 
assembly, and malignancy (30, 31). A dynamic tumor microen-
vironment may not only contribute to systemic metastasis, but 
also significantly modify drug efficacy (31–33). These dynamic, 
bi-directional interactions between individual tumor cells and 
collectively with other cell types and with the extracellular matrix 
(ECM) milieu can be likened to a dynamic ecosystem (22, 34–36). 
In nature, an introduced foreign species or an aberrant member 
may disrupt the delicately balanced interactions that normally 
exist in an ecosystem between members of a species, predator and 
prey, animals and plants, or between life and the abiotic environ-
ment, compromising survival of other components, and perhaps 
even leading to the collapse of the entire system. Similarly, tumor 
cells detrimentally transform the balanced interactions within the 
surrounding normal tissue (e.g., between clonal subpopulations, 
immune cells and their targets, epithelial and stromal cells, or 
between cells and the extracellular microenvironment) to achieve 
and maintain tumor homeostasis (34, 35). Cancer can be likened 
to a disease state in which a new species evolves, eventually domi-
nating the original organ. In many ways, interactions between 
tumor cells and their microenvironment mimic those observed 

during normal organogenesis. The concept of the tumor as an 
abnormal organ has been rigorously reviewed elsewhere (34, 35). 
Here, we build on this concept to understand the tumor dynamics 
of the transition from normal to malignant, from malignant to 
metastatic, and the meta-states that arise following treatment, in 
terms of the interactions between tumor cells and their micro-
environment. One approach may be to model the evolutionary 
response of the tumor from an ecological perspective, so that a 
treatment would mitigate or undermine tumor heterogeneity. But 
first, we must understand the creation and evolution of the tumor 
microenvironment.

A recent review by Pienta and colleagues presents the argu-
ment for ecological therapy and consideration of the micro-
environment as a possible approach to designing novel cancer 
therapeutics (37). An additional advantage of an ecological 
approach is the potential to exploit the existing mathematical 
and computational framework based on Darwinian dynamics 
that model the tumor heterogeneities in the context of micro-
environmental regulation (20, 38). Increased efficacy of disease 
management may be achieved by combining treatments such 
as surgery, chemotherapy, or radiotherapy with approaches 
that are capable of reducing tumor diversity and “healing” the 
microenvironment (31, 39). Therefore, deciphering the underly-
ing mechanisms that govern the establishment of the physico-
chemical properties of the tumor-promoting niche is desirable. 
Continuing with our analogies drawn from the field of ecology, 
the concept of ecosystem engineering is the process whereby 
organisms modify (directly or indirectly) resources available 
to other species by causing physical state changes in biotic and 
abiotic components (40). Consequently, habitats are modified, 
synthesized, or maintained. Ecosystem engineers change envi-
ronments by altering their physical structures (40). One example 
of ecosystem engineering, also referred to as niche construction 
(41), is dam creation by beavers (40). They physically remodel 
and destroy wooded areas, with profound effects on both soil 
drainage and water allocation (40). Another example is how 
earthworms chemically and physically modify soil as they bur-
row (40). Similarly, tumor cells work in concert with stromal cells 
to physically remodel and chemically define their environment, 
which then drives further tumor phenotypic evolution (42). So 
how do we recapitulate tumor diversification and the dynamics 
of physico-chemical microenvironment in vitro?

Three-dimensional (3D) culture systems in which extracel-
lular matrices that biochemically and physically mimic the 
in  vivo composition of organs have been extensively used to 
study normal epithelial organogenesis for the breast, prostate, 
salivary gland, and kidney (43–45). In addition, pharmaceuti-
cal studies involving endothelial cell-derived 3D spheroids 
have been extensively used for evaluating the pro- and anti-
angiogenic potential of drugs targeting the tumor vasculature 
(46). In these biomimetic systems, cells adopt physiological 
morphologies and the appropriate cell signaling is achieved. 3D 
culture models can also be used to recapitulate the abiotic and 
biotic components of the tumor ecosystem. Namely, the abiotic 
components such as the spatio-temporal gradients of chemi-
cals, oxygen tension, and mechanical cues can be robustly engi-
neered using applications from microfluidics, electrospinning, 
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and soft lithography (47, 48). The biotic components such as 
the ECM environment and heterotypic cell interactions can 
also be approximated using biomimetic platforms and co-
culture systems. Although the conventional two-dimensional 
(2D) tissue culture system has contributed enormously to the 
progress of cancer biology, cancer cells encounter diverse 3D 
topographies and architectures in vivo. Thus, 3D culture models 
allow for deconstructing the complexity of cancer by recapitu-
lating emergent, population-level characteristics of the tumor 
microenvironment.

Tumor Cells as ecosystem 
engineers – Defining the Tumor  
eCM Niche

A hallmark of malignant transformation is the loss of ana-
tomical organization (49, 50). Tumor cells aberrantly proliferate, 
remodel, and rebuild a new microenvironment by releasing 
extracellular signaling molecules that promote tumor angiogen-
esis and ECM remodeling (34, 35, 42, 51). In a seminal paper, 
Dvorak postulated that tumors were simply “wounds that did 
not heal.” He reasoned that common cellular and molecular 
mechanisms are activated in wounds and cancerous tissue based 
on the observation that tumor stroma bore a strong similarity to 
the observed granulation tissue in skin wounds (52). However, 
the direct link between wound repair, chronic inflammation, 
and cancer was observed in later experiments where tumors 
were induced by the Rous sarcoma virus (a potent uncovers) 
only at the site of injections in newly hatched chickens but not 
in ovo (53). Wounding in an infected animal at the site of injury 
induced additional tumors away from the site of injection (53). 
Treatment with anti-inflammatory therapy prevented tumor 
formation, thus showing the effect of inflammation on tumo-
rigenesis (53, 54). These observations highlight the importance 
of dynamic interplay between the tumor and the inflammatory 
microenvironment and have been reviewed extensively else-
where (55–57). Here, we focus specifically on the ECM milieu 
in niche construction. The chemistry and physical properties 
of the ECM is dynamically tuned during de novo remodeling 
of the tumor microenvironment (42, 58). An overabundance of 
diverse ECM proteins and ECM remodeling enzymes is found 
in solid cancers (42, 51, 59–62). In addition to these chemical 
changes, physical properties of the tumors are altered. For 
example, tumors are often stiffer to the touch than the adjacent 
normal tissue (30, 63). In breast cancer, the fibrillar architecture 
of type I collagen surrounding the tumor is highly linearized as 
compared to normal tissue, which is thought to facilitate inva-
sion into neighboring tissue (63, 64). These changes in ECM 
composition and architecture potentiate tumor-promoting 
changes in various signaling pathways (42). Specifically, per-
turbations in ECM synthesis, degradation, density, and rigidity 
promote cancer cell proliferation, migration, and invasion, and 
modulate inflammatory responses and lymphangiogenesis (35). 
The resulting abnormal microenvironment can exert selective 
pressure on cancer cell populations, increasing genomic insta-
bility and population diversity (42, 65).

ecosystem engineering During Metastatic 
Colonization – Defining the Metastatic 
eCM Niche

Disseminated tumor cells leave the original tumor to initiate 
the metastatic cascade (66). After successful navigation of 
the circulatory system, a subset of these DTCs then exits via 
capillaries at a distant site and infiltrates the tissue (66). These 
DTCs colonize their new environment by poorly understood 
mechanisms involving adherence, remodeling, and proliferation. 
The term “colonization” here defines the establishment of the 
tumor niche, net tumor cell proliferation, and angiogenesis in 
the formation of a metastatic lesion. In 1889, Paget hypothesized 
that the interaction between the tumor cells, the “seeds” and the 
host environment, the “soil,” determines metastatic outcome (67). 
This hypothesis predicted that the tissue-specific biological and 
biochemical conditions (defined by the resident cell populations, 
extracellular matrices, and vasculature) might selectively facili-
tate tumor metastasis, explaining the organ selectivity of certain 
metastatic cancers. It is now well appreciated that the continuous 
dynamic and reciprocal relationship between cells and their 
microenvironment in which the mechanical properties of tissue 
including the geometry, topography, and elasticity of the ECM 
can provide intrinsic signals to cells that have profound effects on 
cell physiology (30, 42, 68, 69). Hence, we include the caveat that 
the tumor cell “seeds” are motile and actively remodel the micro-
environment “soil” in concert with stromal and immune cells to 
continue to “fertilize” the soil by secreting and assembling ECM 
components and other cytokines, altering both the physical and 
chemical properties of the tissue to successfully colonize organs.

In ecology, restoring the niche of a specific species has been 
a successful way to increase the population; thus, restoring the 
environment to that of normal tissue may be a good therapeutic 
strategy (37). We may exploit a specific signaling pathway, localize 
key proteins, or transplant cells that can reconstruct a niche to help 
the reconstruction of a normal microenvironment and suppress 
the activation of DTCs. Restoring the niche can normalize malig-
nancy so that cancer cells will either enter quiescence or become 
phenotypically normal (31, 70–76). Specifically, teratocarcinoma 
cells revert to a normal phenotype when implanted into a normal 
mouse blastocyst (77). Additionally, modifying ECM inputs in a 3D 
hydrogel culture can normalize genotypically malignant cells (75, 
78). Similar observations have been made in plant tumors, where 
crown-gall teratoma cells can generate normal shoots following 
grafting and successive healthy tobacco plants (79). Targeting 
the abnormal microenvironment or restoring or engineering the 
microenvironment could successfully supplement current cancer 
therapies by suppressing the development of malignant pheno-
types or even reversing tumorigenesis (12, 76, 80).

engineering the Biotic 
Microenvironment – Defining the  
eCM Niche

Three-dimensional (3D) biomimetic platforms allow for 
recapitulation of features of tissue architecture such as 3D 
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cell–cell interactions, ECM composition and architecture, achiev-
ing in vivo- like mechanical properties and the diffusion profiles 
of signaling molecules (81–83). The simplest 3D culture model 
consists of single cancer cells or spheroids embedded in a natural 
matrix or cell-derived matrices of one ECM protein or hybrid of 
many proteins such as collagen type I, laminin-derived hydrogels, 
or alginate (44, 45, 84–86). Matrix porosity, fiber structure, and 
stiffness may be tuned by controlling polymerization conditions 
(85, 87, 88). Within such 3D models, cells rapidly proliferate and 
form spheroids or aggregates that recapitulate in vivo-observed 
tumor ECM formation, tumor cell–cell interactions, tumor-like 
molecular diffusion gradients, chemoresistance, and invasive 
metastasis characteristic of tumor progression (89–94). Using 
these naturally derived matrix mimetics, a dynamic range of stiff-
ness can be realized usually in the range of ~100–1 MPa which 
allows for a closer approximation of in vivo mechanical cues (95, 
96). However, due to the batch-to-batch variations of gels it is 
difficult to achieve consistency (32). Synthetic hydrogels derived 
from materials such as polyethylene glycol, self-assembling pep-
tides, and poly (d, l-lactide-co-glycolide) offer the advantage of 
spatially defined environments with controllable physical param-
eters (97–99). Specific adhesion sites such as RGD-binding motifs 
can be incorporated into a hydrogel to model cell adhesion (97), 
and the controlled release of tumorigenic factors into hydrogels 
can shed light on specific aspects of tumor development (100). 
These engineered environments provide tractable platforms to 
dissect the role of external biochemical and mechanical stimuli 
on cell migration in 3D, mechanisms of cellular differentiation, 
gene expression, and cellular responses (83). Mixed materials fea-
turing both natural and synthetic components offer the advantage 
of independently tuning variables such as mechanical stiffness, 
adhesion, peptide density, and matrix hydrophilicity (101).

Tissue is not homogeneous in vivo but has distinct topogra-
phies, as evidenced by differences in the architecture of fibrillar 
collagens and vasculature (48). In addition to stiffness, other 
physical properties such as dimension and topography have pro-
found effects on cell fate and malignancy (30, 47, 48). Therefore, 
it is desirable to consider spatial heterogeneity in these artificial 
biological landscapes to incorporate contributions from both 
tissue stiffness and those due to topography. Laminin hydrogels 
form amorphous gels with no fibrils or spatial heterogeneities on 
the same scale as that of cells. To dynamically tune the protein 
concentration of these hydrogels, the proteins are commonly 
cross-linked. But matrix rigidity inevitably, and sometimes 
undesirably, increases with protein concentration (63). A key 
goal of developing biomimetic matrices currently underway is 
to develop a methodology that allows for independent control of 
material parameters such as protein distribution and alignment, 
and other physical properties (48).

Defining the Biotic Cellular Components 
within the Tumor ecosystem:  
Tumor–Stromal interactions

Tissue homeostasis and architectural integrity are facilitated by 
the dynamic interactions between normal epithelial cells and 

stromal cells. Cancer cells alter the normal tissue landscape in 
efforts to transform the tissue microenvironment into one that 
is tumor-permissive (34, 35, 42, 51). Within tissue, heterotypic 
cell interactions between tumor cells and stromal cells can either 
drive or mitigate tumor development and metastatic potential 
(102–106).

Immune cells such as Tie2-expressing monocytes (107), mast 
cells (108), myeloid cells (109, 110), B cells (111), and mac-
rophages (56) form cooperative relationships with malignant cells 
to create a tumor-promoting niche. By contrast, other immune 
cells such as natural killer cells (112) and dendritic cells (113) act 
as tumor-suppressive agents. Furthermore, these interactions are 
contextual; immune cells can either act as tumor-promoting or 
tumor-suppressive agents, as occurs with neutrophils (114) and 
regulatory T cells (115, 116). Immunotherapies using vaccines, 
immune adjuvants, cytokines, immune-modulating antibodies, 
and effector cells that exploit the immune response to cancer 
have been implemented, often in combination with radiation and 
chemotherapy (113, 117–121).

Similarly, other cells found in the reactive tumor stroma 
such as cancer-associated fibroblasts (CAFs), endothelial cells 
and pericytes can adopt either tumor-promoting or tumor-
suppressive roles (122). CAFs have been found to promote tumor 
progression in breast and pancreatic cancers (104, 122–124). They 
support tumor proliferation by altering their metabolism (125, 
126), increasing ECM production, and producing and digesting 
metabolites (113, 122). They also secrete growth factors such as 
VEGF, EGF, and TGF-a and chemokines including IL-1, IL-6, and 
CCLs (122, 123, 127) to recruit endothelial cells, pericytes, and 
inflammatory cells in building the tumor niche. These interac-
tions promote the development of the tumor by encouraging 
proliferation, angiogenesis, inflammation, and metastasis. Due 
to their cooperative roles in the tumor microenvironment, CAFs 
have been targeted by various cancer treatments (128).

However, the angiogenic environment remains one of the most 
potent druggable targets (129) and one of the most successful 
stromal targets in cancer treatment (39, 130, 131). Angiogenesis 
or the sprouting of neovessels is induced early during the evolu-
tion of invasive carcinomas as observed in animal models and 
in humans (131). This process involves recruitment of sprout-
ing vessels from existing blood vessels where endothelial cells 
proliferate, migrate, and organize functional tubular structures. 
Not only is the generation of neovasculature important to sustain 
proliferation of macroscopic tumors, it may play a functional role 
in tumor etiology to facilitate the transition from premalignant 
neoplasia to full-blown malignancy (131). The nascent angio-
genic environment remains an attractive target in benign lesions 
in efforts to prevent full-blown malignancy.

Recent studies have begun to implicate lesser-interrogated 
relationships between tumor cells and other cell types within the 
microenvironment such as adipose cells and neuronal cells (132). 
Cancer-associated adipocytes (CAAs) promote tumor develop-
ment and progression (133) by promoting tumor cell migration 
and invasiveness (134, 135). The molecular mechanisms under-
lying adipocyte-cancer cell communication are possible targets 
for cancer diagnosis and treatment, and could help to reveal the 
relationship between obesity-related metabolic disorders and 
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cancer (136). Neuronal (nerve) cells have also been implicated 
in promoting malignancy (137). Specifically, these cells secrete 
factors that facilitate increased tumor proliferation. In turn, 
tumor cells secrete neurotropic factors and exon guidance mol-
ecules that induce sprouting of sensory nerves within the bone 
to increase neurite formation (138, 139). Consequently, patients 
experience cancer-related bone pain which can be relieved by 
the inhibition of nerve growth factor (NGF) (139). Additional 
characterization of the neurotransmitters or neuropeptides that 
mediate the cooperation between cancer and neural cells could 
reveal potential targets for cancer treatment.

Building the ecosystem – A Co-Culture 
Architecture in 3D

3D heterotypic platforms afford the flexibility of incorporat-
ing multiple cell types such as the co-culture of tumor cells 
and fibroblasts, macrophages adipocytes, and osteoblasts and 
endothelial cells (79, 140–143). These in vitro platforms simulate 
the in vivo network of interactions within the tumor ecosystem. 
From this point of view, when developing a co-culture system, 
one should consider (i) cell types and model complexity; (ii) the 
desired interactions between cell types; and (iii) population-level 
characteristics such as culture volume, cell density, population 
sizes, and the interactions between cell populations. These co-
culture systems can be as simple as a sandwich model where one 
cell type is cultured on a confluent layer of a different cell type. 
This bilayer geometry can also be achieved using commercially 
available transwell culture systems and microfluidic platforms 
(144–148). A second commonly used geometrical arrangement 
involves the culture of multicellular tumor spheroids co-cultured 
with cells embedded in the surrounding surrogate matrix. These 
spheroids can be generated due to spontaneous aggregation, 
liquid overlay cultures, or using gyratory or spinner flasks or 
expansion from a single cell (149). These models have been used 
to study tumor progression and aid in the development of drug 
screening platforms (150). Spheroids generated from tumor or 
tissue biopsies may facilitate the development of individualized 
and patient-specific therapy (151). Additional complexity such 
as topography of interaction, degree of contact, and the number 
of cells that can be co-cultured can be achieved using a combina-
tion of microfluidics and micropatterning. Specifically, cell types 
that require different environments to maintain physiologically 
relevant signaling can be co-cultured in microfluidic channels to 
facilitate exchange of molecules without direct contact. Using this 
platform, their respective environments are separated by semi-
permeable membranes or gels within microfluidic channels (152, 
153) where their growth media are separated using laminar flow, 
or grown in semi-connected liquid compartments (154). To date, 
the majority of co-culture studies have involved two populations 
such as normal cells and malignant cells (155). However, many 
different types of cells are involved in the process of tumorigenesis, 
which intrinsically increases the complexity. The combination of 
microfluidics and 3D microfabrication of ECM scaffolds has been 
used to generate self-assembly of in vitro “organs on a chip” (156) 
such as the brain, liver, and gut (157–159). Interactions among 

more than two cell types have been studied in a defined synthetic 
ecology for bacteria (160), or in model systems of organs such as 
the endothelium (161). Thus, a future application to recapitulate 
these interactions might be achieved by incorporating tumor cells 
in these organotypic models.

Abiotic Components within the Tumor 
ecosystem: Oxygen, pH, Stiffness, and 
Chemokine Gradients

The acellular microenvironment of a tumor is characterized 
by cells and biochemical components and by their complex 
interactions with the physical and chemical parameters such as 
stiffness, pH, oxygen tension, interstitial pressure, and fluid flux 
(42, 162–164). Both tumor and stromal cells create gradients 
of secreted cytokines and growth factors, which contribute to 
altered proliferation and directed cell migration to facilitate 
tumor progression, dissemination, and invasion (57, 165, 166).

As tumors proliferate, their energy and oxygen requirements 
often cannot be met by existing tissue vasculature. Hypoxia is 
also associated with drug resistance as low oxygen tensions affect 
the cell cycle and slow cycling cells are thought to be minimally 
affected by treatments targeting the cell cycle (167). It has also 
been implicated in upregulation of genes that regulate cell 
proliferation, ECM production, cell adhesion, and cell invasion 
through induction of the hypoxia-inducible factor (HIF) fam-
ily of transcription factors. Neoangiogenesis in part alleviates 
growth-induced hypoxia but tumor vasculature lacks the normal 
hierarchical arrangement of artery–arteriole–capillary, resulting 
in intercellular gaps that leak fluids, blood, and fibrins, and inef-
ficient oxygen delivery (168). Consequently, within the growing 
mass, there are regions of hypoxia where certain cancer cells are 
deprived of oxygen (169). In response, tumor cells may undergo 
a metabolic shift causing acidosis (170, 171). Hydrogen (H+) 
ions generated by tumor cells during both aerobic and anaerobic 
glycolysis, glutaminolysis, and ATP hydrolysis are transported 
to the extracellular milieu (172, 173) creating an acidic tumor 
microenvironment (174). These acidic environments are thought 
to be permissive for tumor invasion and successive metastasis 
by inducing cell death in the surrounding normal tissue and 
degradation of the ECM.

In addition to the chemical variations, a myriad of physical 
attributes of the tumor microenvironment also play important 
roles by imparting mechanical cues that promote the malignant 
transition of cancer cells and increased metastasis (30, 42, 175, 
176). Cells encounter multiple mechanical cues at each step of the 
metastatic cascade. They traverse complex ECM arrangements 
and topographies during invasion into surrounding tissue and in 
the vascular system during intravasation and extravasation (30). 
These dynamic mechanical inputs are derived from changes in 
stiffness, fibril structural architecture, and shear stress. Shear flow 
directly affects extravasation by modulating adhesion at blood 
vessel interface (30). Stiffer areas of fibrosis with increased ECM 
deposition are found around some invasive ductal carcinomas 
and metastatic lesions residing at lymph nodes and bones (177). 
In these patients, a higher risk of developing bone and lymph 
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node metastasis, and disease recurrence was observed (177). 
Tumor dormancy is modulated by the microenvironment. Cells 
remain quiescent in initially non-permissive microenvironments, 
but transition to a proliferative state based on changes in the ECM 
composition and stiffness (12, 178).

Building the ecosystem-Manipulating 
Abiotic Conditions

3D culture models have been used to bring in vivo abiotic condi-
tions to cultured tumor cells, with effects such as hypoxia and 
acidosis on tumorigenicity (179, 180). Using these platforms, 
angiogenesis (181–185), cell migration (166, 186, 187), invasion 
(188), metastasis (189), and epithelial–mesenchymal transition 
have also been examined (190). They have also provided a 
means to study phenotypic-based pharmaceutical efficacy to 
test the likelihood of acquisition of drug resistance (191–195). 
Specifically, cells grown under hypoxic conditions in 3D culture 
models show higher resistance to toxins than the same cells 
when cultured in 2D grown on plastic (196–199). Microfluidic 
chips fabricated with soft-lithography methods offer the pos-
sibility of simultaneously reproducing both physical and chemi-
cal abiotic components within tissue mimetics (166, 200–204). 
Defined geometries allow confined cell growth or cell–cell 
contact, with fluid flow controlled to generate physiological 
shear stresses or chemical gradients, with serial fluid exchange 
performed to deliver nutrients or chemicals on defined time-
tables, or with integrated mechanical components able to exert 

periodic stresses on cells or the ECM (156, 191, 205–207). By 
combining these fabrication techniques, the organ-on-a-chip 
was developed, which recapitulates a broad range of in  vivo 
physiological functions for organs such as the brain, liver, and 
gut (208–210). These devices also permit the analysis of tissue-
specific responses in reaction to external physical stimuli such 
as stiffness or shear stress and biochemical perturbations such 
as drugs or toxins (211–213). A recent application in which 
dynamic hydraulic compression was applied to human bone 
marrow and adipocyte-derived stem-cells-on-chips resulted in 
increased bone differentiation as measured by osteogenic gene 
expression and production of bone-specific ECM components 
(214). These principles can be applied to cancer studies (215) in 
which in vitro 3D models of lymphoma, pancreatic, breast, pros-
tate, and oral cancers have already produced clinically relevant 
results (192). These and the aformentioned model systems are 
summarized in Figure 1.

Malignant Transitions in the Tumor 
ecosystem

The ecological perspective on cancer introduced so far has been 
based primarily on studies on many genetic and molecular 
factors that initiate, drive, and promote cancer. Even though 
many causative elements are involved in malignant progression, 
the emergent malignant properties such as drug resistance and 
metastatic potential are still poorly predicted and managed, 
because our knowledge about the population-level dynamics 
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FiGURe 1 | Complexity in tumor ecosystem and 3D culture models. 
Cancer is a complex disease in which the cancer cell population dynamically 
evolves and the diversity of heterotypic interactions between cancer cells, 
surrounding cells, and environmental factors is spatiotemporally regulated. 
Therefore, preclinical models that incorporate factors that play critical roles in 
the dynamic tumor progression, within a defined biomimetic landscape are 

needed. Three-dimensional culture models help to deconstruct the complexity 
of cancer. Model systems can be engineered to recapitulate tumor cell-
surrounding cell interactions, the physicochemical characteristics in an abiotic 
tumor environment, and the malignant transitions in tumor progression. They 
can provide insight into the evolutionary and ecological aspects of tumor 
progression, with relevant therapeutic implications.
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of cancer is limited (216–219). Many phenotypic transitions in 
cancer cell populations occur during tumor progression: transi-
tions from a single cell to multiple cells; from slow to fast growth; 
from proliferation to migration; from oxidative phosphorylation 
to anaerobic glycolysis; from epithelial to mesenchymal pheno-
type; from drug-sensitive to drug-resistant; and from dormant 
to metastatic (220–223). Understanding these transitions in the 
context of population dynamics might open new avenues of can-
cer treatment, as preventing the transitions toward malignancy 
could make a tumor manageable and treatable by hampering its 
adaptive progression. Using these microfluidic platforms in which 
both the mechanical inputs and chemical gradients are controlled 
may yet simulate in vivo evolution of tumor heterogeneity and 
phenotypic plasticity due to environmental perturbations.

visualizing Malignant Transitions in the 
Tumor ecosystem

Imaging modalities such as magnetic resonance imaging (MRI), 
computed tomography (CT), positron emission tomography 
(PET), and microscopy offer the advantage of long-term moni-
toring in human patients with lesions can be imaged over a period 
of time (224). In particular, MRI and PET also detect changes in 
tumor metabolism and pH (174, 225). However, the use of such 
imaging methods to monitor human disease is faced with several 
drawbacks (226–229). Namely, disease can be detected only after 
several rounds of tumor cell proliferation, and single cell dynam-
ics cannot be readily achieved (224). Ideally, diagnosis should 
occur at the earliest stage of malignant transition and/or single 
cell resolution if efforts are to be successful for therapeutic inter-
vention. Murine models remain an attractive option to examine 
tumor etiology and progression as one can interrogate human cell 
lines using immune-compromised strains and similarly examine 
syngeneic cancer cell lines for each strain (230). But these pre-
clinical models share the same imaging bottlenecks as observed 
in humans. The major limiting factor when imaging organs is 
that biological tissue is opaque and scatters light such that image 
quality deteriorates rapidly if one attempts to image deeper 
into thicker samples (231). Conventional confocal microscopy 
(one and two photon) cannot image deeper than a few hundred 
microns within organs that span millimeters to centimeters (232). 
Combining adaptive optics with two-photon fluorescent micros-
copy increases the achievable spatial resolution to penetration 
depths of ~1mm (233). Intravital microscopy using principles 
based on two-photon microscopy offers the flexibility of imaging 
single cell dynamics within thick tissue (234–236). However, 
longitudinal studies in murine models often require invasive 
techniques such as an imaging window and fluorescent report-
ers to visualize single and collective tumor cell dynamics (237). 
These windows often limit the area of interrogation. Hence, the 
sacrifice of many mice is needed to achieve acceptable statistics. 
In addition, these techniques require specific expertise, and are 
currently low throughput.

Combining imaging modalities and in  vitro 3D culture 
models that recapitulate physiologically relevant aspects of 

tumor progression and metastatic disease as an alternative 
 pre-clinical model allows us to image single cell dynamics (238). 
Using engineered platforms, single tumor cell intravasation and 
tumor cell proliferation/motility in different microenviron-
ments have been visualized (239–243). These examples hint at 
the power of combining imaging modalities with 3D in  vitro 
platforms to study heterotypic cell interactions, evolution 
of tumor heterogeneity, and acquisition of drug resistance. 
However, it would be advantageous if we could merge technolo-
gies that allow for visualization and quantitation of physical 
properties such as ECM stiffness and changes in topography 
of the tissue. In this section, we present some ideas for future 
consideration. One area involves monitoring the dynamic 
mechanical measurements of the ECM throughout the entire 
process of tumorigenesis. Several methods for determining 
physical properties of surrogate ECM gels and cells exist such 
as atomic force microscopy, which can be used to mechanically 
probe thin gels and superficially in excised tissues (~nm), and 
traction form microscopy, which can resolve forces within thick 
hydrogels where the physical properties are known (244–246). 
While these techniques are powerful, a technique that can probe 
the mechanical properties at depths >100 μm with sub micron 
resolution in thick samples eventually extending to an animal 
model without a priori knowledge of the physical properties of 
the tissue is desirable. Optical traps have been used to character-
ize gels and other materials (247), and recently have even shown 
the ability to characterize the viscoelastic properties of living 
cells (248). The combination of imaging the local structure and 
components of the ECM while simultaneously measuring its 
mechanical properties will reveal correlations between the two, 
and how they change with time as cells remodel and react to 
their environment. Combining light microscopy and an optical 
trap platform may be one method to simultaneously visualize 
and measure the changes in the physical properties of the local 
microenvironment in 3D in vitro platforms.

estimating the Risk of emergent 
Malignancy in Cancer

One way of modeling tumor growth is by a logistic growth curve 
in which growth is initially exponential but then stabilizes (249). 
Recently a review proposed consider an alternative approach 
from evolutionary dynamics, where an allee effect may be 
explored for therapeutics. Briefly, the Allee effect is defined as 
a decline in individual fitness at low population size or density. 
A population with a strong allee effect is one that is stable at 
intermediate numbers but may become extinct at numbers that 
are either too small or too large (249). Therefore, estimating the 
risk of such a transition in a cancer population may predict the 
likelihood of progression, and also provide opportunities to pre-
vent population diversification, metastasis, and drug resistance.  
One possible application is to eradicate quiescent DTCs that are 
able to enter dormancy and evade targeted/conventional therapies 
(250). These cells are thought to be rare and few members of the 
original primary tumor cells (250). Discovering the dormancy 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


July 2015 | Volume 5 | Article 1708

Kim and Tanner Recapitulating the tumor ecosystem using 3D culture models

Frontiers in Oncology | www.frontiersin.org

mechanism of DTCs has been the subject of numerous studies, 
as it is considered an important mechanism of tumor recurrence 
that is responsible for a large proportion of tumor-related deaths 
(251). Understanding the microenvironmental regulation of 
producing a strong Allee effect on these rare cells might also help 
to advance current therapies by exploiting a rapid collapse of this 
tumor sub-population. In the field of ecology, a critical transition 
is an abrupt and unexpected change of a complex system, such as 
a sudden climate change with rapid extinction of a species (252). 
In homogeneous and highly connected networks, local losses due 
to external stresses can be normalized by subsidiary inputs from 
linked units in the network; however, when the amount of stress 
exceeds a certain critical level, the system rapidly collapses (253, 
254). If we treat heterotypic cell interactions, as those observed 
for interspecies interactions, and tissue architecture likened to 
spatial organization of species, then tumors are similar to eco-
logically complex systems. It is possible that a critical transition 
where tumor cells become extinct or normalized may be induced 
by normalizing tissue architecture or eradicating supportive 
tumor–stromal interactions (249).

Unfortunately, there have been few empirical results demon-
strating sudden systematic transitions in cancer cell populations. 
Several 3D models that recapitulate the process of epithelial–
mesenchymal transition in cancer have been observed at the 
single spheroid level (255–257). However, theoretical studies on 
population level changes have supplemented these experimental 
observations (249, 258, 259).

In conclusion, studying ecological aspects of cancer provides us 
with the tools to understand cancer complexity, and the power to 
prevent further progression toward emergent malignancy. Direct 
visualization of tissue dynamics has refined our understanding of 
the basic principles of cell migration, lineage commitment, and 
the establishment of tissue architecture. Future studies in which 
3D culture models are coupled with microfluidics and appropriate 

imaging modalities will begin to examine the singular inputs 
and interplay of biotic and abiotic components within tumor 
ecosystems. We may yet identify universal signals produced when 
a tumor approaches a malignant transition, such as acquisition 
of drug resistance, dormancy, or metastasis, to enable better 
management of cancer.

Transforming these ecological inputs into meaningful 
information for patient care will be challenging. Evolutionary 
and ecological theories may be the unifiers in our understand-
ing of cancer. Advances in phylogenetic reconstruction and 
agent-based modeling will guide our understanding of somatic 
evolutionary pathways (5, 260, 261). In addition, mathematical 
models that incorporate tumor heterogeneity and the microen-
vironment allow for derivation of potential outcomes as tumor 
cells adapt to abiotic changes, such as hypoxia and acidosis, and 
to chemotherapy (20, 262–264). Models integrating observations 
and experimental data will continue to refine our understanding 
of the adaptive tumor landscape (263–266). Advanced 3D model 
systems will provide tools to interpret this complexity, which 
could lead to an alternative description of emergent cancer 
progression.
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