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The aim of this work is to predict relative biological effectiveness (RBE) for protons and clin-
ically relevant heavier ions, by using a simplified semi-empirical process based on rational
expectations and published experimental results using different ion species. The model
input parameters are: Z (effective nuclear charge) and radiosensitivity parameters αL and
βL of the control low linear energy transfer (LET) radiation. Sequential saturation processes
are assumed for: (a) the position of the turnover point (LETU) for the LET–RBE relationship
with Z, and (b) the ultimate value of α at this point (αU) being non-linearly related to αL.
Using the same procedure for β, on the logical assumption that the changes in β with
LET, although smaller than α, are symmetrical with those of α, since there is symmetry
of the fall off of LET–RBE curves with increasing dose, which suggests that LETU must
be identical for α and β. Then, using iso-effective linear quadratic model equations, the
estimated RBE is scaled between αU and αL and between βU and βL from for any input
value of Z, αL, βL, and dose. The model described is fitted to the data of Barendsen (alpha
particles), Weyrather et al. (carbon ions), and Todd for nine different ions (deuterons to
Argon), which include variations in cell surviving fraction and dose. In principle, this new
system can be used to complement the more complex methods to predict RBE with LET
such as the local effect and MKM models which already have been incorporated into
treatment planning systems in various countries. It would be useful to have a secondary
check to such systems, especially to alert clinicians of potential risks by relatively easy
estimation of relevant RBEs. In clinical practice, LET values smaller than LETU are mostly
encountered, but the model extends to higher values beyond LETU for other purposes
such as radiation, protection, and astrobiology. Considerable further research is required,
perhaps in a dedicated international laboratory, using a basket of different models to
determine what the best system or combination of systems will be to make proton and ion
beam radiotherapy as safe as possible and to produce the best possible clinical results.

Keywords: RBE, protons, ions, radiotherapy, radiobiology

Introduction

Positively charged particle therapy is increasing worldwide. Its numerous potential advantages in
cancer therapy depend on the Bragg peak effect (1–4), but the increase in linear energy transfer
(LET) causes enhanced biological effects which change normal tissue tolerances, as well as tumor
control probabilities. LET, typically reported as kiloelectron volt per micrometer, refers to the ratio
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of energy released from a radiation beam per unit micrometer
track length and is used as a measure of radiation quality. It can
be expressed in two different ways, either as the mean or the dose
averaged LET. Relative biological effect (RBE) is defined as the
ratio of dose of a low LET radiation divided by the control high
LET dose required for the same biological effect. RBE, although
measured quite simply in this way, depends on the complexi-
ties of how radiation of different qualities interact with different
biological systems due to:

(1) The energy, depth, and mixture of Bragg peak or non-Bragg
peak regions over a volume of interest.

(2) The increased local complexity, or clustering, of DNAdamage
with increasing LET (5).

(3) The increasing difficulty in repairing the more clustered
damage, resulting in increased radiosensitivity and reduced
fractionation sensitivity.

Some authors have developed relatively simple LET–RBE mod-
els for protons (6–8). For ion beams, there are several complex
formulations that tentatively describe the relationship between
LET and RBE (9–14), each with varying degrees of success, and
have been used for clinical applications. These ion beam models
are based on the fundamental interactions of particle physics with
matter and contain multiple assumptions and input requirements,
such as knowledge of particle trajectories relative to cells, cross
sectional probabilities, the relative proportion of cell nucleus to
cell volume for each cell, critical biological sub-volumes, repair
capacities, and extrapolations with dose, etc. They all utilize long
mathematical constructs which can be daunting to less math-
ematically gifted individuals. Whereas it is satisfying to build
exploratory theoretical models in such a way, it is impossible to
know these exact conditions within a real cancer and surround-
ing normal tissues. These various approaches have been used
to predict ion beam RBE values for variable LET values for the
irradiation of specific cell types (usually the V-79 cell derived
from Chinese Hamsters), but with mixed results, although they
are used routinely in clinical practice for carbon ion treatment
planning. Only some authors have attempted an approach for
normalizing the RBE differences between different ions, as in the
work of Katz (9), who used the parameter Z2/β2 to calculate the
radial distribution of dose (where Z is nuclear charge and β is the
relativistic velocity).

What do we know with certainty about LET and RBE?
Measured relationships between LET and RBE generally show
increases with LET until a maximum value is achieved, followed
by a decrease to RBE values just above unity. Also, there are
important basic findings, shown by multiple authors (15–18),
which are essential to incorporate into any model that adequately
describes the change of RBE changing with LET. They are:

• The initial slope of RBE with LET is linear when plotted on
linear scales (19).

• The LET value (LETU) which confers the maximum cell
killing efficiency (at the turnover point) increases non-
linearly with the nuclear charge of a particle (the Z number),
which denotes the electrostatic positive charge of the particle
nucleus. LETU values increasewithZ, but smaller increments

in LETU occur with increasingZ, which suggests a saturation
effect. Ions with the smallest Z values are consequently more
efficient in increasing RBE per unit increase in LET, possibly
because the energy released is more locally absorbed than is
the case for higher Z ions with larger event sizes and more
energetic gamma emissions.

• The magnitude of the RBE is not only dependent on the
particle type (or Z), but also depends on LET, dose (and
so the surviving fraction of cells), and the cell type (and its
ability to repair radiation damage).

• The magnitude of the RBE depends on cell type (seemingly
regardless of the ion used), with cells that are intrinsically
more radiosensitive (to very low LET radiations) having
lower RBEs than their more radio-resistant counterparts.

• The RBE increases when the cell-surviving fraction is
reduced (for lower doses), but the LET–RBE turnover point
position remains constant. Thus, the overall symmetry is
preserved.

• In terms of the linear quadratic model (LQ) of radiation
effect, the α value increases with LET to a far greater extent
than β (20–22). The relative increase in α with LET is
greatest for cells/tissues which have the lowest, most radio-
resistant, low LET αL values, with smaller increases in α for
systems which have themost radiosensitive, highest intrinsic
αL values, as will be shown later.

• These experimental findings apply to well-oxygenated cells,
but are modified in radiologically hypoxic conditions (16),
probably since the α parameter-related cell kill is not so
influenced by oxygen as is the β parameter-related cell kill.

This article considers how a much “simpler LET efficiency
model” can estimate the LET–RBE relationships described above
and theirmodification with dose, Z, and the two low LET intrinsic
radiosensitivities αL and βL. These models require fewer input
parameters and assumptions than do the farmore complexmodels
already referred to above. Such a model could be used to comple-
ment the other systems: in this sense, two predictions may carry
more reliability if they are in close agreement.

Materials and Methods

The Experimental Data
There are relatively few published experiments that provide a rea-
sonable estimate of LET turnover positions (LETU) for clinically
used particles. These include the data sets of Belli et al. (18),
Barendsen et al. (15), Furusawa et al. (16), and Weyrather et al.
(17). These experiments were not designed to accurately deter-
mine LETU, but to show overall phenomena and to determine the
range of RBE values. Inevitably, overall accuracy is further under-
mined by biological variation, use of different cellular assays in
various laboratories, use of different LET interpretations andmea-
surements over wide ranges with consequent use of a logarithmic
scaled abscissa, whichmasks the uniform initial linear slope of the
relationship. To obtain the best available estimate of LETU, only
the most unequivocal examples of maximum radiosensitivities, or
RBE, over a small range of LET near to LETU, were used. Data
where LETU could not be determined to reasonable accuracy, as
in some of the HRG cellular data of Furusawa et al. (16) and in
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some carbon ion experiments, were excluded. The LETU values
(keV/μm) so obtained were 30.5 (protons), 103.4 (helium), 208
(carbon), and 233 (neon). Although data exist for heavier ions
such as silicon and argon, these do not provide a sufficiently
accurate estimate (23).

For model fitting, the experimental studies of Todd (24), using
a wide range of ions (deuterons, helium, lithium, boron, carbon,
oxygen, nitrogen, neon, and argon), of Barendsen (deuterons and
helium) (15), and of Weyrather et al. (carbon) (17) were used to
test data against the modeled predictions.

The highest α radiosensitivity obtained (αU), in the region of
LETU, for each ion species, was plotted against the low LET (con-
trol) αL value from the same data. These values are shown in later
graphical plots, and include variation due to the LETU position
uncertainty. The accuracy of the β radiosensitivity parameter is
less easy to determine for high LET radiations (compared with
low LET radiations), for reasons discussed elsewhere (8, 22). It
is known that β increases to a lesser extent than α with LET. In
order to maintain the observed constant position of LETU with
increasing dose (and reduced surviving fraction), and the overall
symmetry of the LET–RBE relationship, both α and β must follow
similar functions which rise to a maximum at LETU. Otherwise,
the overall symmetry of the LET–RBE curves with increasing dose
would be broken: for example, if LETU would be different for α
and β, the LETU would be observed to change with dose, which is
not the case.

Detailed Description of Model
The turnover of RBE with LET, is a well-reported phenomenon
often attributed to “overkill” or wasted local dose. This process
can be interpreted as increasing efficiency of cell kill in the
upward phase, followed by later inefficiency. In physics terms,
the number of particle trajectories crossing a cell reduces by a
reciprocal function of increasing LET after the turnover point.
This is necessary in order to maintain the same overall dose to
a wider volume with increasing LET. At the same time, increasing
LET produces greater clustering of dose deposition, but over-
clustering will not necessarily lead to enhanced biological effects.
In bio-physical terms, increasing LET must, initially, enhance
the intrinsic radiosensitivity parameters, the increment in α far
exceeding that in β (25). This is because a greater proportion of
more clustered damage is non-repairable by the non-homologous
end joining process, although the repair of sub-lethal damage
(within the more sparsely clustered damage regions) continues,
although probably with lower fidelity, and even the recombina-
tion repair mechanism may also be overwhelmed by increasingly
complex lesions affecting the same sites on sister chromatids.

Ionizing radiation damage in biological systems causes a hier-
archy of effects: the most commonly occurring DNA base change
and single strand breaks are followed by less frequent double
strand breaks, nearly all of which are repaired in the case of low
LET radiation. An excess of a mixture of these forms of damage in
a locality of a chromosome can lead to a chromosome break, cer-
tain types of which inevitably confers lethality. Thus, the essential
lesion is the “lethal” form of chromosome break (LCB) for most
forms of radiation cell death at clinical doses. The local deposition
of energy that results in the maximum probability of a single

LCB must represent the maximum efficiency of the system, since
further energy deposition and greater DNA and chromosomal
structural change in the same locality will result in no extra effect;
in fact any dose deposited in excess of that required to achieve a
LCB will be “wasted dose,” representing inefficiency, and is often
referred to as the overkill effect.

On a local basis, with LETdefined as being the energy deposited
over a 1 μm section of track, this distance is appropriate for
chromosomal radiation effects since it is roughly the width of a
single chromosome.

Relationship between Z and LETU

The position of the turnover point can be estimated for different
Z values. It is apparent from publications quoted above (15–18)
that LETU increases with Z, but the effect appears to saturate
(i.e., further increase in LET have diminishing returns as far as
the LETU value is concerned). The Betha–Bloch equation for
estimating the rate of energy loss with distance (x) traversed
(dE/dx), which represents LET, contains a Z2 term in the numer-
ator usually reflecting the charge of a fully electron stripped ion
or proton. Larger Z values will also be associated with larger
mass numbers and greater momentum with larger event vol-
umes due to more complex nuclear collisions and energetic γ-
ray emissions. Beyond the necessary critical dimension (be this
radial or linear as a surrogate), biological killing efficiency will
not increase if the event size becomes too large and physically
beyond the individual chromosome. So, a saturation effect is to
be expected. The smallest values of Z= 1 for a proton effectively
reduces dE/dx, but the proton LETU is only 30.5 keV/μm, sug-
gesting that lighter charged particles exert more localized effects
(caused by short range low energy secondary electrons). In this
respect, the proton is more efficient at causing an increment in
RBE with LET [but proton LET values are quite small, e.g., a LET
of only 1–8 keV/μm in typical clinical exposures (26, 27) when
using scanned proton beams may cause RBEs as high as 1.8 or
more (8)].

The application of a simple differential equation can represent
this process. Let us assume that Z is a continuous variable and
if the initial rate of change in LETU with Z is S and that this
value then decreases in proportion to LETU itself, representing a
saturation effect controlled by the constant k, so that

dLETU
dZ = S − k · LETU (1)

which by integration of both sides and rearrangement leads to

LETU = S/k(1 − Exp [ -k(Z) ], (2)

where S/k represents the maximum possible value of LETU.
Equation 2 can be normalized to the proton (Z= 1) LETU of

30.5 keV/μm found by Belli et al. (16), so that for any Z a term
Z− 1 is used such that:

LETU = 30.5 + S/k(1 − Exp[−k(Z − 1)]) (3)

This equation is used for data fitting purposes.
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Changes in Radiosensitivities with LET
By increasing LET gradually, from the control low LET value of
say clinical 4–6MVphotons (X-rays), we obtain small increases in
the probability of additional LCBs; the energy deposition becomes
maximally efficient (let this be represented by 100% efficiency
for normalization purposes), and at higher LET values beyond
LETU, the efficiency is reduced below 100%because of excess local
energy deposition.

The separate relationship between αL (the low LET control
α value) and αU (the value of α at the turnover point where
LET= LETU) also exhibits saturation effects. In other words, the
increment in α with LET show diminishing returns, since the
lowermost αL values have the highest gain in α. This effect is
found with fast neutrons and with charged particle data, as shown
in the Section “Results” below.

For an initial slope of A and a rate constant j, the rate of change
of αU with αL will fall in proportion to αU, so that

dαU
dαL

= A − j · αU, (4)

which leads after integration to:

αU = A/j(1 − Exp [−jαL]) . (5)

The β parameter can either be modeled in a similar way but
with smaller overall changes, or to simplify matters for tentative
modeling purposes, it could be assumed to be invariant at low
doses where β-related cell kill is small. The data ofWeyrather et al.
(17) show that β values rises from a control value of 0.026Gy−2

to a maximum of 0.044Gy−2 in V-79 cells, and likewise from
0.02 to 0.42Gy−2 for the CHO cells (α/β value of 0.192Gy−2

in one instance must be artifactual due to the fitting program),
i.e., by up to a factor of around two, which is small compared to
the maximum increments in α with LET of around 10. There is
more abundant data for 64MV fast neutronswhere β undoubtedly
increases (22). Although such neutron experiments will probably
underestimate the maximum possible rise in α and β, since the
neutron LET spectrum (and its average value) may not necessarily
be close to the LETU for an ionic beam. Nevertheless, further
analysis of these data, which compare neutrons with megavoltage
X-rays show fits of βneu = 1.54 βx − ray or βneu 0.097 [1−Exp
(23.6 βx − ray), as will be shown below]. The experimental vari-
ation in such data is considerable and the two fitted equations
were obtained after elimination of: repair deficient cells (where
α > 0.6Gy−1), or where neutron β values close to zero, or if
the increment in β exceeded that in α (suggesting experimental
artifact). It should be noted that αU and βU values will be higher
than themaximumvalues obtained for fast (64MV) neutrons, and
so the neutron data cannot be used directly to determine RBE
changes for ion beam data.

A similar “saturation” function, is used to link βL with βU, as
given elsewhere (8):

βU = (R/u) · (1 − Exp[−uβL]). (6)

Where R= 2.5 and u= 25, which provides a modest increase in
b, and is compatible with the limited data discussed already, and
with a maximum ceiling value of 0.1Gy−2 for βU.

Obtaining αααH and βββH values
In simple mathematical terms, a discontinuous or biphasic (effi-
ciency followed by inefficiency)model can be used, where for LET
values up to that of LETU, increasing efficiency is represented as
a linear simple proportional relationship, as used by Wilkens and
Oelfke for protons (6), and where the α value at any LET higher
than the control and lower than the turnover value will be

αH = αL +
LETx − LETC
LETU − LETC

· (αU − αL) (7)

where αH is the α value at any particular LET value (LETx)
between the control and ultimate value of LETx [which represents
any LET value between the control value of LETC (where α is αL)]
and LETU, where the maximum α of αU occurs.

For the initial linear portion of the relationship, there will be a
uniform gradient of

αU − αL
LETU − LETC

(8)

between the value of LETC and LETU, which fulfills the require-
ment for linearity in this range of LET. It follows that, for example,
if LETC and LETU are 1.2 and 120KeV/μm respectively, with αL
and αU of say 0.3 and 1.3Gy−1, then for a LETx value of 60, the
process is only (1.3–0.3)/(120–1.2)× (60–1.2), which is close to
being 50% efficient, and for a LETx of 90, the efficiency will be
(1.3–0.3)/(120–1.2)× (90–1.2), which is close to 75% efficiency.

In this way, the efficiency of cell kill per unit dose will increase
linearly with LET, leading up to maximum efficiency (defined as
100%) at LETU.

For values of LET beyond the turnover point (where
LET> LETU), the additional energy transferred does not
contribute to extra lethality, but is wasted. That is, the excess
energy (LETx − LETU) beyond the optimal released energy is
wasted. Consequently, inefficiency, expressed in energy terms
by (LETx − LETU)/LETU increases. To express this in terms of
efficiency, the relationship of: % efficiency= 100−% inefficiency
is used, and the αH value is then scaled between αU and αC.

Accordingly, the equation for αH for LET> LETU then changes
to be:

αH = αL +
(
1 − LETx − LETU

LETU

)
· (αU − αL) (9)

which effectively expresses the reduction in α with increasing
LET. In this way, if LETx is 180 and LETU is 120, the value
of αU at the turnover point of 100% efficiency will fall to
1− (180− 120)/180, which provides around 67% efficiency. For
a LETx of 240, we obtain 1− (240− 120)/240, which is 50%
efficient. These efficiencies are of course relative to a normalized
value of 100% at the turnover point.

Similar equations are used to provide βH, by proportionate
scaling between βL and βU. These are obtained by simply
replacement of αL, αH, and αU by βL, βH, and βU respectively in
Eqs (7) and (9).

Reduction of RBE with Dose
The reduction in RBE with reduced surviving fraction and
increasing dose is obtained by the solution of the following iso-
effect equation for high and low LET radiations at a dose dL and
dH, for low and high LET respectively:

αLdL + βLdL
2 = αHdH + βHdH

2 (10)
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The solution for dL is then divided dH to provide the RBE, as
shown in other publications (8, 24, 25).

For clinical iso-effect calculations, the solution of the following
biological effective dose (BED) equations are used for the low and
high LET:

n dL

1 +
dL(
α
β

)
L

 = mdH

RBEMax +
RBE2

Min · dH(
α
β

)
L

 , (11)

where n andm are the respective numbers of fractions for the low
and high LET.

The RBE parameters are replaced by LET (and the new
parameters given in the sequence of equations described
above) and then solved for dH. Total doses to provide the
same BED can then be calculated for different numbers of
fractions.

Computer programs using Mathematica (Champagne, IL,
USA) software were constructed using the above equations.

Results

The relationship between Z and LETU shown in Figure 1, using
pooled data for proton, helium, carbon, and neon ions (13–16),
were fitted by Eq. (3).

The Clatterbridge fast neutron data (21), show the relationship
between αL (for values up to 0.8Gy−1) and αH, and between βL
and βH, are shown in Figures 2A,B, respectively. In each case, the
linear and non-linear fits are not significantly different (p> 0.05),
although the residuals are smallest for the non-linear equations,
which also have the advantage of not extrapolating to infinitely
high radiosensitivity values.

The relationship between αL and αU for various ions are shown
in Figure 3, fitted to data from the literature [with data where
negative β values obtained excluded]. The fitted equation is shown
in the figure, but also with a least squares fit for a linear no-
intercept relationship of αU = 6.47 αL (p< 0.001, R2 = 0.899) for
αL values less than 0.35Gy−1, the more radio-resistant part of the
radiosensitivity spectrum.

FIGURE 1 | Data points for relationship between Z and turnover point
LET value LETU with fitted parameter values based on Eq. (3).

Fits to Experimental RBE Data Sets
The model is superimposed to the experimental data sets, using
different cell lines, of Barendsen (Figure 4) and Weyrather et al.
(Figures 5A,B) and Todd (Figures 6 and 7).

The data of Barendsen used mono-energetic deuterium or
helium (alpha) particles in one human cell type, with highly
symmetrical curves which turnover at around 110 keV/μm. In this
case (see Figure 4), the model fits the data reasonably well at all
levels of surviving fraction. However, since this data set exists as
plotted graphical surviving fraction results without access to the
original data, there is inevitable uncertainty in assessing the low

FIGURE 2 | (A,B) Sixty-four megavolt fast neutron relationships between low
and high LET radiosensitivity parameters. Linear no-intercept and non-linear
least squares fits are respectively: (A) αH = 2.72αL and αH =5.37/3.68
(1− e−3.68αL); (B) βH = 1.57·βL and 2.29/23.57(1− e−23.57 βL) using
Mathematica software.
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FIGURE 3 | Ion beam relationships between radiosensitivity
parameters at low and high LET at the turnover point (αααH is here αααU)
and fitted by the parameters shown, using Mathematica software.
Error bars are not available for all data used. Reproduced with permission
from Ref. (8).

FIGURE 4 | Mono-energetic alpha particle data of Barendsen (with
large points indicating 50% survival, medium sized points 10%
survival, and the smallest points 5% survival, using the proposed
model to provide fit lines, with black indicating use of parameters
αααL===0.16Gy−−−1, αααU===1.31Gy−−−1, βββL=== 0.046Gy−−−2, βββU=== 0.15Gy−−−2 and
gray using parameters αααL===0.15Gy−−−1, αααU===1.35Gy−−−1,
βββL=== 0.03Gy−−−2, βββU===0.08Gy−−−2. The thickest lines are for 50% survival,
medium lines for 10% survival, and thinnest lines for 5% survival.

and high LET α and β values, whichmake the RBE determination
even more difficult. The plot was obtained by assessment using
αL = 0.16, αU = 1.31, βL = 0.046, βU = 0.15 obtained by crude
measurements of survival curves and RBE plots, each on a log-
arithmic and linear scales, drawn by artists and which contain
displacements of many data points for convenience of display,
but the data set is better fitted by αL = 0.15, αU = 1.35, βL = 0.03,
βU = 0.08, as shown in Figure 4. The Barendsen data set suffers
from retrospective inaccuracies in estimating parameters from
diagrams in publications rather than use of the raw data, but the
graphic shows the sensitivity of themodel to the input parameters.

The critical dependency of each RBE limit on the ratio of α
and β at low and high LET respectively, demonstrates the impor-
tance of obtaining the most accurate possible data, rather than
depending on published material which does not contain precise
surviving fraction outcomes. The Barendsen data set also suggests
a higher value of LETU for alpha particles than obtained above

FIGURE 5 | (A,B) Model fitted data of Weyrether et al. for C ions for three
different cell lines and doses, coded in the same way as for Figure 4 with
respect to line thickness and surviving fraction (A) for CHO cells and (B) for
V-79 cells.

FIGURE 6 | Graphical displays of RBE and LET with unique turnover
point positions for multi-ion data of Todd, assuming ααα=== 0.14Gy−−−1

and βββ===0.05Gy−−−2 for a dose of 1.5Gy. From left to right the ionic elements
are shown as follows, with color code and LETU (rounded to nearest integer
for values over 100) in parentheses: Deuterium (red, 30.5), Helium (brown,
103), Lithium (pink, 150), Boron (blue, 200), Carbon (orange, 213), Nitrogen
(green, 221), Oxygen (Black, 227), Neon (purple, 232), and Argon (gray, 237).

using the formula based onZ in pooled data, at around 127 instead
of 103 keV/μm; also the αU is predicted to be 1.18Gy−1 by Eq. (3).
This illustrates the uniqueness of each data set and the distorting
effect of pooling of data from different laboratories using different
cell systems etc.

The important carbon ion data of Weyrather et al. (17), from
GSI, which covers a broader range of LET values, shows an appar-
ently constant turnover point for different cell types and surviving
fractions (Figures 5A,B). The data are published with the LQ
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FIGURE 7 | Model predictions shown with data of Todd using the new
Z-based model to determine LETU and αααU, βββU respectively, with LQ
model correction for dose. The largest sized points are for SF= 50%, the
intermediate sized points are for SF= 10%, and the smallest sized points are
for SF= 1%. The ions used and their LET (keV/μm) values are given
respectively in parentheses. Deuterium (6.5), Helium (25), Lithium (55), Boron
(165), Carbon (220), Nitrogen (300), Oxygen (385), Neon (580), and Argon
(1940). Observed RBE data are printed as black points, with estimated RBE
values as gray points. Starting on the left hand side the first two black points
are for 250 and 50 kV X-rays respectively, followed by deuterons etc.

radiosensitivities, although the ions have a small variation in their
LET spectrum (with a maximum spread of less than 5% for the
highest LET values which reduces further with decreasing LET).
So, it is unlikely that energy and LET spread contribute to the
deviations from themodeled curves seen at lower LET values. The
RBE values found at low LET values seem higher than expected,
possibly due to biological sample variation, especially since irradi-
ations were performed using two different accelerator systems (for
LET values above and below 100 keV/μm) in different laboratories
and presumably at different times. These data, although very
informative, inevitably contain greater heterogeneity than the data
of Barendsen, and the data are less well fitted. Another more
stochastic approach is to use a Poisson function, which will be
presented in a further publication.

In the case of Todd’s multi-ion data (24), a range of differ-
ent mono-energetic ions were used (protons, deuterium, helium,
lithium, boron, carbon, nitrogen, oxygen, neon, and argon), which
implies that there will be at least nine different curves, one for
each Z value, and each with unique turnover points. Such hetero-
geneous data were fitted surprisingly well by allocating a unique
turnover point for each ion species, before estimation of the RBE,
as shown in Figure 6, followed by the RBE estimations for each
ionic species in Figure 7.

Clinical Radiobiology
It is possible to tentatively assess changes in total dose required
for different fractionation schedules using protons, helium, and
carbon ions, as shown in Figures 8A–C. The variations in LET
are representative of the wide expected clinical ranges for non-
Bragg peak regions and spread out Bragg peaks of different sizes
and for scanned beams. It should be noted that the changes in total

FIGURE 8 | (A-C) Plots of total iso-effective dose versus number of fractions
for the given iso-effect and α/β ratio. (A) Protons, (B) Helium ions, (C) Carbon
ions.

dose required with number of fractions (and consequently dose
per fraction) are remarkably similar for the respective LET ranges
used. This indicates the importance of LET mapping as well as
dose mapping in the clinic, since RBEs and consequently changes
in total dose with fractionation can be the same for a wide range
of ions, as determined by their Z value and LET.

Discussion

Simple differential equations which model saturation effects are
commonly used in the physical sciences and in biology, with
notable examples in pharmacokinetics. Saturation in the radiation
context applies to the relationship between the effective event size
and the bio-target. Maximum efficiency represents the maximum
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cell killing effect caused by locally absorbed energy, which differs
from the energy released, some of whichmay bewasted by causing
more local damage than is necessary to cause lethality, or is
dissipated over a wider than necessary critical volume.

The newmodel offers a relatively simpler semi-empirical math-
ematical method for assessing changes in RBE with LET than has
previously been available and provides a second order approxi-
mation. It can be more easily understood and used by clinicians,
biologists, and others, without recourse to more complex math-
ematics. Also, the two saturation-based assumptions made, in
comparison, are fewer than the assumptions required in other
RBE models. For highly controlled and relatively homogenous
data sets, this deterministic approach provides reasonable esti-
mates of RBE. For protons, a variant of this approach has been
published recently (8). The model depends on the assumptions
of the LQ model where α and β are high level parameters,
being ultimate coefficients of radiation induced cell death, rather
than basic components of radiation effect such as DNA strand
breaks etc.

The model is not intended to supplant existing models of RBE,
but to be complementary. It would be highly advantageous in
clinical practice if more than one model could be used, with
clinical decisions allowed to proceed if at least two are in reason-
able agreement. Thus, the LEM, MKM, and variants of the Katz
models should continue to be used, and compared with the new
model.

Improved input data would undoubtedly further improve the
accuracy of the model. Rather than attempt to fit historical data,
which are limited in terms of accurate determination of “maxi-
mum efficiency” turnover points, it would be better to conduct
rigorous experiments to test hypotheses connected with the above
models, such as the relationship of the initial slope tomore precise
estimates of the turnover point position (LETU) in different ions.
This also requires a further stochastic interpretation necessary
to match a range of LET values as would be encountered in
many clinical beams. There is ample scope for research in this
respect.

Some authors have emphasized the inverse association between
low LET α/β and the final RBE (7, 13). This follows since α/β
reflects repair capacity and intrinsic radiosensitivities, and is valid
more at low doses. From the definitions of RBEmax and RBEmin,
it is easy to show that the former will be inversely related to
related to (α/β)L, but the latter directly proportional to the square
root of (α/β)L (21, 28). The former assumption can be used for
low dose per fraction treatments, where RBEmax dominates the
RBE. The need to include changes in β with LET is necessary
for estimations of RBE at higher doses, and where α/β is small
as in human late tissue effects. The new model also preserves
the overall symmetry of the curves at increasing dose. Accurate
estimation of β from cell survival curves, especially when α values
are large, are notoriously difficult to achieve. Our knowledge
of how β changes with increasing LET is less well documented
than for the larger and easier to measure changes in α with
increasing LET. Only by meticulously conducted large scaled
experiments, with greater than usual numbers of cell survival

experiments, can these parameters be estimated to greater and
sufficient accuracy.

Since neutrons are uncharged, they do not fall easily into this
model, although the main products of neutron interactions such
as recoil protons and other ions do, such that a spectrum of LET
values will result, which in principle could be translated into RBE
using the modeling described in this report. Again this would
require further specific study.

There is considerable scope for the application of simpler
RBE predictive models. Ideally prospective experiments should
be performed with specific attention to LET–RBE turnover point
position for different ions, the initial slope of the increment in
RBE and the maximum value of α and β relative to their low LET
values. These need to be determined for extensive in vitro libraries
of human cell lines and, if confirmed, extended to more complex
in vivo experiments. A single international center would be ideal
for this purpose, as has already been proposed at CERN (29, 30).
There, it might be possible to create a new extensive data base
for LET–RBE relationships, and to re-confirm or refute the basic
RBE principles listed on p. 3. Of special concern are the slopes of
the relationship, and improved accuracy for key LETU parameter,
using multiple ion species in an appropriate panel of human cell
lines, and to a much higher degree of accuracy than previously
obtained. In this way, the data shown in Figures 1 and 3 could
be enhanced by experiments on multiple ion species. Also, the
results of all available models should be compared in such a single
laboratory.

Such a project must be regarded as “essential science” for
informing clinical practice, so that the best outcomes fromparticle
therapy may in the future be fully, rather than partially, realized.
Many practical enigmas remain within particle therapy (8, 31).

It is noteworthy for medical scientists to realize that in the
first 6 weeks of the experiments that lead to the discovery of
the theoretically predicted Higgs Boson, the entire laws of par-
ticle physics were not only re-confirmed, but to a much higher
level of accuracy than previously achieved. Similar goals must be
attempted in radiobiology, although over a longer time frame.
This would provide the tools for greater predictive accuracy to
particle radiotherapy, to improve its efficacy, as well as provide
enhanced knowledge for human radiation protection, including
astrobiology.
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