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Aurora-A is a well-knownmitotic kinase that regulates mitotic entry, spindle formation, and
chromosome maturation as a canonical role. During mitosis, Aurora-A protein is stabilized
by its phosphorylation at Ser51 via blocking anaphase-promoting complex/cyclosome-
mediated proteolysis. Importantly, overexpression and/or hyperactivation of Aurora-A is
involved in tumorigenesis via aneuploidy and genomic instability. Recently, the novel
function of Aurora-A for DNA replication has been revealed. In mammalian cells, DNA
replication is strictly regulated for preventing over-replication. Pre-replication complex
(pre-RC) formation is required for DNA replication as an initiation step occurring at the
origin of replication. The timing of pre-RC formation depends on the protein level of gem-
inin, which is controlled by the ubiquitin–proteasome pathway. Aurora-A phosphorylates
geminin to prevent its ubiquitin-mediated proteolysis at the mitotic phase to ensure proper
pre-RC formation and ensuing DNA replication. In this review, we introduce the novel
non-canonical role of Aurora-A in DNA replication.
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Introduction

Cyclin-dependent kinases (CDKs) acquire catalytic activity by forming complexes with the cyclins
and promote cell cycle progression via phosphorylation of crucial target proteins (1). In mitosis,
other kinases such as Aurora-A, Aurora-B, and Aurora-C tightly regulate drastic and rapid mor-
phological changes (2). Aurora-A, the serine/threonine kinase, is essential for several events during
mitosis including entry of mitosis, duplication of centrosome, spindle formation, segregation of
chromosome, and cytokinesis (3). Aurora-A protein expression peaks during mitosis and decreases
at G1 phase in mammalian cells (4). Expression of Aurora-A protein is reduced in late mitosis
as a consequence of ubiquitin-mediated proteolysis by anaphase-promoting complex/cyclosome
(APC/C) and its co-activator Cdh1 (5–7). It is well known that protein level of various cell cycle
regulators is regulated by the ubiquitin–proteasome system (UPS) for proper regulation of cell
cycle (1, 8). Aurora-A protein is ubiquitylated via recognition of destruction box (D-box) in the
C-terminal by Cdh1 (5) and an additional A-box/DADmotif (9, 10). Furthermore, Ser53 (equivalent
to Ser51 in human Aurora-A) of the A-box is phosphorylated during mitosis and this phosphoryla-
tion is important for the protein stabilization of Xenopus and human Aurora-A (4, 11, 12).

DNA replication is strictly restricted to occur only once per cell cycle in eukaryotes. To prevent
over-replication, replication origins are restricted to activate only once per cell cycle by amechanism
called “licensing.” The assembly of the pre-replication complex (pre-RC) mediates licensing at the
origins of replication (13, 14). The assembly of the pre-RC at replication origins can only occur from
late mitosis to early G1 with low CDK activity and high activity of APC/C (13, 14). Once pre-RC
complexes are assembled, origins are licensed for replication in the ensuing S phase. Geminin is
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known as a repressor of re-replication and directly binds to chro-
matin licensing and DNA replication factor 1 (Cdt1) to prevent
pre-RC formation (15). Recently, we found that Aurora-A phos-
phorylates geminin to prevent its ubiquitin-mediated proteolysis
at the mitotic phase to ensure proper pre-RC formation and
ensuing DNA replication. In this review, we introduce the novel
non-canonical role of Aurora-A in DNA replication, notably its
initiation process called “licensing.”

Ubiquitin–Proteasome Pathway

The UPS marks proteins for destruction by attaching a polyu-
biquitin chain and subsequently degrading these proteins via the
activity of a multicatalytic enzyme, 26S proteasome (8). Ubiquitin
in its monomeric form is a small protein that contains only 76
amino acids. Attachment of a polyubiquitin chain to a substrate
requires the concerted action of three enzymes, E1 (ubiquitin-
activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3
(ubiquitin ligase) (8). E1 forms a high-energy thioester bond with
ubiquitin in an ATP-dependent reaction, and then the ubiquitin
molecule is transferred from E1 to E2. E3 is classified into two
distinct classes based on the homology domain: HECT and RING
domains. The HECT-type E3s form covalent linkages with ubiq-
uitin from E2 by using a conserved cysteine and subsequently
transfer ubiquitin to substrates. On the contrary, the RING-type
E3s function as adaptors to facilitate the positioning and transfer
of ubiquitin from E2 directly onto the substrate (16). A number of
E3s have been found to physically bind to the substrate. Both E2
and E3 proteins exist as large families and the substrate specificity
is thought to be defined by different combinations of E2s with
different E3 proteins. The human genome encodes only two E1s
and less than 40 E2s. Moreover, more than 600 different E3
ligases have been identified in the human genome, allowing for
tremendous diversity in substrates (17).

Cell Cycle Control by APC/C Ubiquitin
Ligase

The specific, rapid, and timely proteolysis of cell cycle regulators
by the UPS represents an important mechanism that ensures
proper progression via the cell division cycle in a unidirectional
and irreversible manner. The proteolysis of many core compo-
nents of the cell cyclemachinery is controlled by twomajor classes
of ubiquitin ligases, the SCF complex and the APC/C complex,
which are RING-type E3s. SCF complexes represent an evolu-
tionarily conserved class of E3 enzymes containing four subunits:
Skp1, Cul1, one of many F-box proteins, and Roc1/Rbx1 (18).
APC/C is composed of at least a dozen different subunits, namely
APC1, APC2, Cdc27/APC3, APC4 APC5, Cdc16/APC6, APC7,
Cdc23/APC8, Doc1/APC10, APC11, CDC26, and APC13, but it
can only ubiquitylate substrates with the help of a co-activator
protein (19). In mammalian cells, APC/C activity is regulated
by its binding with the co-activator proteins Cdc20 and Cdh1
during specific periods of the cell cycle (19) (Figure 1). All of these
proteins are characterized by the presence of sequence elements,
known as the C-box and the IR-tail, which mediate their binding
to APC/C (20–22). Cdc20 and Cdh1 contain a C-terminal WD40
domain that is predicted to fold into a propeller-like structure
and that is believed to recognize APC/C substrates by interact-
ing with specific recognition elements in these substrates called
D-box (RxxL) and KEN-box (KEN) (23–25). In addition to
D-box and KEN-box, other motifs, including A-box (RxLxPSN),
CRY-box (CRYxPS), GxEN-box (GxEN), Spo13D-box (LxExxN),
and O-box (unknown sequence), are also recognized by APC/C
(10, 11, 26–29). The APC/CCdc20 complex is necessary for pro-
gression through mitosis and it facilitates the exit from mitosis by
inactivatingCDK1, and theAPC/CCdh1 complex helps tomaintain
low CDK activity and the G0/G1 state (19, 30) (Figure 1). The
APC/CCdh1 and APC/CCdc20 complexes target distinctive specific

FIGURE 1 | Relationships between the protein levels of Aurora-A and geminin and anaphase-promoting complex/cyclosome (APC/C) activity during
cell cycle progression. The graph shows APC/CCdc20 and APC/CCdh1 activities and the protein levels of Aurora-A and geminin during cell cycle progression.
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substrates. Although several recent studies have indicated that
both co-activators and APC/C have important roles in substrate
recognition, the mechanism by which APC/C recognizes its sub-
strates is unclear. As inappropriate activation of APC/C could
cause fatal errors in cell cycle progression, protein degradation
via APC/C activation is tightly controlled. APC/C activation is
also regulated by APC/C inhibiting proteins, such as mitotic
arrest-deficient 2 (Mad2), budding uninhibited by benzimidazole-
related 1 (BubR1), budding uninhibited by benzimidazole 1
(Bub1), and early mitotic inhibitor 1 and 2 (Emi1 and Emi2)
(19). However, it is also unclear how the timing of degradation
of numerous APC/C substrates is regulated. Indeed, substrates are
not degraded at the same time by APC/C in spite of activation of
APC/C during mitosis. It is unclear why the timing of the ubiqui-
tylation of substrates is different. It was recently demonstrated that
(i) phosphorylation and acetylation interfere with ubiquitylation
of substrates by APC/C (4, 31–33), (ii) intrinsic regulation of
APC/C by substrate ordering is attributable to kinetic differences
in the ubiquitylation process (34), and (iii) ubiquitylation of the
substrate is inhibited by the binding protein of APC/C (35). Thus,
the timing of the ubiquitylation by APC/C may be regulated
by protein modification, the processing of ubiquitylation, and
binding by an inhibitor.

Aurora-A Kinase

Aurora-A is one of the Aurora kinases (Aurora-A, Aurora-B,
and Aurora-C), which are highly conserved serine/threonine
kinases (36). Aurora-A plays an important role in chromo-
somal alignment and segregation during mitosis and meio-
sis (36). Indeed, Aurora-A phosphorylates a large number of
substrates, including p53, polo-like kinase-1 (PLK1), CDC25B,
BRCA1, centrin, LATS2, GEF-H1, TACC3, NDEL1, HDAC6, Ski,
HURP, PP1, TPX2, Eg5, histone H3, CENP-A, CENP-E, CEP192,

CEP192, CPEB, LIMK1, LIMK2, SRC, RalA, AKT, and PC2 (37).
Aurora-A-mediated phosphorylation of substrates contributes to
the activation of kinase activity, protein degradation, protein sta-
bilization, targeting of the centrosome, maturation and separation
of centrosome, translocation, and negative regulation of protein
function (37). For example, phosphorylation of p53 is involved
in its protein degradation (38). Aurora-A activates Plk-1 in G2
phase via the direct phosphorylation of Thr210 (39). Phospho-
rylation of LATS2, NDEL1, and TACC3 promotes centrosome
maturation (40–42). Aurora-A shares high homology between
species and it is evolutionarily ancient, withAurora-A sharing 82%
sequence identity between the human and rodent genes. Aurora-
A contains a key threonine, the T-loop residue Thr288, within
its kinase domain, and Thr 288 is phosphorylated to allow for
kinase activity via autophosphorylation (9, 43, 44). The expres-
sion level of Aurora-A mRNA and protein is controlled in a cell
cycle-dependent manner. Expression of Aurora-A mRNA peaks
at G2/M, with protein expression peaking slightly later (45, 46).
The promoter of Aurora-A contains specific sequences required
for transcription in G2 phase (46–48). Expression of Aurora-A
protein peaks during mitosis and decreases in G1 phase as a
consequence of ubiquitylation by APC/CCdh1 (4–7) (Figure 1).

The APC/CCdh1 ubiquitin ligase complex recognizes its sub-
strates with either D-Box and/or KEN-box motifs (19, 24, 25).
Although Aurora-A has four D-Box motifs and one KEN-
box motif, the one of four D-box (D-box at C-terminal) and
N-terminal A-box (47RxLxPSN52) are required for the ubiquityla-
tion of human Aurora-A protein (4, 5, 9, 10). Moreover, Xenopus
Ser53 (or Ser51 in humans) within the A-box is phosphorylated
during mitosis, and this phosphorylation is essential for mitotic-
specific stabilization (4, 11, 12) (Figure 2). Similarly as Aurora-A
regulation via phosphorylation, CDC6 protein is protected from
APC/CCdh1-mediated degradation by virtue of its phosphoryla-
tion (31). The phosphorylation sites of CDC6 by cyclin E/CDK2
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FIGURE 2 | Schematic model of DNA replication via the aurora-A–geminin–CDT1 axis.
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are located directly adjacent to the D-box, therefore preventing
the recognition of CDC6 by APC/CCdh1. In the case of human
Aurora-A protein, Ser51 is located far from the D-box, but Ser51
is located in the A-box. However, phosphorylated Aurora-A at
Ser51 can bind to Cdh1 (4). The mechanism by which Aurora-A
degradation is prevented by phosphorylation on Ser51 is unclear.
Other regulators, such as Cdc4/Fbxw7, checkpoint with forkhead
and ring finger domain (Chfr), and Aurora-A–interacting protein
1 (AIP), are involved in degradation of Aurora-A protein (49–51).

It is well known that overexpression of Aurora-A protein
is frequently observed in various human cancers, and that
aneuploidy, centrosome amplification, and tumorigenic
transformation are induced by its overexpression in cultured
human and rodent cells (3, 45, 52). Indeed, Aurora-A is mapped
to chromosome 20q13.2, a region commonly amplified in human
cancers (45, 52, 53). Therefore, Aurora-A overexpression is
believed to be caused by gene amplification or transcriptional
activation. However, a previous report illustrated that Aurora-A
amplification was detected in only 3% of cases, but overexpression
of Aurora-A mRNA and protein was observed in more than 60%
of cases in hepatocellular carcinomas (54). Similar discrepancies
between gene amplification and protein overexpression rates of
Aurora-A are reported in other types of cancers, including head
and neck, breast, gastric, and ovarian (4, 52, 55, 56). Interestingly,
constitutive phosphorylation of Ser51 is observed in head and
neck cancer cells with overexpression of Aurora-A protein. As
Ser51 phosphorylation inhibits APC/CCdh1-mediated degrada-
tion, it is possible that constitutive phosphorylation on Ser51 may
induce protein stabilization and its consequent accumulation in
cancer cells that exhibit overexpression of Aurora-A protein (4).
Importantly, Aurora-A overexpression is considered to promote
tumorigenesis via disruption of maintenance of the normal
centrosome or chromosome number (3, 57, 58).

DNA Replication and Pre-RC Formation

The ability of a eukaryotic cell to precisely and accurately repli-
cate its DNA is crucial to maintain genome stability. Eukary-
otic chromosomes need to be replicated by numerous replication
forks that are initiated from replication origins spaced throughout
the genome because of the sizes of the chromosomes. There-
fore, eukaryotic cells are continually exposed to a risk of over-
replication. As described previously, licensing is restricted to
occur only once per cell cycle to prevent over-replication. Licens-
ing is the assembly of the pre-RC on replication origins (13, 14).
Pre-RC is composed of the origin recognition complex (ORC),
cell division cycle 6 (Cdc6), CDT1, and the mini-chromosome
maintenance (MCM) proteins (59). Cdc6 and CDT1 are loaded
onto replication origins in an ORC-dependent manner during
late M and early G1 phase, after which they subsequently recruit
MCM proteins to the origins. Pre-RC formation occurs from
late mitosis to early G1. The pre-RC is a protein complex com-
posed of ORC, CDC6, CDT1, and MCM2–7, known as putative
DNA helicase (13, 14). During late M and early G1, CDC6 and
CDT1 bind to replication origins and subsequently induce the
recruitment of MCMs to the origins (13, 14). Pre-RC formation
is needed for replication in the subsequent S phase. Therefore, it is

necessary to prevent re-assembly of the pre-RC during S, G2, and
M phase. Two major inhibitory pathways exist to prevent pre-RC
re-assembly, namely CDK1- and CDK2-based pathways. CDK1
inactivation during G2 phase induces re-replication through
re-assembly ofMCMs (60). Consistently, silencing of cyclin A, but
not cyclin B, causes re-replication in Drosophila cells (61). Taken
together, CDKs suppress re-replication by preventing pre-RC
re-assembly. To explain this phenomenon, multiple mechanisms
are considered in S and G2 phases. For example, CDT1 and
ORC1 are phosphorylated byCDKs, resulting in their degradation
in an SCFSkp2-dependent manner (62–65). Additionally, CDKs
phosphorylate CDC6 and induce its nuclear export inmammalian
cells (66–68). Another pathway involves geminin, known as an
inhibitor of DNA replication. Geminin functionally inhibits pre-
RC re-assembly through direct binding to CDT1 during S, G2,
andM phases, which ensures genome stability and prevents aneu-
ploidy (15). Indeed, ectopic overexpression of geminin suppresses
pre-RC formation and subsequently blocks DNA replication (69).
In addition, geminin knockdown in mammalian cells induces
re-replication (70, 71), indicating that geminin has critical roles
in the regulation of replication. Although it seemingly sounds
contradictory, geminin stabilizes CDT1 protein duringmitosis via
preventing its ubiquitin-mediated proteolysis (69). Furthermore,
the mitotic depletion of geminin induces CDT1 downregulation
and prevents MCM loading in the ensuing G1 phase (69, 72).
Thereby, the negative and positive roles of geminin are essential
for pre-RC formation, indicating that the protein level of geminin
must be strictly controlled for proper DNA replication.

Involvement of Aurora-A in Pre-RC
Formation

To ensure pre-RC assembly during late mitosis and early G1
phase, cell cycle-dependent degradation of geminin is caused by
the UPS (73). The geminin protein level oscillates during the
cell cycle via APC/C-mediated ubiquitylation (69, 73) (Figure 1).
Recent analyses at the single-cell level by time-lapse fluores-
cence microscopy analysis revealed that geminin degradation
takes place following cyclin B degradation in late anaphase (74).
Although Geminin is a substrate of APC/C, geminin is stable even
in mitosis in spite of active APC/C. Indeed, geminin is phospho-
rylated by Aurora-A on Thr25 to prevent its APC/C-dependent
proteolysis in mitosis (69) (Figure 1). Geminin contains the
consensus sequences (R-X-S/T-L/V) recognized by Aurora-A as
observed in amino acids 23–26 (RRTL) within the D-box of gem-
inin (69). Interestingly, immunoprecipitation analysis revealed
that both HA-tagged Cdh1 and HA-tagged Cdc20 interacted
with wild-type geminin and Thr25 phospho-defective mutant
(gemininT25A) but not with Thr25 phospho-mimicking mutant
(gemininT25D), indicating that the inability of gemininT25D to
interact with APC/CCdh1 and APC/CCdc20 may explain its resis-
tance to APC/C-dependent proteolysis (69). In general, distinct
substrates are specifically recognized by APC/C complex and are
tightly degraded to adjust the critical timing (19). In fact, all of
substrates of APC/C are not degraded at same time even though
APC/C is active. Phosphorylation in CDC6, Aurora-A, and Skp2
as well as geminin protects from APC/C-mediated ubiquitylation

Frontiers in Oncology | www.frontiersin.org August 2015 | Volume 5 | Article 1874

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive


Tsunematsu et al. The role of Aurora-A in DNA replication

(4, 31, 32). In particular, phosphorylation in CDC6, Skp2, or
geminin interferes with the binding of APC/CCdh1 (31, 32, 69).
We previously have shown that the phosphorylation of human
Aurora-A on Ser51 interferes with its ubiquitylation by APCCdh1.
Interestingly, constitutive phosphorylation on Ser51 is well corre-
lated with protein overexpression and stabilization in cancer cells
(4). As geminin is frequently overexpressed in certain types of
human cancer (75, 76), it is interesting to examine if constitutive
phosphorylation at Thr25 induces its protein overexpression in
cancer. Importantly, stabilized geminin during mitosis ensures
pre-RC formation via protecting CDT1 ubiquitylation by SCFSkp2
(69). Aurora-A–geminin–CDT1 axis regulates proper DNA repli-
cation (Figure 2).

Conclusion

Aurora-A is a well-known mitotic kinase that regulates mitotic
entry, spindle formation, and chromosome maturation as a
canonical role. In this review, we shed light on a novel function
of Aurora-A for regulating DNA replication via proper forma-
tion of the pre-RC. Indeed, Aurora-A phosphorylates geminin to
prevent APC/C-mediated proteolysis in mitosis. To ensure pre-
RC formation, stabilized mitotic geminin protects CDT1 from
SCFSkp2-dependent proteolysis. This novel mechanism controlled
by the Aurora-A–geminin–CDT1 axis is essential for proper
regulation of DNA replication (Figure 2). Emi1 was identi-
fied as a factor inhibiting the function of APC/CCdh1 and it is
degraded by SCFβTrcp at early M phase (77–80). It was recently
revealed that Emi1 silencing prevents the transition from S to G2
phase by downregulating geminin via APC/C activation (81, 82).

Therefore, the protein level of geminin is also regulated by the
Emi1-mediated inhibition of APC/CCdh1 activity. During cell
cycle progression, strict regulation of the amount of geminin pro-
tein is essential for proper DNA replication. The protein level of
geminin is strictly determined by Emi1- and Aurora-A-mediated
protection from ubiquitylation by APC/C.

A series of periodic kinase reactions by CDKs promote cell
cycle progression and the fidelity of cell division is dependent
on the accumulation and ordered destruction of critical protein
regulators (1). Thus, the UPS contributes to the precise regulation
of the cell cycle. The UPS also contributes to the precise regula-
tion of DNA replication via the Aurora-A–geminin–CDT1 axis
(Figure 2). Interestingly, Aurora-A protein is also ubiquitylated by
APC/CCdh1. It is well known that overexpression and/or hyperac-
tivation of Aurora-A is involved in tumorigenesis via aneuploidy
and genomic instability (3). Moreover, Aurora-A is frequently
overexpressed in various cancers (3, 43, 52–54). As DNA replica-
tion is strictly regulated to prevent over-replication inmammalian
cells, disruption of this mechanism may be involved in Aurora-
A-mediated tumorigenesis. We suggest that deregulation of DNA
replication via Aurora-A–geminin–CDT1 axis can be used as a
potential diagnostic and therapeutic target in cancer.
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