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Alisertib (MLN8237) is a selective small molecule inhibitor of Aurora A kinase that is 
being developed in multiple cancer indications as a single agent and in combination with 
other therapies. A significant amount of research has elucidated a role for Aurora A in 
orchestrating numerous activities of cells transiting through mitosis and has begun to 
shed light on potential non-mitotic roles for Aurora A as well. These biological insights 
laid the foundation for multiple clinical trials evaluating the antitumor activity of alisertib 
in both solid cancers and heme-lymphatic malignancies. Several key facets of Aurora 
A biology as well as empirical data collected in experimental systems and early clinical 
trials have directed the development of alisertib toward certain cancer types, including 
neuroblastoma, small cell lung cancer, neuroendocrine prostate cancer, atypical teratoid/
rhabdoid tumors, and breast cancer among others. In addition, these scientific insights 
provided the rationale for combining alisertib with other therapies, including microtubule 
perturbing agents, such as taxanes, EGFR inhibitors, hormonal therapies, platinums, 
and HDAC inhibitors among others. Here, we link the key aspects of the current clinical 
development of alisertib to the originating scientific rationale and provide an overview of 
the alisertib clinical experience to date.
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Alisertib: A Highly Selective Aurora A Kinase inhibitor

Early interest in targeting Aurora A for cancer treatment stemmed in part from the fact that the gene, 
localized to chromosome 20q13.2, is commonly amplified and overexpressed in a diversity of cancer 
types (1–7). Aurora A amplification and overexpression is correlated to a worsened prognosis for 
patients. For example, a meta-analysis study of 5523 cancer patients from thirty-nine studies dem-
onstrated that patients with higher Aurora A expression levels had a significantly worsened survival 
outcome irrespective of disease type or stage (8). Aurora A overexpression is also thought to drive 
oncogenesis by causing genomic instability; this proposal is supported by evidence demonstrating that 
Aurora A overexpression transforms normal cells into cancer cells in experimental studies (7, 9–13). 
As such, Aurora A has been considered an attractive target for treating cancer and multiple Aurora 
kinase inhibitors have been developed and tested in cancer patients, including alisertib (MLN8237).

Alisertib is a benzazepine containing small molecule inhibitor of Aurora A (14). In enzymatic, 
cell and in vivo assays, alisertib has proven to selectively inhibit Aurora A (14). For example, alisertib 
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demonstrated selectivity for Aurora A relative to other kinases in 
an in vitro screen of 205 kinases, and was >200-fold more potent 
against Aurora A than the structurally related kinase Aurora B 
in cellular assays. The selectivity for Aurora A was substantiated 
by mechanism of action studies in cultured cancer cells and 
tumors grown as xenografts in immunocompromised mice. 
Alisertib concentrations that lead to cell cycle arrest and death 
are preceded by phenotypic changes consistent with Aurora A 
inhibition; including increased incidence of tetraploid (4N) cells 
as well as mitotic cells with abnormal mitotic spindles and mis-
aligned chromosomes (Figure 1). Furthermore, alisertib did not 
affect the viability of cancer cell lines expressing a drug-resistant 
Aurora A mutation, suggesting that its antitumor activity occurs 
predominantly through Aurora A inhibition (15).

Alisertib has demonstrated antitumor activity across a broad 
array of solid cancers and heme-lymphatic experimental tumor 
models when grown in  vitro and in  vivo (14, 16–24). In addi-
tion, single-agent alisertib has been evaluated in multiple clinical 
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FiGURe 1 | Alisertib mechanism of action. Alisertib selectively binds to 
and inhibits Aurora A kinase in cells. Inhibition of Aurora A results in delayed 
mitotic entry and progression through mitosis leading to an accumulation of 
cells with a tetraploid DNA content. Mitotic cells treated with alisertib display 
a variety of defects, including monopolar, bipolar, and multipolar spindles, all 
with misaligned chromosomes. These cells can die directly out of mitosis via 
apoptosis, undergo aneuploid cytokinesis or exit mitosis without undergoing 
cytokenesis through a process known as mitotic slippage. The resulting 
interphase cells typically display gross nuclear defects including 
micronucleation and multinucleation. These cells will then undergo apoptosis, 
senescence or reenter the cell cycle; the specific fate is likely dictated by the 
extent of DNA damage/aneuploidy that occurred in any cells as a result of the 
abnormal mitotic division as well as other underlying genetic factors.

trials and has shown clinical activity across a diversity of cancer 
types, including solid and hematological cancers in adult and 
pediatric populations. Though alisertib displays differential anti-
tumor activity across experimental tumor models and in cancer 
patients, the biological underpinnings for alisertib sensitivity 
remain unclear. Multiple hypotheses have been developed based 
on Aurora A biology and data collected in experimental models 
that predict which cancers will most likely respond to alisertib as 
a single agent or in combination with other therapeutic agents. In 
this review, the data supporting some of these concepts is shared.

early Clinical Studies for Dose/Schedule 
Selection and Proof of Mechanism

Alisertib has been formulated for oral administration in patients 
and is available as an enteric-coated tablet and as a liquid solution 
for pediatric cancers. In two phase 1 studies of alisertib in adults 
with advanced solid malignancies (25, 26), and in one phase 1 study 
of alisertib in adults with hematological cancers (27), the single 
agent maximum tolerated dose was determined to be 50 mg dosed 
orally twice daily for 7 days followed by 14 days of non-treatment. 
This dose was selected for further single-agent alisertib evalua-
tion in additional clinical trials of adult cancer patients. Alisertib 
was also evaluated once daily for 21 days followed by 14 days of 
non-treatment; 50 mg was the maximum tolerated dose on this 
schedule (25, 26). The most common dose limiting toxicities 
(DLTs) observed with alisertib were fatigue, nausea, neutropenia, 
and stomatitis. These toxicities reflect the pharmacologic activity 
of alisertib as a cell cycle inhibitor in highly proliferative tissues. 
Other common alisertib-associated toxicities included alopecia, 
anorexia, leukopenia, anemia, thrombocytopenia, asthenia, vom-
iting, diarrhea, and somnolence. The occurrence of somnolence 
was likely due to the benzodiazepine-like structure of alisertib.

Alisertib has also been evaluated in pediatric cancer patients. 
This was in part based on the observation that alisertib was active 
against a range of pediatric tumors grown in vitro and in vivo, in 
particular, neuroblastoma and acute lymphocytic leukemia (28, 
29). In a phase 1 study of children with solid tumors, the maxi-
mum tolerated dose of alisertib in children with solid tumors was 
80 mg/m2 administered orally once daily for 7 days followed by 
14 days of non-treatment (30). The exposures achieved with this 
dose is approximately 1.5-fold greater than the adult maximum 
tolerated dose of 50 mg twice daily. Mucositis/stomatitis, mood 
alteration/depression, neutropenia, and elevated alkaline phos-
phatase were the DLTs in these patients; neutropenia being the 
most frequently occurring dose-limiting toxicity. In addition to 
depression, other mood alterations included impaired memory, 
agitation, euphoria, and somnolence, predominantly grade 1 and 
2. Hand–foot–skin reactions were also observed in these patients.

The selectivity of alisertib for Aurora A relative to Aurora B 
observed in non-clinical experimental models also translated 
into the cancer patients. Pharmacodynamic studies performed 
on tumor biopsies obtained from patients prior to and after 
alisertib dosing demonstrated an exposure-related decreases 
in tumor mitotic cells with aligned chromosomes and bipolar 
spindles in the post-dose samples; phenotypes consistent with 
Aurora A inhibition (25, 31). Moreover, skin and tumor biopsies 
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FiGURe 2 | Aurora A protects N-Myc from proteasome-mediated 
degradation. Aurora A binds to N-Myc, thereby preventing it from being 
ubiquitinated by the E3-ligase FBXW7. Alisertib binds to Aurora A and 
changes its confirmation in a manner that disrupts its interaction with N-Myc. 
N-Myc is than ubiquitinated by FBXW7 and subsequently degraded by the 
proteasome.
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taken prior to and after alisertib dosing had increased in mitotic 
cells in the post-treatment biopsies with serine 10 phosphoryl-
ated Histone H3. As serine 10 phosphorylation of histone H3 
is catalyzed by Aurora B in cells, these data demonstrate that 
alisertib does not significantly inhibit Aurora B at the single 
agent maximum tolerated dose (25, 26, 31). Confirmation of 
alisertib’s functional selectivity for Aurora A in cancer patients 
allows for its rational development for treating multiple types of 
cancers as single agent or in combination with other therapeutic 
agents.

Population-based pharmacokinetic–pharmacodynamic mod-
eling demonstrate that alisertib steady-state exposures achieved 
with 50 mg twice daily for 7 days is associated with pharmaco-
dynamic activity in tumors and a low probability for DLTs (31). 
Moreover, patients with intolerable treatment related toxicities 
at 50  mg twice daily can be dose reduced to 40 or 30  mg on 
the same schedule and still maintain tumor pharmacodynamic 
effects. Overall, multiple tolerated and pharmacodynamically 
active dose/schedules have been identified in adult and pediatric 
patients allowing for sufficient flexibility in alisertib dosing that 
can be taken advantage of for single-agent evaluation and for 
combining with multiple other therapeutic agents.

Alisertib Single-Agent Rationale

Neuroblastoma
Interest for developing alisertib in neuroblastoma initially derived 
from an evaluation of alisertib antitumor activity in a large set 
of pediatric cancer models executed by the Pediatric Preclinical 
Testing Program which maintains the mission for identifying 
novel therapies for treating childhood cancers. Alisertib potently 
inhibited the growth of neuroblastoma cells in vitro and resulted 
in maintained complete responses in three of seven neuroblas-
toma xenograft models grown in immunocompromised mice; 
responses which surpassed the activity of other agents tested 
in these models (29). Subsequent to these findings it was pro-
posed that Aurora A is essential for the growth and survival of 
MYCN-amplified neuroblastoma cells. Aurora A binds to and 
stabilizes N-MYC by protecting it from FBXW7 E3 ubiquitin  
ligase-mediated proteasomal degradation in a manner that is 
independent from Aurora A catalytic activity (Figure  2) (32). 
Furthermore, alisertib and the structurally related molecule 
MLN8054 bind to Aurora A’s catalytic domain in manner that 
causes an allosteric shift in the protein thereby disrupting its’ 
interaction with N-Myc (33, 34). Interestingly, the allosteric 
shift at the Aurora A/N-Myc interaction site caused by alisertib 
does not occur with all catalytic inhibitors of Aurora A kinase. 
Several studies have also demonstrated antitumor activity of 
Aurora A inhibition in MYCN-amplified neuroblastoma models. 
For example, treatment of TH-MYCN neuroblastoma mice with 
MLN8054 resulted in decreased N-Myc protein expression, 
diminished expression of N-Myc target genes, tumor regressions 
and increased survival (33). Other Aurora A inhibitors also 
decreased N-Myc expression resulting in inhibited tumor growth 
of other MYCN-amplified tumors (34, 35).

As a result of these findings, the Children’s Oncology Group led 
a phase 1 study of single-agent alisertib in children with relapsed/

recurrent solid tumors including neuroblastoma to determine the 
maximum tolerated dose, safety profile and pharmacokinetics 
of alisertib. In this study, 4 out of 11 evaluable neuroblastoma 
patients treated with alisertib had stable disease (≥6 cycles) (30). 
As described above, the DLTs in these patients was mucositis, 
neutropenia, and mood alteration. A phase 2 study of alisertib in 
young patients with recurrent or refractory solid tumors or leuke-
mias including neuroblastoma has also recently been completed 
(NCT01154816). Currently, there is an ongoing study being led 
by the New Approaches to Neuroblastoma Therapy (NANT) 
consortium in recurrent or resistant neuroblastoma patients 
combining alisertib with the FDA-approved drugs for neuroblas-
toma treatment, irinotecan and temozolomide (NCT01601535). 
In this study, there is a plan to compare MYCN status to patient 
outcome.

Small Cell Lung Cancer
Similar to neuroblastoma, SCLC has an etiological link to Myc-
family of oncogenes including MYC (c-Myc), MYCN (N-Myc) 
and MYCL1 (L-Myc). Amplification and overexpression of 
these genes is thought to constitute 18–31% of SCLCs (36–38). 
Multiple preclinical studies have suggested that SCLCs with Myc 
activation or amplification are notably sensitive to Aurora kinase 
inhibitors. For example, SCLC cell lines with MYC, MYCN, and 
MYCL1 activation or amplification were the most sensitive in 
a viability screen of 87 cell lines using the dual Aurora A and 
Aurora B kinase inhibitor PF-03814735 (39). In a separate screen 
of 34 SCLC cell lines, four structurally diverse Aurora kinase 
inhibitors VX680, alisertib, PHA680632, and ZM447439 were 
most effective against the MYC-amplified cell lines (37). Studies 
with the dual Aurora A and Aurora B kinase inhibitor VX680 
demonstrated that it selectively killed human retinal pigment 
epithelial cells that overexpress c-Myc (40).

In a phase 2 study of single-agent alisertib in five types of 
advanced refractory or relapsed solid cancers, encouraging 
activity was seen in SCLC (41). Objective partial responses were 
observed in 10 of the 48 (21%) SCLC enrolled in this study; these 
responses occurred in both chemotherapy-sensitive and chemo-
therapy-resistant disease, the latter which has a worse prognosis. 
The most common grade 3–4 adverse events in the SCLC patients 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


Aurora A 
overexpression

Epithelial cells
Mesenchymal cells

AlisertibERα
CD24 ERα

CD24
HER-2/Neu
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overexpression leading to an epithelial to mesenchymal transition reversion.
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from this phase 2 study were neutropenia, anemia, leucopenia, 
and thrombocytopenia, which are consistent with those noted in 
earlier trials of alisertib. Currently, a phase 2 study of alisertib in 
combination with paclitaxel compared to placebo in combination 
with paclitaxel in patients with second line relapsed or refractory 
SCLC is ongoing (NCT02038647).

Neuroendocrine Prostate Cancer
Neuroendocrine prostate cancer is thought to evolve from late 
stage prostate adenocarcinoma concurrent to become resistant 
to hormonal therapy (42, 43). As part of that transition, neuroen-
docrine prostate cancers become more genomically unstable than 
prostate adenocarcinoma and include co-amplification of MYCN 
and Aurora A (44, 45). Given this observation, the relative sen-
sitivity of several prostate adenocarcinoma and neuroendocrine 
cancer models to the pan-Aurora inhibitor danusertib was tested 
(44). In a viability screen of four cell lines grown in cell culture, 
the one neuroendocrine prostate cancer model was significantly 
more sensitive to danusertib than the three adenocarcinoma cell 
lines. Danusertib also displayed greater antitumor activity in 
LNCaP cells transfected with MYCN than vector–control LNCaP 
cells and was more effective in inhibiting the growth in vivo of a 
neuroendocrine prostate cancer model relative to an adenocarci-
noma model. As a result of these observations, a phase 2 in NEPC 
is ongoing with single-agent alisertib (NCT01799278).

Atypical Teratoid/Rhabdoid Tumors
Aurora A is a promising target for therapy in ATRT and alis-
ertib has demonstrated to be a potent radiosensitizer in ATRT 
experimental models (46). ATRT is a rare and highly malignant 
central nervous system (CNS) tumor usually diagnosed in child-
hood. ATRT represents around 3% of CNS pediatric cancers and 
has a high mortality rate with a very poor prognosis. Mutation 
or deletion of the tumor suppressor gene INI1/hSNF5 occurs 
in the majority of ATRTs. hSNF5/INI1 is a component of the 
chromatin remodeling SWI/SNF complex which regulates many 
proteins involved in chromatin structure. Aurora A is a direct 
downstream target of hSNF5/INI1. hSNF5/INI1 acts to repress 
Aurora A expression; as such, loss of INI1/hSNF5 in rhabdoid 
tumors leads to aberrant overexpression of Aurora A which is 
required for tumor survival in non-clinical cancer models (47). 
These preclinical findings supported the use of alisertib for 
ATRT patients. Wetmore et  al. reported an encouraging result 
for clinical use of alisertib as single agent in recurrent ATRT in 
four children (48). Patients with recurrent or progressive ATRT 
received oral administration of alisertib 80 mg/m2 once daily for 
7 days of a 21-day treatment cycle. Disease burden was evaluated 
by brain and spine MRI and by evaluation of spinal fluid cytol-
ogy (lumbar puncture) after two cycles of alisertib and every 2–3 
cycles thereafter for as long as the patients remained free from 
tumor progression. All four patients had disease stabilization 
and/or regression after three cycles of alisertib therapy. Two 
patients on therapy showed stable disease regression for 1 and 
2 years. Consistent with other pediatric studies, alisertib in these 
patients had moderate but manageable toxicities, including neu-
tropenia, leukopenia, thrombocytopenia, anemia, somnolence, 
and alopecia. Alisertib appears a promising therapeutic agent in 

this pediatric population. A phase 2 study is ongoing to further 
evaluate alisertib in the treatment of children with ATRT.

Breast Cancer
Single-agent alisertib efficacy was evaluated in a phase 2 study 
that comprised five advanced solid tumor indications including 
breast cancer (41). Among response-evaluable breast cancer 
patients, objective response (all partial responses) was observed 
in 9 [18%, 95% confidence interval (CI) = 9–32%] of 49 women 
with breast cancer. The most common grade 3–4 adverse 
events in the breast cancer patients from this study included 
neutropenia, fatigue, leucopenia, and stomatitis. The antitumor 
activity of alisertib was particularly encouraging in the hor-
mone receptor-positive and HER2-negative subgroups. Median 
progression-free survival in this subgroup was 7.9 months (95% 
CI 4.2–12.2). This clinical finding is supported by previously 
reported preclinical results. D’Assoro et  al. demonstrated that 
Aurora A drives the transition of estrogen receptor α-positive 
(ERα+) breast cancer cells from an epithelial to a highly inva-
sive mesenchymal phenotype (49). The transition from an 
 epithelial-like to a mesenchymal-like phenotype was character-
ized by reduced expression of ERα, HER-2/Neu overexpression 
and loss of CD24 surface receptor (CD24–/low) and overexpres-
sion of Aurora A (Figure 3). Aurora A overexpression induces 
epithelial–mesenchymal transition (EMT) and a cancer stem 
cell-like phenotype. Inhibition of Aurora A by alisertib in vitro 
reverses EMT and suppresses the self-renewal ability of CD24–/

low breast cancer. Moreover, molecular targeting of Aurora A 
by shRNA in  vivo restores a CD24+ epithelial phenotype and 
inhibits the development of distant metastases. Other studies 
demonstrated that increased Aurora A activity may result in 
anti-hormonal therapy resistance in breast cancer (50). Aurora 
A induces endocrine resistance through down-regulation of 
ERα expression in initially ERα+ breast cancer cells (51). In 
breast cancer patients, high Aurora A expression is associated 
with poor survival particularly in node-negative ER-positive 
breast cancer patients (50). Taken together, alisertib could be 
a novel promising therapeutic agent to selectively eliminate 
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highly invasive cancer cells and improve the disease-free and 
overall survival of ER-positive breast cancer patients resistant to 
conventional endocrine therapy.

Alisertib Combination Development 
Rationale

Taxanes
A considerable amount of data has accumulated in preclini-
cal studies suggesting the benefit of combining Aurora kinase 
inhibitors with antimicrotubule perturbing agents. This class 
of anticancer therapies which comprises the taxanes, vinka 
alkaloids, and the epothilones is among the most commonly 
used for treating both solid and hematological cancers. Multiple 
preclinical studies have demonstrated the beneficial combination 
of inhibiting Aurora kinase with this class of agents (52–60). 
For example, alisertib combined with the taxanes paclitaxel 
and docetaxel in triple-negative breast cancer tumors grown 
as xenografts in immunocompromised mice led to additive or 
synergistic antitumor activity with prolonged tumor growth delay 
and in some cases durable complete responses after discontinuing 
treatment (53). Though the underlying biological underpinnings 
explaining the beneficial combination between antimicrotubule 
agents remains uncertain, it has been shown that Aurora A 
inhibition using MLN8054 or RNA interference in the presence 
of paclitaxel caused cells to rapidly exit mitosis without complet-
ing cytokinesis, presumably due to a disruption of the spindle 
assembly checkpoint (61).

Alisertib administered as a single agent was evaluated in patients 
with platinum-resistant or -refractory epithelial ovarian, fallo-
pian tube, or primary peritoneal carcinoma (62). Though active 
in these diseases as a single agent (overall response rate of 10%, 
durable for 6.9–11.1 months), the activity was not considered suf-
ficient for further development in ovarian cancer as a single agent. 
Therefore, alisertib was tested in combination with paclitaxel in 
relapsed and refractory ovarian cancer (NCT01091428). During 
the phase 1b portion of this study weekly paclitaxel (QWx3) at 
80 mg/m2 and 60 mg/m2 was administered with alisertib dosed 
twice daily on a 3 days on, 4 days off schedule for three consecu-
tive weeks over 28-day cycles (63). Exposure efficacy modeling 
was used for selecting the phase 2 dose for this study (53). In 
addition, alisertib and paclitaxel are being tested in metastatic 
or locally recurrent breast cancer (NCT02187991) and SCLC 
(NCT02038647). Numerous other studies have been completed 
or are ongoing testing alisertib in combination with other micro-
tubule perturbing agents, including Abraxane (nab-paclitaxel) in 
patients with advanced solid cancers (NCT01677559), docetaxel 
in patients with advanced solid tumors (NCT01094288), and 
vincristine and rituximab in patients with relapsed or refractory 
B-Cell lymphomas (NCT01397825).

eGFR inhibitors
Epidermal growth factor receptor (EGFR)-targeting antibodies 
or small molecular EGFR inhibitors are widely used to treat 
patients with gastrointestinal (GI), breast, head and neck, and 
lung cancers. However, the clinical efficacy of these agents is 

limited by intrinsic and acquired resistance factors. Astsaturov 
and colleagues employed a synthetic lethal screening method and 
identified Aurora A as a promising hit necessary for cells to sur-
vive in the presence of an EGFR inhibitor (64). In addition, they 
observed synergistic activity of combined inhibition of the EGFR 
and Aurora A pathways in cancer cells. Combination of erlotinib 
and alisertib showed synergistic antitumor activity in vitro and 
in vivo in lung cancer models (65). Furthermore, Aurora A and 
EGFR protein expression were assessed by immunohistochem-
istry in patients with squamous cell cancer of the head and 
neck (SCCHN) (n  =  180). Co-expression of elevated levels of 
Aurora A and EGFR was a poor prognostic factor in SCCHN 
(66). Recently, Crystal and colleagues established patient-derived 
resistant NSCLC models to identify effective drug combinations 
(67). Aurora kinase inhibitors were active in combination with 
EGFR inhibition in a number of EGFR-mutant cell lines. These 
data together suggest a potential benefit of such combination 
therapy in patients. Currently, there is an ongoing phase 1 study 
evaluating the safety and tolerability of combining alisertib with 
erlotinib in patients with non-SCLC (NCT01471964).

Hormonal Therapy in Breast Cancer
A number of evidences suggest alisertib may be a rationale 
combination partner for hormonal therapy. First, promising 
alisertib single-agent activity was observed in ER-positive and 
HER2-negative patients as described above (41); second, Aurora 
A plays a role in the development of endocrine resistance through 
activation of SMAD5 nuclear signaling and down-regulation of 
ERα expression in initially ERα+ breast cancer cells (51); and third, 
aromatase inhibitors (AIs) are used for treatment of ER-positive 
breast cancer though resistance to AI is a major obstacle to opti-
mal patient outcome. Aurora A is upregulated in AI-resistant cell 
lines and knockdown studies of Aurora A have shown that it is 
essential for AI-resistant cell growth. In AI-resistant cell lines, 
alisertib blocked cell cycle progression at the G2/M phase, inter-
fered with chromosome alignment and spindle pole formation, 
and preferentially inhibited AI-resistant cell growth compared 
with parental control cells (68). Furthermore, combination of 
Aurora inhibitors (alisertib, JNJ-7706621, or danusertib) with 
fulvestrant is superior to treatment with either of the compounds 
alone, particularly in AI-resistant cell lines (68). Importantly, this 
combination may have minimal overlapping toxicities in breast 
cancer patients. A phase 1/2 trial of alisertib in combination with 
fulvestrant in patients with hormone receptor-positive metastatic 
or locally advanced breast cancer is ongoing (NCT02219789).

Platinums
Platinum-based drugs continue to be the mainstay of therapy 
for many cancers, such as ovarian and lung cancers; however, 
chemoresistance (intrinsic or acquired) is a major limitation for 
platinums as it is for other therapies. Increasing evidence suggests 
a role of Aurora A in platinum resistance. Elevated expression of 
Aurora A is associated with poor prognosis in epithelial ovarian 
cancer patients (69) and high Aurora A expression is correlated 
with cisplatin-based chemotherapeutic resistance and predicts 
poor patient overall survival (OS) and progression-free survival in 
NSCLC (70). Moreover, forced expression of Aurora A increased 
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TABLe 1 | Most common treatment-emergent adverse events of alisertib 
dosed at 50 mg orally twice daily for 7 days followed by 14 days of 
non-treatment.

All gradesa Grade ≥3b

Gastrointestinal  
disorders

Diarrhea, nausea, stomatitis, 
vomiting, abdominal pain, 
constipation

Stomatitis, diarrhea

Blood and lymphatic  
system disorders

Neutropenia, anemia, 
thrombocytopenia,  
leukopenia, febrile  
neutropenia

Neutropenia, anemia, 
thrombocytopenia, 
leukopenia, febrile 
neutropenia

General disorders and 
administration site 
conditions

Fatigue, pyrexia, asthenia, 
edema peripheral

Fatigue

Skin and subcutaneous 
tissue disorders

Alopecia

Nervous system  
disorders

Somnolence, headache, 
dizziness

Metabolism and nutrition 
disorders

Decreased appetite, 
dehydration

Respiratory, thoracic and 
mediastinal disorders

Dyspnea, cough

aTreatment-emergent adverse events of alisertib in ≥10% patients.
bTreatment-emergent grade 3–4 drug-related adverse events in ≥5% patients.
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the resistance of the lung cancer cells to cisplatin and knocked 
down of Aurora A expression in the cisplatin resistant cells by 
siRNA resulted in a significantly enhanced sensitivity to cisplatin 
(70). In addition, combination of alisertib and cisplatin resulted 
in enhanced antitumor activity in  vivo in multiple preclinical 
models (21). In a recent phase 2 clinical trial, alisertib exhibits 
encouraging single-agent activity in SCLCs, particularly in refrac-
tory or chemotherapy-resistant/relapsed patients as described 
above. Three of twelve patients with refractory or chemotherapy-
resistant disease had objective responses to alisertib (41). In ear-
lier studies, alisertib also showed modest single-agent antitumor 
activity in patients with platinum-resistant ovarian cancers (62). 
Combination of alisertib with platinums may be a viable strategy 
for the treatment of patients with platinum-resistant recurrent 
SCLC and ovarian cancers.

HDAC inhibitors
Alisertib has shown promising single-agent antitumor efficacy in 
a phase 2 trial for the treatment of various hematological malig-
nances (71). The overall response rate was 27% (10% CRs) includ-
ing 100% (1/1) in Burkitt lymphoma (BL), 29% (6/21) in diffuse 
large B cell lymphoma (DLBCL), and 50% (4/8) in peripheral 
T-cell lymphoma (PTCL). Recent data from a phase 2 study of ali-
sertib in PTCL led by the South West Oncology Group (SWOG) 
showed two complete responses and seven partial responses and a 
response rate (ORR) of 24%. Among the most common subtypes 
(PTCL NOS, AITL, and ALCL), the ORR was 33% (72). Similar 
to previously described data with alisertib, myelosuppression 
was a common adverse effect and constituted the predominant 
toxicity requiring dose reduction. Mucositis, anorexia, and 
diarrhea occurred in less than one-quarter of patients and were 
largely grade 1 or 2 in severity. Grade 1 or 2 fatigue was also 
common, being observed in nearly half of patients. Nonetheless, 
two responding patients in this trial received alisertib for 1 year. 
On the basis of these results, a global phase 3, randomized 
registration-enabling trial (NCT01482962) was initiated compar-
ing alisertib with investigator’s choice (gemcitabine, pralatrexate, 
or romidepsin) in patients with relapsed/refractory PTCL. This 
study was discontinued as a pre-specified interim analysis indi-
cated that the study was unlikely to meet the primary endpoint 
of superior progression-free survival (PFS) over the standard of 
care in this treatment setting, although single-agent activity of 
alisertib was confirmed. In this phase 3 study, alisertib showed a 
similar ORR compared to the control arm.

The histone deacetylase (HDAC) inhibitors (vorinostat and 
romidepsin) were approved in the United States for the treat-
ment of cutaneous T-cell lymphoma and romidepsin for the 
treatment of PTCL. Preclinical data support combining Aurora 
A inhibitors with HDAC inhibitors. For example, several 
studies demonstrated that HDAC inhibitors reduce Aurora A 
expression leading to arrest in the G2/M portion of the cell 
cycle, abnormal mitotic spindles and followed by apoptosis 
(73–75). The pan-Aurora kinase inhibitor MK-0457 in com-
bination with the vorinostat enhanced lymphoma cell death 
through repression of c-Myc and c-Myc responsive micro RNAs 
(76). Alisertib also demonstrated synergistic antitumor activ-
ity when combined with romidepsin in experimental models 

of T-cell lymphoma (77). Alisertib selectively synergizes with 
romidepsin by inducing cytokinesis failure in T-cell lymphoma. 
Cytokinesis failure was confirmed after a corresponding post-
treatment increase in CENP-A protein levels. CENP-A is a 
chromatin-associated protein and plays a role in the final stages 
of cytokinesis. Overall, these collective data provide a rationale 
for evaluating alisertib in combination with romidepsin in 
patients with multiple lymphoma subtypes. A phase 1 trial of 
alisertib plus romidepsin for relapsed/refractory aggressive 
B- and T-cell lymphoma is ongoing (NCT01897012).

Summary

To date, many clinical studies have been conducted to evaluate 
antitumor efficacy of alisertib in patients with diverse solid 
tumors or hematologic malignancies. Treatment related 
adverse events (in ≥10% of patients) of single-agent alisertib 
are summarized in Table 1 (25, 26, 41). Although alisertib has 
shown single-agent clinical activity in multiple tumor settings, 
identification of appropriate combination partners and sensitive 
patient populations is required to ensure that an acceptable risk/
benefit profile can be achieved. Aurora A has been implicated 
in the development of resistance to multiple chemotherapies 
and targeted agents and preclinical data suggest that alisertib 
can be combined with multiple therapies to yield additive or 
synergistic antitumor activity. Furthermore, combinations with 
targeted therapies might yield more favorable clinical risk/benefit 
profile than combinations with chemotherapeutic partners due 
to decreased risk for overlapping toxicities. Lastly, identification 
of potential predictive biomarkers for alisertib will significantly 
increase the likelihood of expanding the clinical risk/benefit 
profile. As such, many correlative studies are ongoing to identify 
predictive biomarkers which could lead to a precision medicine 
strategy for alisertib.
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