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Breaching the castle walls:
hyaluronan depletion as a therapeutic
approach to cancer therapy
H. Michael Shepard*
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Hyaluronan (HA) has many functions in the extracellular milieu of normal and diseased
tissues. Disease-associated HA accumulation has been shown to predict a worsened
prognosis in cancer patients, with tumors having a high-extracellular HA content (HA-high)
being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is
derived from the specialized biomechanical and molecular properties of the HA-based
assembly of HA binding proteins and the growth-promoting factors that accumulate in it.
Biophysical characteristics of an HA-high tumor microenvironment include high tumor
interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia.
Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the
HA-high extracellular network. HA–CD44 association on the tumor cell surface enhances
receptor tyrosine kinase activity to drive tumor progression and treatment resistance.
Together, malignant cells in this HA-high matrix may evolve dependency on it for growth.
This yields the hypothesis that depleting HA in HA-high tumors may be associated with
a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20
(PEGPH20) has been deployed as a potential cancer therapeutic in HA-high tumors.
PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular
framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic
depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction
in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor.
Finally, HA-depletion results in reduced signaling via CD44/RHAMM. Taken together,
HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that
include targeting both biophysical and molecular signaling pathways. Ongoing clinical
trials are examining the potential of PEGPH20 in combination with partner therapeutics
in several cancers.

Keywords: hyaluronan, extracellular matrix, tumor microenvironment, hyaluronidase, treatment resistance, inter-
stitial fluid pressure, PEGPH20

Introduction

Hyaluronan (HA) is a large, unbranched, glycosaminoglycan that consists of repeating disaccharides
of -glucuronic acid and N-acetylglucosamine (1). HA is commonly referred to as a ubiquitous
structural component of the extracellular, pericellular, and intracellular matrices, often with the
function of lubricating surface-to-surface movement of joints or muscle (2). That characterization,
although correct, does not convey the importance of the role that HA, together with its partner
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proteoglycans [the HA binding proteins (HABPs, or hyalad-
herins)], play in regulating cell behavior. HA in solution is polyan-
ionic, conferring a largely negatively chargedmolecule in solution.
Extensive hydration and the polyanionic nature of HA allow it
to expand and occupy a large hydrodynamic volume (3, 4). High
concentrations of HA, or HA combined with HABPs, creates a
size-selective barrier in which small molecules can diffuse freely
but larger molecules are partially or completely excluded (5).
The biophysical properties of HA are exploited by tumor cells
to create a sanctuary that is protective with respect to systemic
therapies as well as host immune surveillance, as will be discussed
below. Overall, the accumulation of HA in tumors can result in
more aggressive malignancy (6–15). This review provides a brief
overview of selected functions of HA and discusses the possible
mechanisms through which accumulation of HA can make a
tumor more aggressive and the mechanisms through which HA
depletion can improve therapy of cancer.

Hyaluronan: A Key Component of the
Tumor Microenvironment and Promising
Therapeutic Target

Hyaluronan and its Binding Partners
The properties of HA that clearly affect tumor progression include
its biophysical properties, which lead to accumulation of large
amounts of water into the tumor microenvironment (TME) as a
result of its hygroscopic nature as well as its net negative charge,
which induces the molecule to take on an expanded volume of
hydration (4). HA molecules within the TME absorb a substan-
tial number of water molecules (~15 per disaccharide) causing
the extracellular matrix (ECM) to swell, resulting in high tumor
interstitial pressure (tIP), collapse of the tumor vasculature, and
tumor hypoxia (16, 17). In addition, as HA is extruded into
the TME by tumor cells, it also coordinates the assembly of a
complex ECM through its ability to bind an array of HABPs (6,
18). Evidence from in vitro studies suggests that high expression
of HAS3 induces abundant cell surface microvilli, which vastly
increases the surface area of the tumor cell. Tumor cells within
a tumor with high-HA accumulation (HA-high) are networked
into the ECM by the HA receptors on their surface. The best
characterized interaction is betweenHAand its principal receptor,
CD44. HA in vitro forms three-dimensional pericellular coats and
can also form cables that may be involved in cell-to-cell commu-
nication (19). The HA-high matrix provides scaffolding for many
HABPs (6, 18, 20). The matrix structural HABPs are primarily
proteoglycans, and the most common side chains are composed
of chondroitin sulfates (6, 18). Some HABPs [e.g., pentraxin-3,
together with inter-alpha trypsin inhibitor and tumor necrosis
factor-stimulated gene-6 (TSG-6)] serve to cross link the HA-
high tumor ECM (21). Higher levels of pentraxin-3 expression
are associated with a more aggressive disease in pancreatic cancer
patients (22). The chondroitin sulfates add to the elevated tIP
because they coordinate water molecules like HA, and their dense
negative charge can bind and store growth factors, which creates
a reservoir of tumor-promoting molecules within the TME (23).
However, in our work, the antitumor response to polyethylene
glycol-conjugated (pegylated) recombinant human hyaluronidase

PH20 (PEGPH20) correlates very closely to the HA content of a
tumor (24). The result of these interactions in an HA-high tumor
is amultidimensional and gel-like structure comprisingmalignant
cells, fibroblasts, and immune cells, all tied up together by HA and
its binding partners in a setting of high tIP (Figure 1A). The high
tIP characteristic of HA-high tumorsmay have other biomechani-
cal signaling consequences promoting tumor progression (25, 26).

Aside from creating a unique TME structured aroundHA, cells
that overproduceHA have additional properties. Recently, Tammi
and colleagues described the formation of tumor cell membrane
protrusions that accompany the overexpression of HAS3, one
of three enzymes that synthesize and secrete HA (27). These
microvilli, which can spontaneously break away from the tumor
cells, retain the HAS3 enzyme and are coated in HA. Because
they are coated with HA, they have the potential to bind/activate
CD44/RHAMM on other cells, including stromal cells. Such
membrane vesicles could be an important messaging system from
a HA-high tumor that could affect the behavior of other cells,
locally or systemically (28).

The HA-high tumor may have additional advantages. In par-
ticular, the HA pericellular coat can physically inhibit the ability
of immune cells to form synapses and kill malignant cells in vitro
(29). The extension of these in vitro findings to in vivomodels has
shown that in HA-high tumors, there is reduced access for either
monoclonal antibody (mAb; trastuzumab) or natural killer (NK)
cells (30). Depletion of HA from the tumor enables access and
leads to improved efficacy, making HA a target for improving the
efficacy of mAb or immune cell therapy of cancer (31).

Hyaluronan not only provides structural support to the
tumor ECM but also interacts with cell surface receptors
CD147/RHAMM and CD44. Both CD44 and RHAMM expres-
sion are tightly controlled by the wild-type p53 tumor suppressor
gene (32, 33), provoking the hypothesis that their dysregulation
contributes to tumor progression (33, 34). Activation, or amplified
signaling, of multiple tyrosine kinases is mediated by HA binding
to its receptors CD44 and RHAMM (33–36). Because elevated
tyrosine kinase in tumor cells leads to resistance to macrophage
killing, this could be an important pathway for HA/CD44 tumor
cells to escape immune surveillance (37). In addition to the
effects on tumor progression described above, further studies are
underway to investigate the global reduction of growth factor
signaling that is expected in tumor cells following depletion of
HA (36, 38, 39).

Rationale for Targeting HA in Cancer
Hyaluronan accumulates in the ECM of many solid tumors, and
with a very high frequency (87%) in pancreatic ductal adenocar-
cinoma (PDA) (6, 13, 40). Several key factors provide a strong
rationale for targeting HA in the TME (Figures 1A,B) (16, 17,
40–45). Tumors that accumulate a relatively high amount of HA
(the HA-high phenotype) have been shown to be more aggres-
sive in mouse models and among cancer patients (13, 15, 16,
24). High HA production is sufficient for induction of epithelial-
to-mesenchymal transition (EMT) and acquisition of a highly
malignant and migratory/invasive phenotype both in normal and
transformed epithelial cells (46–48). In the genetically engineered
KrasLSL-G12D/+;Trp53LSL-R172H/+;Cre (KPC) mouse model of PDA,
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FIGURE 1 | The impact of HA depletion from a tumor with an
HA-high phenotype. (A) An HA-high tumor, encompassed by a fibrous
capsule. As HA accumulates in the tumor it adsorbs water, resulting in
expansion of the tumor stroma, which is limited by the fibrous capsule,
resulting in increased tumor interstitial pressure, collapse of
tumor-associated vasculature, and other sequelae as shown. (B) After
treatment with PEGPH20, high-molecular weight HA is degraded to

fragments, which diffuse into newly expanded vasculature, resulting in a
dose-dependent normalization of tumor interstitial pressure and other
changes, which result in tumor growth inhibition and increased access to
systemic therapies. Abbreviations: ECM, extracellular matrix; HA,
hyaluronan; PEGPH20, pegylated recombinant human hyaluronidase; pO2,
partial pressure of oxygen; VEGF, vascular endothelial growth factor. Figure
adapted from Ref. (45). Data from Ref. (16, 17, 40–44).

HA deposition is seen early in the tumorigenesis process and
persists during tumor progression and metastasis (41). Similar
observations (conservation of the HA-high phenotype) have been
reported in primary and secondary lesions from breast cancer
patients (49).

Breaching the HA Barrier
Hyaluronidases function to degrade HA in a variety of tissue
types and physiologic settings. The potential for HA to be an
antitumor target was first pursued by Baumgartner and colleagues
(50–52), who conducted several clinical studies with partially
purified animal-derived PH20. The Baumgartner hypothesis was
that HA in tumors impeded the tumor cell exposure to therapy.
Although the investigators reported positive results from early
trials, a randomized trial done in high-grade astrocytomas with
combined chemotherapy and radiation therapy with and with-
out hyaluronidase did not find an advantage in the PH20 group
(51). Although additional clinical studies were not pursued at
that time, our knowledge of the biology of HA has progressed
significantly since these early investigations, and an image of

how HA accumulation enhances tumor progression has emerged
(previously discussed). In addition, the availability of purified
recombinant human PH20 (rHuPH20) has enabled exploration
of a means to use the human enzyme for chronic, systemic ther-
apy (53). Both rHuPH20 and PEGPH20 were initially compared
for clinical suitability through pharmacokinetic studies in mice,
which showed that rHuPH20 had a very short half-life (<3min),
while PEGPH20 was shown to have an extended half-life (10.3 h)
in vivo (16). The pegylated molecule has been taken forward in
explorations of utility in cancer through both preclinical studies
and clinical studies. Preclinical animal model studies using HA-
high and HA-low tumors were performed, all with the conclusion
that tumors with the HA-high phenotype are more sensitive to
PEGPH20 (16, 17, 24).

The mechanism(s) through which HA-depletion results in
tumor growth inhibition are still under investigation. Current
data show that tumor perfusion by systemic therapies is increased
following HA depletion by PEGPH20, resulting in a reversal
of hypoxia and inducing other changes in the TME (16, 17).
Accumulation of HA has been shown to be associated with loss
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of plasma membrane E-cadherin and β-catenin, suggesting dis-
ruption of adherens junctions, and increased potential for EMT,
which is a predicate for the metastatic phenotype (54). PEGPH20
decreased the expression of hypoxia-related proteins and induced
translocation of E-cadherin and β-catenin to the plasma mem-
brane in vivo (17). Translocation of E-cadherin was also seen in
tumors from a transgenic mouse model of pancreatic cancer and
in a human non-small cell lung cancer sample from a patient
treatedwith PEGPH20 (17). In conclusion, HA accumulation pro-
motes tumorigenesis inmultiple animalmodels and inmany types
of malignancies (15–17, 24, 27, 40, 41). HA depletion reverses
these changes and suppresses tumor growth. We hypothesize that
the antitumor effects of PEGPH20 are likely due to these major
changes in the TME.However, a direct effect on tumor cells is pos-
sible as a result of the generation of low-molecular weight (LMW)-
HA fragments that can compete with high-molecular weight
(HMW)-HA for binding and activation of HABPs, including the
HA receptors, CD44 and RHAMM (43). Literature describing the
opposing roles of HMW-HA and LMW-HA is straightforward
in cases in which there may be a high molar excess of LMW-
HA, leading to antagonism of HMW-HA binding to hyaladherins
and destabilization of the HA-mediated ECM. Other work sug-
gests that accumulation of LMW-HA could lead to disruption
of endothelial cell:cell interactions, and even to induction of
inflammatory cytokines (43, 55). It is important to keep these
proposed functions of LMW-HA in mind, as they could point
to a toxicity resulting from systemic therapy with hyaluronidase.
Studies in the KPC mouse model of PDA have shown that
PEGPH20 treatment of tumor-bearing animals results in inhi-
bition of tumor growth and a tumor-specific accumulation of

chemotherapy (doxorubicin, gemcitabine), resulting in increased
efficacy of these agents (40). Further studies have shown that
increased tumor access to mAbs and immune cells can also
occur following HA depletion. In vitro studies demonstrated that
PEGPH20 treatment enhanced the access of trastuzumab and NK
cells toHA-high tumors, and thereby increased both trastuzumab-
and NK-cell-mediated tumor growth inhibitions (31). The mech-
anism leading to this tumor-selective increase in perfusion is the
rapid reversal of high tIP (Figure 2A) (16), which results in not
only vessel reperfusion but also the formation of fenestrae in the
tumor vascular endothelium (Figure 2B) (40). A similar mecha-
nismmay explain the increased accumulation of Salmonella vector
encoding an immune-stimulating cargo in KPC tumor-bearing
mice (56).

The depletion of HA from the tumor ECM is likely to have
a role in the antitumor effects of other coadministered poten-
tial therapeutics. For example, inhibitors of HA synthase (4-
methylumbelliferone and methyl-beta-cyclodextrin) have been
shown to have antitumor effects and can enhance the perfusion of
chemotherapy into tumor vasculature (28, 57–59). Other agents
that have been shown to affect tIP, but are not yet linked to
HA loss, include the taxanes (60). Another recent report sug-
gests that calcipotriol, a synthetic derivative of calcitriol (1,25-
dihydroxyvitamin D3), can enhance the delivery of chemotherapy
to pancreatic tumors through stromal remodeling (61). It is possi-
ble that the anti-inflammatory properties of calciferol are respon-
sible for this result. Inflammatory signals are known to enhance
HA synthesis, and result in HA accumulation and increased tIP
(62). Suppression of inflammatory signals by calciferol is proposed
to down-regulate the production of these mediators, which would

FIGURE 2 | Enzymatic HA depletion leads to normalization of tIP
and normalization of tumor vasculature. (A) PEGPH20 rapidly
normalizes tIP. Dose-dependent effect of PEGPH20 [0 (control), 0.015,
0.15, 1.5, 4.5, 10, and 15mg/kg] on tumor tIP in HA-high PC3 prostate
tumors over a 2-h period following intravenous administration (starting tIP
~40mm Hg). Abbreviations: HA, hyaluronan; IFP, interstitial fluid pressure;
min, minutes; PEGPH20, polyethylene glycol-conjugated (pegylated)
human hyaluronidase PH20; tIP, tumor interstitial pressure. Adapted with
permission from Thompson et al. (16) (B) PEGPH20 treatment leads to
vascular expansion and formation of endothelial fenestrae. Representative
fluorescent images of KPC tumor from vehicle-treated (top left panels)

and PEGPH20-treated (bottom left panels) mice (n=4 mice for each
cohort). Scanning electron microscopy images of pancreatic blood
vessels in KPC (upper two right panels) mice following treatment with
either vehicle or PEGPH20 (n= 4 mice for each cohort) reveal endothelial
fenestrations (white arrowheads) only in the tumor microvasculature.
PEGPH20-treated KPC mice. Endothelia in the healthy pancreata of
control PC mice are comparable to the untreated KPC tumor.
Abbreviations: HA, hyaluronan; KPC, LSL-KrasG12D/+; LSLTrp53R172H/+;
Pdx-1-Cre; PC, LSL-Trp53R172H/+; Pdx-1-Cre; PEGPH20, polyethylene
glycol-conjugated (pegylated) recombinant human hyaluronidase PH20.
Adapted with permission from Jacobetz et al. (40).
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then lead to decreased HA accumulation. Although there are
agents other than PEGPH20 that reduce tIP and may also lead to
decreased HA accumulation, none have been shown to induce the
rapid reperfusion and formation of vascular fenestrae observed
with PEGPH20.

The role of hyaluronidases in tumor biology has long been
an area of investigation. The PH20 hyaluronidase is unique in
that it is active with respect to degrading HA at both low pH
and neutral pH. Other hyaluronidases (HYAL1, HYAL2, HYAL3,
HYAL4) have been studied less extensively than PH20 (63, 64).
From among these enzymes, HYAL1 has been proposed to pro-
mote tumorigenicity under certain conditions (65, 66). Themech-
anism(s) by which HYAL1 can promote tumorigenicity are still
unclear. However, it is possible that the localized presence of
HYAL1 in a tumor with the HA-high phenotype could be a
mechanism to feed the increased dependence of tumor cells on
glucose by facilitating the recycling of HA for cellular metabolism
via the glycolysis pathway (67, 68), a process it may share with
membrane associated HYAL2 (69). Therefore, long-term treat-
ment with PEGPH20 might cause metabolic stress for tumor cells
by depleting their supply of glucose precursors through removal
of extracellular HA. In view of the reported tumor-promoting
actions ofHyal1, it is also important to note that preclinicalmodels
have consistently shown a reduction in metastatic spread with
PEGPH20 treatment (6, 41). These data serve to further highlight
the differences between the various hyaluronidases and provide
additional rationale for clinical development of PEGPH20. A
summary of the proposed mechanisms of action for PEGPH20
enzyme therapy of cancer is shown in Figure 1B (16, 17, 40–45).

Conclusion and Future Directions

The correlation between excess HA accumulation in the stroma
of solid tumors (including breast, prostate, lung, and pancre-
atic cancers) and poor prognosis and short survival has been
demonstrated. Numerous preclinical studies have described a role
for HA in the growth and metastasis of solid tumors. Potential

effects of HA accumulation include shielding cancer cells from
immune cell attack and from antineoplastic therapies through a
variety of mechanisms. Early phase clinical trials have demon-
strated the benefits of adding PEGPH20 to chemotherapy for
advanced pancreatic cancer. The results of a phase 1b clinical trial
with PEGPH20 together with gemcitabine in pancreatic cancer
patients has shown promising signs of efficacy (70). A companion
diagnostic [derived from the tumor necrosis factor-stimulated
gene-6 (TSG6)HABP] is being co-developedwith PEGPH20 (71),
which should help to identify patients most likely to benefit from
PEGPH20 therapy by assessing pretreatment biopsies and moni-
toring the effects of treatment.Ongoing clinical trials of PEGPH20
will provide a further understanding of the clinical benefit of this
agent as an adjunct to standard therapies in advanced cancer.
Two clinical trials to evaluate PEGPH20 are currently enrolling
patients: a randomized phase 1B/2 study of PEGPH20 plus modi-
fied FOLFIRINOX (leucovorin calcium, 5-fluorouracil, irinotecan
hydrochloride, and oxaliplatin) versus modified FOLFIRINOX
alone in patients with stage IV pancreatic cancer (72), and a
randomized phase 2 study of PEGPH20 in combination with nab-
paclitaxel and gemcitabine in patients with stage IV pancreatic
cancer (73). These studies will further elucidate the benefits of
PEGPH20 as an adjunct to anticancer therapies in patients with
advanced pancreatic cancer, and studies are planned to investigate
this strategy in other solid tumors. PEGPH20 is an important
potential anticancer therapeutic because of its inherent antitumor
activity, and its potential to be paired with other therapeutic
modalities to achieve greater efficacy.
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Appendix

Key Concepts
Hyaluronan (HA)
Also known as hyaluronic acid, HA is a large, unbranched, gly-
cosaminoglycan that consists of repeating disaccharides of -
glucuronic acid and N-acetylglucosamine, and is a key polysac-
charide component of the ECM. Excess accumulation ofHA in the
tumor stroma is associatedwith poor prognosis and short survival.

The Tumor Cell Sanctuary
Cancers with the HA-high phenotype also have high tIP, which
leads to tumor vascular collapse, hypoxia, and inherent drug
resistance. Elevated tIP is also associatedwith increasedmetastatic
capability. The presence of an HA-coat around tumor cells leads
to activation of the CD44 receptor, and likely RHAMM, which
enhances tumor growth, drug resistance, and metastasis.

Depletion of HA has an Effect on the Tumorigenic
Properties of an HA-High Tumor
Several agents decrease HA from the tumor ECM. 4-
methylumbelliferone and methyl-beta-cyclodextrin inhibit
HA synthesis, and PEGPH20 directly depletes HA. The fact that
all three agents selectively inhibit tumor growth in HA-high
tumors supports the validity of HA as a target in HA-high
cancers.

HA Depletion from a Tumor with the HA-High
Phenotype Inhibits Tumor Growth by Several
Mechanisms
(A) Reversal of high tIP inhibits tumor cell EMT; (B) Reperfu-
sion of the tumor by systemic chemotherapy, mAb therapy, and
immune cell therapy; (C) Blocks CD44-associated signaling; (D)
Reduced tyrosine kinase signaling increases sensitivity to immune
surveillance and inhibits tumor growth and metastasis.
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