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Over the past 35 years, cure rates for pediatric cancers have increased dramatically. 
However, it is clear that further dose intensification using cytotoxic agents or radiation 
therapy is not possible without enhancing morbidity and long-term effects. Consequently, 
novel, less genotoxic, agents are being sought to complement existing treatments. Here, 
we discuss preclinical human tumor xenograft models of pediatric cancers that may be 
used practically to identify novel agents for soft tissue and bone sarcomas, and “omics” 
approaches to identifying biomarkers that may identify sensitive and resistant tumors to 
these agents.

Keywords: human tumor xenografts, drug sensitivity, expression profiling, copy number variation, preclinical 
pharmacology, bioinformatics, biomarkers, drug efficacy

Drug Development for Pediatric Cancer

Over the past 35  years, cure rates for children with hematologic and solid tumors have risen 
 dramatically. For acute lymphoblastic leukemia the 5-year event-free survival (EFS) is 85–90%, 
whereas one-half to two-thirds of children with Ewing Sarcoma, rhabdomyosarcoma, or osteosar-
coma (OS) are surviving disease-free for prolonged periods after aggressive treatment with surgery, 
radiation, and multiagent chemotherapy. For the remaining patients, it has been possible to slow 
 progression of disease with use of intensified therapy, but cure has remained elusive. Furthermore, 
dose intensification/compression and introduction of new agents continues to decrease cancer 
mortality in children (1), although the limits of cytotoxic therapy may be close to maximal. More 
problematic is that these therapeutic modalities are associated with significant mortality and often 
long-term debilitating sequellae (2). The overriding problem is treatment failure due to the develop-
ment of drug resistance. Whether this results from selection of a pre-existing clone, or through 
therapy-induced mutation remains to be extensively explored. A second major problem is the 
limited repertoire of active antineoplastic agents, targeted for childhood cancers, making it difficult 
to develop effective therapy for resistant tumor subtypes, even when they are identified early in 
the clinical course. As with recent advances in the management of adult cancers, the development 
of novel therapies for childhood solid tumors will require a more complete understanding of the 
biologic characteristics that confer the malignant phenotype that can be used to guide the integration 
of cytotoxic and molecularly targeted therapies most likely to confer clinical benefit.

Developing new therapies for childhood solid tumors presents certain constraints that are 
seldom encountered with the neoplastic diseases of adults. Childhood tumors are rare; hence, 
the numbers of children with a particular diagnosis restrict large-scale drug evaluation or 
randomized clinical trials. For example, relatively few agents receive testing in children, and 
from 1980 to 2003 only a single agent (teniposide) was labeled for use in children compared 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00193
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2015.00193&domain=pdf&date_stamp=2015-08-26
https://creativecommons.org/licenses/by/4.0/
mailto:houghtonp@uthscsa.edu
http://dx.doi.org/10.3389/fonc.2015.00193
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00193/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00193/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00193/abstract
http://loop.frontiersin.org/people/233898/overview


August 2015 | Volume 5 | Article 1932

Geier et al. Mining preclinical drug sensitivity data

Frontiers in Oncology | www.frontiersin.org

to more than 50 anti-cancer agents approved for use in adult 
oncology; furthermore, <15% of anti-cancer drugs approved 
for use in adult indications have labeling for children (3). 
As most drug-screening strategies focus on the selection of 
new anti-cancer agents with specific activity against adult 
neoplastic diseases (e.g., colon, lung, breast, etc.), agents with 
specific activity against childhood malignancies might not be 
identified.

A further restriction on drug development is that many 
“common” cancers of childhood respond to drugs of estab-
lished efficacy, resulting in cure of a substantial number of 
patients. This ethically precludes the use of “experimental” 
agents at diagnosis. However, over the last decade, survival 
rates for patients with disseminated tumors at diagnosis have 
improved only slightly, if at all. This lack of progress is attrib-
uted, in part, to the slow rate at which most novel anti-cancer 
agents enter the clinical setting and the failure to optimally 
integrate laboratory and clinical efforts in a manner most 
likely to generate new therapeutic approaches with a high 
probability of success.

As heavily pretreated patients are most often the population 
recruited for Phase II trials, failure to identify a potentially 
useful agent could result from assessment against multi-drug 
resistant tumors. Thus, as we have demonstrated, an agent 
that shows marginal or no activity against recurrent tumors 
resistant to one or more drugs may have clear efficacy in 
advanced but previously untreated disease (4). Model systems 
by which such agents, or combinations of agents, can be identi-
fied, and their use optimized, are presented in this chapter. 
These models offer a unique resource for the development of 
new therapies for pediatric cancers, and offer the potential 
to identify biomarkers that may at some point allow patient 
stratification.

Tumor Xenograft Models

Selecting Models Based Upon Gene expression
To address some of the issues mentioned above, the NCI funded 
the Pediatric Preclinical Testing Program (PPTP), a consortium of 
groups with pediatric preclinical cancer models that could screen 
potential new agents and drug combinations (5, 6). Selection of 
suitable models for the PPTP screen involved solicitation of pedi-
atric xenograft and cell line models from laboratories in the U.S 
and elsewhere. Initial screening, using cDNA array technology 
(7), compared 95 models with 112 patient samples representing 
similar histologies. Tumor models that most closely clustered 
with the patient samples representing the same histology were 
selected. A second screen (Affymetrix U133 plus 2 arrays. CEL 
files available at: http://gccri.uthscsa.edu/pptp) further refined 
the models that were included in the final screening program 
(8). Sixty models representing most solid tumors and acute 
lymphoblastic leukemia were selected for primary and secondary 
screens. Of these 72% are from direct patient tumor transplants 
into mice (patient-derived xenografts, PDX), and 48% are from 
tumors at diagnosis. Twenty-seven cell lines were also character-
ized, and demographic data for all models are available at http://
gccri.uthscsa.edu/pptp.

Fidelity of DNA Copy Number Aberrations
Single nucleotide polymorphism (SNP) analysis demonstrated 
similar gains and losses of DNA copy number in model tumors 
as reported for the respective histotype (8), and revealed non-
random events that also were highly correlated with tumor type 
(8). All models were DNA fingerprinted using short tandem 
repeat (STR) assays, and profiles filed as a reference for determin-
ing fidelity of lines during passage. More recently, each model 
has been characterized using the Agilent’s SurePrint G3 Gene 
Expression microarray platform where four replicate tumors 
approximately 200–300 mm3 per tumor line were used to create 
a more robust expression profile dataset. Exome sequencing has 
been completed for approximately 90 cell line and xenograft 
models. Thus, it is now possible to test the sensitivity of a par-
ticular model based upon an “actionable” mutation (9, 10).

Long Non-Coding RNAs
The Agilent Sureprint G3 Gene Expression version 1 array is 
able to measure 34,809 unique mRNA variables, which is far 
more than previous Affymetrix platforms that currently domi-
nate the vast collection of arrays found in the Gene Expression 
Omnibus (GEO). A novel feature of this particular array is the 
measurement of long-intergenic non-coding RNAs (lincRNA). 
The lincRNAs provide an additional transcriptomic perspective 
that is valuable in understanding tumor biology (11) and may 
explain variation in response to drug treatment. In our analysis 
of pediatric solid tumors, we observed that lincRNA expression 
is able to discriminate cancer populations as accurately as protein 
coding gene expression. Such an observation is interesting and 
points to the relevance of lincRNA in studying malignant disease. 
Notwithstanding this interesting yet isolated molecular view, the 
real power of cancer genomic data lies in the ability to integrate 
different levels of molecular evidence to elucidate novel insights 
about cancer biology (12, 13).

establishing an In Vivo Screen

Response Criteria
One of the reasons that preclinical models have generally failed to 
predict clinical utility of agents is the different criteria for assess-
ing activity in the model compared to the clinic. For example, 
inhibition of tumor growth rate by 80% in the laboratory is 
regarded as biologically significant, whereas a similar effect in a 
patient is classified as progressive disease. For the PPTP screen, 
response criteria were “modeled” after clinical response criteria, 
and that an active agent should cause objective tumor regression. 
These criteria were based upon several preclinical studies that 
related regressions in mice to responses of agents in phase I clini-
cal trials. Notably regression of rhabdomyosarcoma xenografts 
to melphalan, topotecan, irinotecan, and camptothecin combi-
nations (14–17), as well as neuroblastoma xenografts (16, 18), 
correlated with activity in clinical trials (4, 19–22). Using these 
criteria to define activity, known clinically effective agents could 
be identified. Similarly, criteria for acute lymphoblastic leukemia 
models were developed that identify known clinically identified 
active agents (23). Preclinical models of medulloblastoma accu-
rately predicted the clinical activity of topotecan (24). Models 
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of Wilms tumor (nephroblastoma) also identified known active 
drugs (cyclophosphamide, vincristine) using these criteria as did 
Ewing sarcoma models (cyclophosphamide, cisplatin). Validation 
of other models is ongoing through a series of clinical trials being 
conducted through the Children’s Oncology Group (COG). The 
PPTP developed response criteria that resemble clinical response 
criteria, fully recognizing that both cytostatic as well as cytotoxic 
agents would be evaluated (6). Each tumor within a treatment 
group is given a score dependent on the response [progressive 
disease 1 (PD1)] where there is <50% growth inhibition scores 
0, whereas maintained complete response (25) scores 10. The 
group score is the median. This allows large datasets to be reduced 
to a “Heat Map” format, as shown in Figure  1A for standard 
cytotoxic agents screened against sarcoma models. The heat map 
format allows comparison of multiple drugs and shows that the 
objective response rate (ORR) for “known” actives (vincristine, 
cyclophosphamide, cisplatin, and topotecan) is approximately 
40%. Figure 1B shows a schematic of the median tumor response 
for each response classification.

evaluation of Standard Cytotoxic Agents

All solid tumor testing to date in the PPTP used subcutane-
ous models, whereas for acute lymphoblastic leukemias (ALL) 
disseminated models were used. This review will focus only 
on the responses of sarcomas. One way to validate preclinical 
models (“model” is defined as a panel of tumors having the same 
pathologic diagnosis) is to ascertain whether the model identifies 
agents of known utility against the disease in children. Standard 
agents such as vincristine showed activity (i.e., induced tumor 
regressions ≥50%) in RMS models but no activity against EWS 
xenografts. Cyclophosphamide showed activity in all three tumor 
types, whereas cisplatin was active in some EWS and RMS models. 
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FiGURe 1 | (A) Heat map representation of the standard cytotoxic drugs screened by the PPT. Xenograft tumor models are shown at the top, grouped by histotype. 
Agents tested are shown in the left column. (B) The graph shows a representation of tumor responses, and the designation of the response.

Topotecan also demonstrated activity against EWS and RMS 
models, with disease stabilization in two OS models. Thus, the 
models identify agents with known single agent activity in these 
pathologies. Overall, sarcoma models showed marked sensitivity 
to anti-mitotic agents with an ORR of 34.7% when tested in mice 
at the maximum tolerated dose/schedule (MTD). Temozolomide, 
used in combination treatment of relapse sarcoma, showed broad-
spectrum activity when tested at the MTD in mice. By contrast, 
a dose level in mice giving systemic exposure on the high side of 
that achievable in humans (66 mg/kg, Figure 1) showed activity 
only against Rh28 RMS that is deficient in MGMT required for 
repair of O6G adducts (26, 27).

The testing of experimental cytotoxic drugs against the OS, 
EWS, and RMS panels is presented in Figure 2 in “Heat Map” 
format (6). For eribulin (28) and abraxane (29), plasma exposures 
to these drugs in mice, at the doses tested, appear relevant for 
human exposure, whereas exposures to docetaxel and cabazitaxel 
substantially exceed those attainable in humans. As shown above, 
the models are responsive to anti-mitotic agents, perhaps reflect-
ing a high proliferative fraction in xenograft models. By contrast, 
the tubulin-binding agent, BAL101553, showed no significant 
antitumor activity against sarcoma models. Hence, tumor sensi-
tivity is not necessarily a consequence of increased proliferation.

The alkylating agent PR-104, a pre- pro-drug activated 
under hypoxia and by the aldoketo reductase AKR3C3 (30, 31), 
showed significant broad-spectrum activity when tested at the 
mouse maximum tolerated dose/schedule (MTD). However, 
at dose levels in mice that approximate human drug exposure, 
PR-104 was not active against solid tumor xenograft models. The 
non-camptothecin topoisomerase I inhibitor, GENZ644282, 
was active against SK-NEP-1 Ewing sarcoma, whereas topotecan 
was not. Other cytotoxic agents having novel mechanisms of 
action [aplidin, KPT-330 (selinexor, a CRM1/XPO1 inhibitor), 
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CX-5461 (RNA pol I inhibitor)] and the PARP1 inhibitor, BMN-
673, showed little or no antitumor activity against sarcoma 
models.

evaluation of Signaling inhibitors

Shown in Figure 3 are testing results for 25 “signaling” inhibi-
tors. These include classical inhibitors of the IGF–PI3K–TOR 
pathway including antibodies and drugs targeting IGF-1R 
(19D12, IMC-A12, BMS-754807), and small molecule drugs 
that selectively inhibit PI3K (XL-147), AKT (MK-2206), TOR 
(rapamycin, AZD8055, INK128), MEK (AZD6244) as well as 
multikinase inhibitors (sorafenib, SU11248, cabozantinib), 
and inhibitors of mitotic kinases (MLN8237, BI6727). In this 
dataset, there are 357 tumor/drug evaluations. The ORR was 
5.6% (20/357 tests). Of these, inhibitors of mitotic kinases 
[PLK1 (BI6727), Aurora kinase (MLN8237)], and the kinesin 
inhibitor (GSK923295A) showed the greatest activity, consist-
ent with the activity of other “non-signaling” anti-mitotic 
drugs (vincristine, eribulin). Excluding the responses to 

mitotic inhibitors in the “signaling” drug set, the ORR was a 
dismal 2.4% (9/291 tests).

Critical evaluation of PPTP Models

The PPTP used exclusively xenograft models, hence these preclini-
cal studies are useful for identifying agents that work predomi-
nantly via direct action on tumor cells. Xenograft models are, by 
definition, not suitable for evaluating immune-regulators, and the 
stromal elements are mouse. Despite these obvious limitations, 
these sarcoma xenografts identify each of the cytotoxic drugs 
known to be active, and have identified novel agents and combi-
nations that have advanced to clinical evaluation through COG. 
The ORR to signaling inhibitors is disappointingly low (2.4%), 
which is of concern. However, there is reason to consider that 
these results are going to be representative of the clinical activity 
of signaling agents when given individually. For example, notable 
exceptions are the response to selumetinib (MEK inhibitor) in 
an astrocytoma with a BRAFV600E mutation (9, 32), the complete 
response to dasatinib in the Ph+ ALL-4 xenograft (33), expected 
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based on the preclinical and clinical activity for dasatinib against 
Bcr-Abl expressing leukemias and responses in Ewing sarcoma 
and other sarcomas to IGF-1 receptor targeting antibodies (34, 
35). Although PPTP did not test crizotinib, ALK-mutant or 
ALK-amplified neuroblastoma xenografts included in the PPTP 
neuroblastoma panel were responsive to this agent (36, 37). These 
results suggest that subcutaneous xenografts can indeed identify 
both cytotoxic drugs and signaling inhibitors that have clinical 
utility against the appropriate cancers in children, and hence 
are an appropriate primary screening tool. However, if these 
preclinical results are relevant to clinical responses, it is clear that 
developing agents of this class will yield a very low response rate, 
and that matching inhibitor to patient tumor characteristics will 
be required.

From the PPTP experience, the major factor that prevents 
accurate translation of preclinical data to the clinic is the differ-
ence in drug exposures in mice compared to those achieved in 
children (38). If differential host tolerance is normalized, then 
the predictive value of the preclinical data appears to be good. 
Obviously, there will be exceptions. For example, drug access to 
brain may limit the use of a drug shown to be effective against 
brain tumors when grown subcutaneously in mice. However, 
secondary orthotopic models can relatively easily identify these 
“false positive” results.

Another issue is the site of growth – heterotopic (subcutaneous) 
or orthotopic? Clearly, the subcutaneous sarcoma models identify 
known active agents, and accurately predict for clinical activity 
(melphalan, camptothecins, etc.), thus fulfill the basic function 
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as set out by the PPTP. Whether drug activity dramatically differs 
in orthotopic models requires rigorous experimentation,  and 
use of endpoints that can be equated between subcutaneous 
and orthotopic models. One problem in comparing heterotopic 
and orthotopic models is that tumor volume at the start of therapy 
is often significantly smaller in orthotopic models, hence these 
tend to be more sensitive by virtue of size (drug access?).

Mining for Biomarkers of Drug Response

expression Profiling
As noted by the NCI-EORTC Working Group on Cancer 
Diagnostics, the number of markers that have emerged as 
clinically useful is very small. One of the problems has been small 
datasets, and initial promising results have not been validated in 
larger trials (39, 40). Fully realizing the limitation of relatively few 
preclinical models (~50) and within a tumor type very few models 
(5–10), thus, at best, our correlations derived from expression 
data and response data are hypothesis generating. Gene expres-
sion profiles have been established for both cell line panels and 
the xenograft models, as well as SNP profiles. Thus, potentially, 
sensitivity in vitro can be correlated with either expression pat-
terns or DNA copy number variation (CNV). Such profiles could 
then be tested for predictive value for response against the in vivo 
cancer models. Alternatively, expression or CNV profiles that 
correlate with sensitivity or resistance to an agent in the animal 
models may predict those patients who may benefit from this 
treatment. However, although data may be obtained on almost 
50 models, it is best to consider, at this time, such data as hypoth-
esis generating. For the analyses presented, we have used data 
from all models, and not just from soft tissue and bony sarcomas, 
as there are too few models for which data are available.

As was illustrated by Lander, the greatest challenge to reveal-
ing the fruit of nature by omic technology is in our ability to 
succinctly probe and dissect millions of read outs within the 
global scope of a sparse random realization (22). In general, the 
dimensionality digestion of genome-wide mRNA is complex 
in two-sample experiments and becomes even more so when 
considering large cohorts of diverse samples. For example, in 
preclinical drug evaluation, the biological diversity of samples 
within sensitive or resistant xenografts is likely heterogeneous 
and not sampled uniformly.
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equation Set 1: Measures of mRNA Association
Classically, the mRNA difference between two classes is evaluated 
by the so-called signal-to-noise or simply stated as the difference 

between means relative to the variances, see equation 1.1, where 
x is the log distribution of class A mRNA and y is the log dis-
tribution of class B mRNA, respectively. In this scenario, two 
classes are statistically different if the mean separation is large 
relative to the variance within each class, which is typically 
assessed by permuting the class labels several times to estimate 
an empirical probability of observing the realized statistic (24) 
or more elegantly by bootstrapping if sample size permits. Such 
an approach is useful when considering treatment-condition 
effects or lineage differences in biological experiments. However, 
when considering a diverse set of tumors whose preclinical drug 
outcome does not necessarily follow lineage trends, there is a 
lack of statistical difference between classes after compensating 
for multiple hypothesis testing. Additionally, a class label is likely 
not perfect to discriminate and to guide biomarker discovery 
unless the drug would tailor to specific cancer disease character-
istics. Furthermore, on a genome-wide scale we have found the 
mapping between mRNA and drug sensitivity to be problematic 
unless a continuous random variable is considered.

In cancer cell sensitivity modeling with microarrays, the 
linear relationship between basal mRNA measurements and 
drug sensitivity is a simplistic analytical approach to generate 
new hypotheses about a drug’s chemical biology (41–43). From 
a statistical perspective, the case of linearity is argued because 
microarray model inputs and sensitivity outputs are typically 
normally distributed and those examples that do not follow a 
normal trend can be discarded as outliers. Whether or not our 
variables are specifically tied to the pharmacodynamic action 
is an afterthought. Rather, large-scale microarray data mining 
is able to identify a set of concerted changes that are associated 
with drug sensitivity. The dissection of the molecular pattern with 
regard to drug sensitivity is not possible unless additional experi-
ments are performed; for example, RNA interference or preclini-
cal xenograft validation. As an alternative to experimentation, 
the molecular pattern or “hits” discovered are queried against 
public databases that integrate several molecular data levels to 
attest whether or not the pattern is associated with, for example, 
survival, or a specific cancer population. Moreover, any approach 
in machine learning or predictive inference involves training and 
validation using statistically independent realizations of a given 
process. Cross-validation, a statistical technique to estimate pre-
diction error, is absolutely necessary when selecting biomarkers 
but may still reveal poor predictors because such few samples are 
available or the underlying data are not representative. However, 
the coupling of cellular screening with preclinical xenograft stud-
ies may provide a reliable platform to identify robust biomarkers 
or de-prioritize the significance of cellular biomarkers. Those 
molecular features that are predictive in both model systems are 
likely indicative of sensitivity.

The dependent variable choice can vary by drug but usually 
involves the relative half maximal inhibitory concentration 
(rIC50) in vitro or relative tumor regression in vivo. In order to 
estimate linear coefficients between rIC50 and mRNA, we use a 
high-dimensional method introduced by Zou and Hastie coined 
the elastic net (44). The elastic net is a regression optimization 
that considers all probable model fits efficiently, which per-
forms variable or model selection in a continuous rather than 
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one-model-at-a-time discrete manner; those variables not influ-
ential in predicting y have linear coefficients, i.e., β’s, set to zero.
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equation Set 2: elastic Net Regression
The objective function and criteria for guiding the process are 
shown in equation set 2 and is easily executed using a software 
implementation provided by the Matlab® Statistics Toolbox. 
As a custom pre-processing step, only genes with a significant 
univariate correlation are considered initial inputs to the elastic 
net algorithm. The genes identified by univariate correlation are 
an associated subset of all possible genomic correlates and are 
dictated by an arbitrary local type I error rate that vastly under-
estimates the realized type I error. Whether or not we incur false 
positives is of no concern, as these will be removed by the elastic 
net regression. The α parameter, shown in equation 2.2, is able 
to pool several correlated features and eliminate those that are 
not informative. The α that results in the lowest mean squared 
error, based on 10-fold cross-validation, is selected as the best 
model and hence most predictive gene network. A critical and 
sometimes overlooked step in predictive model building is the 
correct utilization of cross-validation, as illustrated well by 
Hastie, Tibshirani, and Friedman (45). This includes any initial 
gene selection steps being in the cross-validated estimate of 
prediction error. In our approach, we pre-process the gene list by 
removing any genes that are not significantly correlated and this 
step is included in the cross-validated error estimate for different 
α values. On the other hand, our global pre-processing steps that 
exclude any information about our target function are performed 
prior to any modeling, which include z-score transformation of 
inputs and outputs as well as removal of training samples whose 
output is not consistent with a normal probability curve.

example, Anti-Mitotic Drugs for Biomarker 
Application in PPTP
The drugs, MLN8237 (alisertib) (46, 47) and BI6726 (volasertib) 
(48), are both somewhat effective anti-mitotic targeted therapies 
evaluated by the PPTP that inhibit Aurora kinase A (AURKA) and 
Polo-like kinase 1, respectively. The cellular sensitivity of these 
kinase inhibitors is quite striking and showed cell growth inhibi-
tion across most pediatric cell lines screened. The drugs, eribulin 
and vincristine, are both highly effective agents that target micro-
tubule dynamics in general. These two drugs were shown to be 
very active in the PPTP xenograft panel. Vincristine is a “known” 
active agent being used in many “standard-of-care” protocols, 
whereas eribulin has just entered phase I testing in children as 
a cancer therapeutic. Both drugs were potent cytotoxics in vitro 
with a median rIC50 concentration of 0.224 and 0.2 nM, respec-
tively. These drugs, in the examples that follow, show a range of 
predictability between in vitro and in vivo systems. Additionally, 

we are able to hypothesize global predictors of agents that target 
microtubule dynamics by comparing signatures (47, 49, 50).

In these examples, we are able to show whether or not in vitro 
drug sensitivity models are valid by applying receiver-operating 
characteristic (ROC) curve analysis to known xenograft out-
comes. For these analyses, we used a binary system dividing 
responses into disease progression [progress disease (PD)] or 
progression-free disease that included objective regression and 
stable disease (MCR, CR, PR, SD), and model predictions. As 
we noted before, the in vitro prediction is a continuous random 
variable that summarizes expected rIC50, y, given changes in 
mRNA, x. That is, a single xenograft has a composite score 
defined by the linear combination of mRNA features derived 
in vitro. In general, discriminatory power is defined as the trade 
off between sensitivity and specificity, respectively. A ROC curve 
measures the discriminatory power of a score when applying 
different score thresholds rather than measure performance at a 
single arbitrary cut off, i.e., positive predicted values are sensi-
tive while negative predicted values are resistant, and is reported 
overall as the area under the ROC curve (AUC); for more detail, 
see Ref. (51).

vincristine
To “calibrate” the PPTP tumor panels, we evaluated the standard 
chemotherapeutic agent, vincristine, an agent included in the 
backbone of most treatment regimens for solid tumors and acute 
lymphoblastic leukemia. Vincristine binds to tubulin dimers, the 
subunits of microtubules, inhibiting assembly of microtubule 
structures. Disruption of the microtubules prevents formation 
of the mitotic spindle required to segregate chromosomes and 
arrests mitosis in metaphase. Although the basis for selectivity 
for tumor vs. normal cells is not fully understood, vincristine is 
a component of most curative therapies used for treatment of 
pediatric cancers, although the proportion of patients who benefit 
from vincristine may be 30–50%. Thus, identifying biomarkers 
for response may assist in identifying patients whose tumors 
would be sensitive to this drug. As shown in Figure 1, vincristine 
was evaluated against five Ewing sarcomas (SK-NEP-1, EW5, 
EW8, TC-71, and CHLA258), six alveolar rhabdomyosarcomas 
(Rh10, Rh28, Rh30, Rh30R, Rh41, and Rh65), two embryonal 
rhabdomyosarcomas (Rh18 and Rh36), and six OSs (OS-1, OS-2, 
OS-9, OS-17, OS-31, and OS-33). Objective regressions were 
observed in four rhabdomyosarcoma models and two OS models. 
Additional regressions were observed in Wilms tumor, and all 
eight ALL models (not shown).

Limited single agent data on vincristine in OS are available 
from the 1960s (19, 20). Several subsequent single arm and ran-
domized trials combining vincristine with other conventional 
agents failed to clearly demonstrate a role for vincristine in neo-
adjuvant chemotherapy. There have been few recent clinical trials 
of microtubule-targeted therapies in OS (reviewed in (52)). In an 
Italian pediatric solid tumor phase 2 study, a response to vinorel-
bine was observed in one of five patients with OSs (53). However, 
OS is not generally considered to be sensitive to anti-mitotic 
agents. As the proliferative fraction of xenografts is greater than 
that in the patient tumors, it is probable that anti-mitotic agents 
show as more active in the models that they are in the clinic.
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The elastic net regression algorithm selected 188 mRNA vari-
ables, 35 of which were lincRNAs, based upon the log rIC50 of 22 
PPTP cell lines. The in vitro linear model with these 188 mRNA 
inputs predicted 44 solid tumor xenograft outcomes (26 PD, 1 SD, 
3 PR, 2 CR, and 12 MCR) very well with an area under the curve of 
0.88. According to Ingenuity Pathway Analysis (IPA) (Ingenuity® 
Systems, www.ingenuity.com), MAPK9, MARK2, NEFL, PVRL3, 
and SHC1 biomarkers are involved in microtubule dynamics. 
Interestingly, MARK2, a sensitive correlate, is important for 
microtubule stability (41) and has been shown to slow micro-
tubule growth upon in vitro knockdown (54). Potentially, tumor 
cells that are rich with MARK2 indicate that they are more reliant 
on efficient microtubule dynamics to proliferate, and hence, are 
more reliably targeted by vincristine.

Of note, our analysis did not identify ABCB1 as a significant 
predictor, whereas there is an extensive literature that attests to 
vincristine being transported out of cells via this efflux pump. A 
primary caveat to our analysis approach is that we initially filter 
out genomic correlates at an arbitrarily chosen local type I error 
rate. Additionally, the linear regression approach dictates that the 
best predictors will be normally distributed; as this will produce 
the lowest mean squared error, given that a linear model is essen-
tially predicting the expected value. In total, there were 1,604 
possible genomic correlates when deriving our linear regression 
model. ABCB1 was not even considered because it was weakly 
correlated relative to other genomic correlates, and hence, did 
not pass our local type I error threshold. However, upon visual 
inspection of ABCB1 DNA copy number and mRNA across the 
panel of cells and xenografts tested, we see that a pattern does 
exist but is non-linear and ABCB1 mRNA is, in general, not 
normally distributed. This particular pattern is a good example 
of how a linear regression approach, robust as it may be, will 
overlook “interesting” dimensions whose activity is limited to 
only a subset of samples.

Vincristine is an established drug that is usually combined 
with actinomycin D, doxorubicin, or cyclophosphamide and has 
demonstrated success in pediatric cancer patients. Our signature 
may perhaps identify patients that have an increased likelihood 
of responding to vincristine treatment alone. Furthermore, the 
excellent validation performance and significance of discovered 
biomarkers prioritize this signature for additional validation 
and potential for clinical utilization as a companion diagnostic 
marker when treating with vincristine alone.

eribulin
Eribulin is probably the most active agent evaluated in the PPTP 
screen, causing tumor regressions of 18 of 35 (51%) of solid 
tumor models and all eight acute lymphoblastic leukemia models, 
Figure 4 (28). Of note, drug exposures in mice causing regres-
sions of tumors appear similar to patient exposures reported 
from adult clinical trials. Eribulin is a fully synthetic macrocyclic 
ketone analog of halichondrin B, a natural product derived from 
the marine sponge Halichondria okadai (55, 56). Halichondrin B 
and eribulin are capable of inducing irreversible mitotic blockade 
and apoptosis by inhibiting microtubule dynamic instability 
(57). Dynamic instability applies to the growth and shortening of 
microtubules required for mitosis. Eribulin inhibits microtubule 

growth by binding with high affinity at the plus ends (58). The 
mechanism of inhibition of microtubule dynamic instability by 
eribulin is distinctive from that of other tubulin-binding anti-
mitotic agents in that eribulin suppresses the growth parameters 
at microtubule plus ends without affecting microtubule shorten-
ing parameters (58, 59).

Analysis of the eribulin data with approximately equal num-
bers of responding and non-responding solid tumor xenograft 
models, thus provided an interesting test of the value of the 
“omics” database. The elastic net regression algorithm selected 
139 mRNA variables, 36 of which were lincRNAs, based upon the 
log rIC50 of 22 PPTP cell lines. The in vitro linear model with these 
139 mRNA inputs predicted 25 solid tumor xenograft outcomes 
(8 PD, 2 SD, 1 PR, 4 CR, and 10 MCR,) quite well with an area 
under the ROC curve of 0.7. According to IPA, ATXN2, BBS10, 
DLG4, EFNB2, KIF18A, NUSAP1, and PTPRM biomarkers are 
involved in microtubule dynamics. Interestingly, NUSAP1, a sen-
sitive correlate, is reportedly involved in several cellular processes 
relevant to eribulin mechanism that covers segregation of sister 
chromatids, condensation of mitotic chromosomes, mitosis, 
bundling of microtubules, and aberration of mitotic spindle 
(60) as well as morphology of mitotic spindle (61). KIF18A, 
another sensitive correlate, is also quite interesting. Kinesin 
family member 18A is reportedly involved in alignment and 
congression of chromosomes (62) as well as de-polymerization 
of microtubules (63). Another noteworthy biomarker is ABCB1, 
a protein that encodes a drug transporter MDR1b (also known 
as P-glycoprotein). ABCB1 transports a variety of hydrophobic 
drugs, including eribulin (64). Furthermore, the decent validation 
performance and significant relevance of discovered biomarkers 
prioritizes this signature for additional validation and potential 
clinical utilization as a companion diagnostic marker in the treat-
ment of pediatric cancer patients.

Alisertib (MLN8237): An inhibitor of Aurora 
Kinase A (AURKA)
The Aurora serine/threonine protein kinases are a family of 
three kinases (Aurora A–C) with different tissue and temporal 
expression profiles. These enzymes play key roles in mitosis and 
meiosis, defects in which can lead to abnormal mitotic events and 
induction of programed cell death (apoptosis) (65). AURKA is 
essential, as is highlighted by the fact that genetically engineered 
null mice are embryonic lethal (dying at the blastocyst stage) (66). 
AURKA activity is also required for centrosome duplication and 
separation, microtubule-kinetochore attachment, spindle check-
point, cytokinesis (67, 68), the G2/M transition (69), and phos-
phorylation of Polo-like kinase 1 (70). Furthermore, AURKA has 
been implicated as an oncogenic driver in human cancers (71). 
AURKA has been found to be over-expressed in cancer cells 
and the AURKA gene locus is amplified in selected adult tumors 
(72). When tested by the PPTP at the maximum tolerated dose/
schedule (MTD), alisertib exhibited good activity, notably against 
neuroblastoma and ALL models (46), Figure 5.

Analysis of this dataset using the elastic net regression algorithm 
selected 69 mRNA variables, 24 of which were lincRNAs, based 
upon the log rIC50 of 22 PPTP cell lines. Despite a strong training 
validation, the in vitro linear model with these 69 mRNA inputs 
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predicted 39 xenograft outcomes (20 PD, 4 SD, 1 PR, 4 CR, and 10 
MCR) poorly with an area under the curve of 0.48 or practically 
random discrimination. According to IPA, there were no bio-
markers that had a documented interaction with the drugs target, 
AURKA. Furthermore, the poor validation performance and insig-
nificance of discovered biomarkers with respect to the molecular 
target de-prioritizes any additional validation or clinical utilization 
of this signature. In this example and given the data at-hand, the 
spectrum of cellular sensitivity observed is not translatable to 
preclinical xenograft models with respect to messenger-RNA.

AURKA Copy Number
In contrast to expression profiling, gene copy number analysis 
for AURKA appears to support an inverse relationship between 
AURKA expression and sensitivity. Increased copy number was 
present 14 of the solid tumors. Loss of copy number was detected 
in seven solid tumors and one leukemia model. Furthermore, 
the correlation between gene expression variation and CNV was 
strong, placing this locus in the top 1.6% of all genes tested. While 
there is no absolute relationship between CNV and tumor sensitiv-
ity, of the 14 solid tumors with increased copy number, there were 
only two that showed sensitivity to alisertib. By contrast, five of the 
eight models demonstrating decreased copy number were sensitive 
models to alisertib (46). It is of note that at drug exposures achieved 
in patients, only the most sensitive preclinical models (ALL) are 
likely to respond to treatment. However, several rhabdoid tumor 
models were relatively sensitive to alisertib, and responses were 
observed in several patients with CNS rhabdoid tumors (73).

volasertib (Bi6727): An inhibitor of Polo-Like 
Kinase 1 (PLK1)
In vitro volasertib demonstrated cytotoxic activity (median rIC50 
value of 14.1 nM, range 6.0–135 nM), and at the MTD-induced 
significant differences in EFS in 19 of 32 (59%) of the evaluable 
solid tumor xenografts and in two of four of the evaluable ALL 
xenografts. Objective responses (CR’s) were observed for 4 of 
32 solid tumors (two neuroblastoma, one glioblastoma, and 
one rhabdomyosarcoma) and one of four ALL xenografts (48). 
Volasertib is a dihydropteridinone (Bl 6727) that targets the 
Polo-like kinase (Plk) family of proteins in an ATP-competitive 
manner at low nanomolar concentrations and thereby induces 
mitotic arrest and apoptosis (74). Plk1 is a serine/threonine-
specific kinase that regulates multiple steps in mitosis and that is 
essential for progression through mitosis (75). Numerous lines of 
evidence suggest that Plk1 is oncogenic through driving cell cycle 
progression, and overexpression of the gene transforms NIH 3T3 
cells (76). Plk1 is highly expressed in multiple cancers (75, 77, 78), 
and in some malignancies expression of Plk1 may be prognostic 
(77). Plk1 is over-expressed in several childhood cancers and cell 
lines. RNA interference and small molecule inhibitor screens 
suggest that Plk1 may be a relevant therapeutic target in a variety 
of pediatric malignancies including neuroblastoma, rhabdomyo-
sarcoma, and OS (79–81).

From the in vitro sensitivity dataset, the elastic net regression 
algorithm selected 121 mRNA variables, 17 of which were lincR-
NAs, based upon the log rIC50 of 22 PPTP cell lines. The in vitro 
linear model with these 121 mRNA inputs predicted 36 xenograft 
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outcomes (28 PD, 1 SD, 1 PR, and 6 CR) quite well with an area 
under the curve of 0.79. According to IPA, PKMYT1, DNHD1, 
KAT7, DDX39B, RASGRF1, and MAD2L1 biomarkers report-
edly have interactions with the drug target, PLK1. Specifically, 
KAT7 (82), DNHD1 (83), DDX39B (84), and RASGRF1 (85) are 
known to have protein–protein interactions with PLK1 while 
mutant PLK1 (51–356 AA deletion) increases MAD2L1 protein 
localization to kinetochores from misguided chromosomes 
of metaphase cells (86) and PLK1 protein increases inhibition 
of active PKMYT1 (87) as well as increase phosphorylation of 
a PKMYT1 protein fragment (88). MAD2L1 and PKMYT1, 
both negatively correlated with rIC50, may point to PLK1 targets 
over-expressed when PLK1 is mutated. Interestingly, PKMYT1 
is a protein kinase that plays an important role in mitosis by 
decreasing activation of CDK1 (89, 90) while increasing phos-
phorylation of CDK1 (89–91). The elevated PKMYT1 mRNA in 
sensitive cells is possibly indicating a cellular compensation for 
over active mitotic phase of the cell cycle due to mutated PLK1, 
and hence, these cell populations are ideal targets for PLK1 inhi-
bition by BI6727. Furthermore, the good validation performance 
and significant relevance of discovered biomarkers prioritize this 
signature for additional validation. Recently, PLK1 was reported 
to phosphorylate PAX3-FOXO1 in alveolar rhabdomyosarcoma, 
and inhibition triggered tumor regressions (92).

Glembatumumab vedotin
Glembatumumab vedotin is an antibody-drug conjugate (ADC) 
that combines an anti-GPNMB antibody with the anti-mitotic 
agent monomethyl auristatin E (vedotin) (93). When internal-
ized, vedotin is released and results in cell cycle arrest and cell 
death (94). Glembatumumab vedotin showed in vitro cytotoxicity 

that was related to GPNMB expression, and it induced complete 
regressions in GPNMB-expressing melanoma and breast cancer 
xenografts (93, 95, 96).

The transmembrane glycoprotein NMB (GPNMB or osteo-
activin), is primarily expressed in intracellular compartments 
(e.g., lysosomes and melanosomes) in non-malignant cell such 
as melanocytes, osteoclasts, and osteoblasts (97–99). GPNMB is 
also expressed on monocytes and dendritic cells, and its expres-
sion on the latter has been proposed to play a role in the inhibition 
of T-cell activation by antigen-presenting cells (APC) (100–102). 
Membrane GPNMP is over-expressed in hepatocellular car-
cinoma (103), breast cancer (95, 104), glioblastoma (105), and 
melanoma (93, 98), making it a reasonable candidate for targeted 
therapeutics. As shown in Figure 4, GPNMB is expressed highly 
in several OS xenografts [and also in one alveolar soft part sar-
coma (ASPS) examined]. In a limited screen using models with 
high-level expression glembatumumab vedotin demonstrated 
intermediate to high activity in five of six OS xenografts, with a 
maintained complete response in three of the lines (52). In each 
of the lines that demonstrated a maintained complete response to 
glembatumumab vedotin (OS-2, OS-17, and OS-33), there is 2+ to 
3+ staining for GPNMB by immunohistochemistry, although the 
percentage of cells positive is as low as 5% of tumor cells for one 
line. These observations support the position that while GPNMB 
expression may be necessary for tumor regression to glembatu-
mumab vedotin treatment, it is not sufficient for response to this 
agent (52). The value of the expression data is further emphasized 
by searching publically available databases. For example, the single 
ASPS xenograft model expressed very high levels of GPNMB. 
Reference to limited patient data available, confirms high-level 
expression in all samples, suggesting that GPNMB-directed 
therapy may be valuable. However, it is recognized that ASPS is a 
slow-growing indolent tumor (as is the xenograft), hence whether 
an anti-mitotic “warhead” on glembatumumab would be effective 
would have to be explored in preclinical models.

Seneca valley virus (NTX-010)
One of the agents evaluated through the PPTP was the replication 
competent picornavirus, Seneca Valley Virus (NTX-010) (106). 
NTX-010 is a newly discovered, naturally occurring picornavirus 
being developed as an oncolytic virus for human cancers. In a 
cell line screen of NTX-010, approximately half of cancer cells 
with one or more neuroendocrine properties were permissive 
and allowed selective infection (107). Notably, the most sensitive 
cell line, IMR-32, was derived from a childhood neuroblastoma. 
By contrast, only 3 of 80 non-endocrine cells were permissive to 
virus replication. The majority of non-permissive cancer cell lines 
do not bind and/or internalize NTX-010, suggesting that binding 
and entry through a productive internalization pathway is the 
primary determinant of viral tropism for neuroendocrine tumor 
cells. Neuroblastoma, Ewing sarcoma, as well as medulloblastoma 
and alveolar rhabdomyosarcoma demonstrate neuroendocrine 
markers. In  vitro NTX-010 demonstrated a marked cytotoxic 
effect in a subset of the cell lines from the neuroblastoma, Ewing 
sarcoma, and rhabdomyosarcoma panels. In  vivo the most 
consistent activity was observed for the rhabdomyosarcoma 
and the neuroblastoma panels, with all four of the alveolar 
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rhabdomyosarcoma xenografts and four of five neuroblastoma 
xenografts achieving CR or maintained CR (106).

An overlooked aspect of our analytical approach is normal-
ity of rIC50. As mentioned previously, linear correlation and 
regression methods require that the response variable, rIC50, 
be normally distributed. NTX-010 is the only agent considered 
herein that exhibits a non-normal rIC50 profile. On a natural scale, 
the rIC50 profile appears to be discrete while on a logarithmic 
scale we observe normality for sensitive lines, i.e., any cell growth 
inhibition within dose range, whereas resistant lines, i.e., no inhi-
bition at maximum dose, are saturated at the highest dose tested. 
Furthermore, measures of linear correlation in this context are 
likely highlighting differential sensitivity within sensitive popula-
tion but are likely informative nonetheless.

The elastic net regression algorithm selected only 29 mRNA 
variables, two being lincRNAs, based upon the log rIC50 of 22 
PPTP cell lines. The in vitro linear model did well when discrimi-
nating 22 xenograft outcomes (10 PD, 2 PR, 4 CR, and 6 MCR) 
given an area under the curve of 0.71. A notable mRNA feature 
is IFIH1 or interferon induced with helicase domain 1. IFIH1 is 
a picornavirus surveillance protein in innate antiviral response 
(108, 109). We speculate that a low level of IFIH1 is a marker of 
permissive replication in tumor cells. Taken together, high-level 
expression of CD56 (NCAM1) and low expression of IFIH1 accu-
rately identifies 24 of 26 cell lines and xenografts as being sensitive 
to NTX-010 (106), as shown in the boxed area of Figure 5.

We further interrogated both in vitro and in vivo data to deter-
mine if other IFIH1-like factors are associated with sensitivity. A 
genome-wide unpaired t-test assuming that unequal population 
variances was computed between responders and non-respond-
ers where responders were sensitive cells or xenografts with 
maintained complete response (25) and non-responders were 
resistant cells or xenograft with progressive disease 1 (PD1); 
multiple hypothesis testing was corrected by Storey q-value 
(110) and all computational analyses were performed with 
Matlab Bioinformatics and Statistics toolboxes. As biologists and 
also from a practical statistical perspective, we search to see if 
discovered gene changes are enriched in a meaningful biological 
category. The hypergeometric probability distribution is appro-
priate to calculate the chance of observing category overlap at 
random and is utilized in, for example, the Broad Institute 
Molecular Signature Database (111). An insightful method to 
then prioritize categories is to integrate domain knowledge by 
scoring sets according to gene change consistency with literature 
findings and is heavily utilized in, for example, IPA.

Overall, we detected 692 Agilent mRNA variables when 
controlling a false discovery rate of 5%, i.e., Storey q-value <0.05. 
From IPA, we were able to infer by right-tailed Fisher’s exact test 
that discovered differential mRNA is predictive of several inter-
esting functional categories related to virus attenuation as well as 
detecting highly elevated NCAM1, a receptor already speculated 
to be involved in NTX-010 cell entry (106). Notable categories of 
decreased activity in responders are infiltration by APC, antiviral 
response of cells, natural killer (NK) cell homeostasis, and activa-
tion of NK cells while a notable category of increased activity in 
responders is viral replication (vesicular stomatitis virus, replica-
tion of RNA virus, Murine herpesvirus 4).

The landscape of gene–gene correlations genome-wide that 
exists naturally either due to evolutionary redundancy or other 
factors is problematic when searching for mRNA correlates that 
are global and not confined to whatever cell lines happen to be 
in the training set. Interestingly, a NTX-010 lincRNA correlate 
(chr1:213453777–213480277; hg19) was upstream of RPS6KC1 
and a gene–gene mRNA correlation was significant between these 
two. This observation points to the inherit difficulty of modeling 
basal mRNA and drug response. In this particular example, we 
can infer from genomic proximity that this non-coding mRNA 
feature is likely acting as a promoter of RPS6KC1. RPS6KC1, a 
candidate oncogene in endometrial cancer (112), is a meaningful 
drug–gene correlation given observations that NTX-010 tends to 
show response in neuroendocrine tumors (113). By establishing 
this “link” we were drawn to a significant drug–gene correlation 
that was de-prioritized by the elastic net regression algorithm. 
However, for the vast majority of proteins that are modified epi-
genetically or in distant trans interactions, such direct hypotheses 
are not easily formulated.

Bioinformatics Tool Development and 
Availability

As new cancer genomic datasets come online, there is a need 
to rapidly develop tools, portal interfaces, and standards of 
analysis that robustly turn multiple sourced molecular data into 
an insightful axis of molecular relationships. The basic cancer 
dataset is a matrix of samples and genes with entries correspond-
ing to a molecular readout such as gene expression or DNA 
copy number. A standard set of statistical methods adopted in 
the bioinformatics community for analyzing such a matrix are 
hierarchical cluster analysis (114), gene set enrichment analysis 
(115), sample randomization statistics (114–116), regression 
analysis (41, 42, 44), and dimensionality reduction methods 
(117–119). Additionally, most software tools for analyzing cancer 
genomic data (120–123) are made publicly available at no cost to 
non-profits with the caveat that there is no free lunch; prospective 
users typically agree to terms of conditions that include limited 
liability on the part of the tool creator.

Critical evaluation of Bioinformatics 
Analysis of PPTP Data

The obvious limitation of the bioinformatics analyses presented 
here is the relatively small sample size used to identify correlates. 
We have derived sensitivity data and, based upon expression 
profile differences between cell lines, have attempted to predict 
sensitivity to drugs of xenograft models. In vitro, cell lines from 
different tumor types (including leukemias) have been used, 
thus potentially biasing analyses to profiles exhibited by leuke-
mia cells that tend to be more sensitive to many of the agents 
tested. To make correlations between in  vitro sensitivity and 
in vivo models, we have used only the solid and brain tumors, 
and have excluded the leukemia models, as these have very dif-
ferent expression profiles (8). Thus, it is likely that analyses may 
be biased when there is a preponderance of one type of tumor 
in the sensitive or resistant cohort. Additional weaknesses 
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include a failure to integrate exome mutation analysis, and 
changes in expression profiles subsequent to drug treatment 
(i.e., dynamic profiling). Despite these obvious weaknesses, the 
analyses do focus on specific genes/pathways that can be tested 
prospectively.

Future Directions

Within the PPTP consortium, approximately 150 patient-derived 
xenograft models have been established. Most have been char-
acterized by expression profiling and exome sequencing, hence 
a valuable omics database has been created against which new 
agents can be profiled. However, it is clear that to accurately 
represent molecular subtypes of different cancers additional 
models need to be established. Several novel agents identified in 
the PPTP screen are in phase I/II testing for treatment of child-
hood cancer. For sarcomas, the models identify some anti-mitotic 
agents as being highly active. Whether this reflects an increased 
rate of proliferation in models compared to patient tumor, or is 
revealing the Achilles Heel of these cancers, is open to debate. 
The activity of signaling inhibitors against the xenograft models 
has been somewhat disappointing, but this may reflect the lack 
of activity in human cancers overall. Certainly, in models with 
“actionable” mutations, specific inhibitors show impressive activ-
ity. However, it is clear that development of this type of targeted 
therapeutic must differ from the paradigm used for developing 
cytotoxic agents.

As was mentioned previously, the real power of cancer genom-
ics data lies in the ability to integrate multiple molecular data 
sources. Open web portals that provide access to publicly avail-
able multi-source cancer genomic data, largely from the Tumor 
Cancer Genome Atlas (TCGA), are advancing our understanding 
of cancer genomes (124) and their susceptibility to anti-cancer 
agents. Literally within a click or two an investigator can begin 
to hypothesize how their gene of interest or empirical pathway 
is active in specific cancer patient populations or associated with 
cancer cell drug sensitivity or resistance. Here, we have discussed 
the value and limitations of deriving relationships between in vitro 
cell line sensitivity and in vivo responsiveness to several agents. 
Potentially, identification of synergistic combinations in vitro can 
be tested in xenograft models to develop rational combination 
therapies. The examples were chosen to illustrate the value and 
limitations of this approach. Further refinement and validation of 
such “signatures” are required, possibly using a further test set of 
xenografts, or through modulation of genes by RNA interference 
approaches. Ultimately, it will be important to determine whether 
such approaches are relevant to patient responses to single agents 
or to complex therapeutic regimens.
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