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The pathogenesis of common diseases, such as Alzheimer’s disease (AD) and cancer, 
are currently poorly understood. Inflammation is a common risk factor for cancer and 
AD. Recent data, provided by our group and from others, demonstrate that increased 
pressure and inflammation are synonymous. There is a continuous increase in pressure 
from inflammation to fibrosis and then cancer. This is in line with the numerous papers 
reporting high interstitial pressure in cancer. But most authors focus on the role of pres-
sure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may 
also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene 
activation and cytokine secretion. Accumulation of mechanical stress plays a key role 
in the development of diseases of old age, such as cardiomyopathy, atherosclerosis, 
and osteoarthritis. Growing evidence suggest also a possible link between mechanical 
stress in the pathogenesis of AD. The aim of this review is to describe environmental 
and endogenous mechanical factors possibly playing a pivotal role in the mechanism of 
chronic inflammation, AD, and cancer.
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introduction

Mechanical stress defines the distribution of forces exerted in a solid or fluid body being deformed 
as a result of external loads. Deformation changes the relative locations of molecules within a body 
which gives rise to internal forces balancing external loads. We already have an intuitive understand-
ing of distribution of forces when we consider pressure. Mechanical stress is analogous to pressure 
when the forces are perpendicular to a surface (compressive or tensile stress). When the forces run 
parallel to a surface there is a shear stress. The influence of mechanical stress of living organisms 
is omnipresent. It depends not only on environmental and endogenous loads (pressure exerted by 
cavities and blood) but also on intrinsic mechanical factors of organs, such as shape, architecture, 
and mechanical properties of tissues (1, 2).

Mechanical stress could be the cause, the consequence, and/or might also simultaneously interact 
with biological processes. Cells are continuously subjected to mechanical forces that influence cell 
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division, gene expression, cell migration, morphogenesis, cell 
adhesion, fluid homeostasis, ion channel gating, and vesicular 
transport (3–5). The seminal work of D’Arcy Thompson demon-
strated that physical forces play a key role in plant and animal 
morphogenesis (6). Aging-associating diseases of different 
mechanisms, such as cardiomyopathy (7), degenerative valvular 
disease (8), atherosclerosis (9), and osteoarthritis (10), and 
cataract (11) present mechanical factors interacting with their 
pathogenesis. The aim of this review is to describe the potential 
role of mechanical stress as a pathway underlying the mechanism 
of chronic inflammation, cancer, and Alzheimer’s disease (AD). 
Cancer and AD are obviously different diseases but they share 
multiple common epidemiological and biological features.

Common denominators Between  
Cancer and ad

In both cancer and AD, there are a small (<3%) but informative 
proportion of the patients who have inheritable genetically trans-
missible risk factors. More than 50 different genes are known to 
be involved in cancer. For example, BCRA1 and BCRA2 carriers 
are at a very risk not only for breast cancer but also for ovarian 
cancer and sarcoma. This risk is high enough (80%) as to warrant 
prophylactic surgery, such as mastectomies. To the difference 
with the much more common sporadic cancer, these tumors arise 
in young patients most commonly before the age of 50. Around 
0.1% of the cases of AD are familial forms of autosomal-dominant 
inheritance, which usually have an onset before age 65 (12). Most 
of autosomal-dominant familial AD can be attributed to muta-
tions in one of three genes: those encoding amyloid precursor 
protein (APP) and presenilin 1 and 2 (13). Most mutations in 
the APP and presenilin genes increase the production of a small 
protein called amyloid β (Aβ), which is the main component of 
senile plaques (14). Most cases of AD do not exhibit autosomal-
dominant inheritance, and thus are termed sporadic AD. These 
genetic features are rare and should not let us miss the main 
features.

Cancer and AD share two major risk factors: age and sex. 
Two-thirds of cancer and AD arise after age 70 (15). Two-thirds 
of the patients are over 70 when diagnosed either with cancer 
or AD. The second risk factor is sex. Men are at a given age at a 
higher risk for cancer or AD. Moreover, aging is clearly linked to 
chronic inflammation; aging is associated with increased levels of 
chronic inflammation and with inflammatory activity reflected 
by increased circulating levels of cytokines, such as tumor necro-
sis factor (TNF) and interleukin (IL) 6, and acute phase proteins 
(16). Various inflammatory processes and cytokines may also 
have a role in the pathology of AD. Inflammation is a general 
marker of tissue damage in any disease, and may be either sec-
ondary to tissue damage in AD or a marker of an immunological 
response (17).

inflammation as a Common risk Factor 
for ad and Cancer

Inflammation is a common risk factor for cancer and AD. 
Liver cancer is frequently associated with such pre-existing 

inflammation and fibrosis. Between 60 and 90% of hepatocel-
lular carcinoma occur in patients with hepatic macronodular 
cirrhosis (18, 19). Chronic liver disease of any type is a risk factor 
for liver cancer. Evidence for a cause-effect link between cirrhosis 
and hepatocellular carcinoma is lacking. The relation may often 
be one of chance alone, since not all cirrhotics develop cancer. 
Nonetheless, diseases that cause cirrhosis also increase the risk 
of hepatocellular carcinoma (19). Furthermore, the more disor-
ganized the liver becomes, the higher the risk of hepatocellular 
carcinoma (18, 19). The same is true for lung cancer, which is very 
often preceded by chronic bronchitis (inflammation of the main 
bronchi). Chronic bronchitis paves the way toward lung cancer. 
Long-term usage of non-steroidal anti-inflammatory drugs 
(NSAIDs) is associated with a reduced likelihood of developing 
AD (20) and cancer (21). In addition to long-standing evidence 
from observational studies, evidence from randomized trials of 
the effectiveness of aspirin for chemoprevention of colorectal 
cancer has increased substantially in recent years. Trials have 
shown that daily aspirin for about 5  years reduces incidence 
and mortality due to colorectal cancer by 30–40% after 20 years 
of follow-up, and reduces the 20-year risk of all-cause cancer 
mortality by about 20%. Human post-mortem studies, in animal 
models, or in  vitro investigations also support the notion that 
NSAIDs can reduce inflammation related to amyloid plaques 
(20). However, trials investigating their use as palliative treatment 
have failed to show positive results while no prevention trial has 
been completed (20).

inflammation is synonymous to 
increased osmotic pressure

The word “physician” is a reminiscence of the time when medicine 
was a part of Physics. But today, the role of physical forces in the 
development of disease has been largely neglected (to the notable 
exception of orthopedics). Inflammation is characterized by 
tumor, dolor, rubor, and calor as stated by Galen 2000 years ago. 
Inflammation can be caused by factors as diverse as heat, freezing 
temperature, trauma, or chemicals. The capillary hydrostatic pres-
sure drives fluid out of the capillary (i.e., filtration), and is highest 
at the arteriolar end of the capillary and lowest at the venular 
end. The oncotic pressure drives the liquid back into the capil-
lary. Because the capillary barrier is readily permeable to ions, the 
osmotic pressure within the capillary is principally determined by 
plasma proteins that are relatively insoluble. Therefore, instead 
of speaking of “osmotic” pressure, this pressure is referred to 
as the “oncotic” pressure or “colloid osmotic” pressure because 
it is generated by colloids. Albumin generates about 70% of the 
oncotic pressure. This pressure is typically 25–30 mmHg.

During inflammation, there is extravasation of proteins from 
the vascular space to the extracellular space. It is known to the 
clinicians that there is an increase of protein content in the inflam-
matory fluid, such as a pleural effusion or a pericarditis. This 
increased protein content and the resulting increased osmotic 
pressure is the reason for inflammation. We have previously 
shown both in vivo and in vitro that hyperosmolarity can induce 
pro-inflammatory cytokine responses in epithelial cells (22–24). 
Our group and others recently demonstrated that inflammation 
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results from increased interstitial pressure (16, 22–24). There is 
increased osmotic pressure in the inflammatory fluid due to the 
presence of a large quantity of proteins. This increased extracel-
lular osmolarity results in the secretion of pro-inflammatory 
cytokines, such as TNF, IL 6 and 8, and numerous other cytokines. 
Monocytes exposed to hyperosmolarity doubled their half live 
(24). It is probable that inflammation (a disease) is synonymous 
to increased osmolarity pressure (a force).

Mechanical stress as a  
Critical Factor in Cancer

Many solid tumors show an increased interstitial fluid pressure 
(IFP), which forms a barrier to transcapillary transport. This bar-
rier is an obstacle in tumor treatment, as it results in inefficient 
uptake of therapeutic agents. There are a number of factors that 
contribute to increase IFP in the tumor, such as vessel abnormali-
ties, fibrosis, and contraction of the interstitial matrix. It is this 
increased pressure that the physician tries to feel when doing a 
clinical exam, such a rectal exam when searching for a prostate 
cancer.

The role of increased pressure in carcinogenesis has been 
poorly investigated. There is a continuum of increased pressure 
from normal tissue to inflammation fibrosis and cancer. The 
pressure of the hepatic parenchyma is 4 mmHg. The parenchyma 
is under increased pressure in liver cirrhosis (13 mmHg) and in 
primary or metastatic cancer (between 15 and 25 mmHg). The 
increased interstitial pressure may be responsible for the most 
common features of cirrhosis and/or cancer, such as hepatocyte 
necrosis, extensive fibrosis, connective tissue deposition, vascular 
distortion, infiltration by immune cells, and nodular regeneration 
of the remaining tissue parenchyma. Increased pressure is known 
to induce collagen deposition and modulate cell proliferation 
either by cell death or by cell multiplication (25). Exposure of 
immune cells to increased osmotic pressure doubled their half-
life (23).

Increased pressure is responsible for cancer invasion. Cancer 
invades preferentially soft tissues such as glands or muscle rather 
than fascia or bone (15). It is also because of increased pressure 
that cells can escape, reach the blood vessels to form distant 
metastasis. Physical forces play also a major role in cell prolifera-
tion (25–27). Mechanical deformation induces cell proliferation 
(26). Cell proliferation of colon carcinoma cell line, HCT116, is 
increased by 30% after 2  days of deformation (30  cycles/min). 
But solid stress (45–120  mmHg) inhibits multicellular tumor 
spheroid (27). Changes in physical constraints has another con-
sequence (28), the probability of a wrong plane of cell division 
is increased. Transition from normal, well stratified epithelium, 
to an invasive, fractal, dendritic pattern is observed. This transi-
tion shows a sequence of morphologies in the following order 
as a function of loss of polarity: first, an apparently normal but 
already diseased tissue, then, metaplasic followed by a dysplasic 
tissue, and eventually carcinoma first in  situ, then invasive. In 
fact, most normal cells, and especially the epithelial cells are 
organized along a structural plane (29), which allows cell adhe-
sion to the mesenchyme on one side, and epithelium function on 
the lumen side.

Changes in physical constraints explain the stellar dendritic 
shape of cancer, enabling the cells to escape physical constraints 
from their neighbors (25, 28). This functional polarity is most 
often lost during carcinogenesis (29). In normal tissue, it is 
maintained by the cytoskeleton, by vesicular trafficking that 
proceeds along the microtubules (30), by organelles, such as the 
centrosomes, and in general terms, by the interpretation of cues 
coming from the surrounding tissue. In particular, mechanical 
forces coming from neighboring cells are able to induce a polarity 
of the cell, and influence cell divisions in specific directions. This 
question has already been studied in plants, where it is known 
that one can induce deterministically the position of the plane of 
division by a mechanical stress (31).

interactions Between Mechanical 
stress and ad

Mechanical stress may influence 
ad pathophysiology
Several authors have already suggested the hypothesis that AD 
pathology is driven by mechanical forces. Wostyn et  al. and 
Silverberg et  al. were the first to bring up the causative link 
between intracranial pressure and AD (32–36). It has been shown 
that mechanical impedance (a measure of how much a structure 
resists motion when subjected to a given force) of the intracranial 
cavity and vessels plays a role in the pathophysiology of AD (37). 
Some have set forth that the strength of the pulse waves induced 
by the vascular tree in the craniospinal cavity is the underlying 
vascular pathophysiology behind AD and other conditions, such 
as vascular dementia and normal pressure hydrocephalus (NPH) 
(38–41). Barz (42) set forth that mechanical changes accumulate 
in neuronal membranes and cytoplasm in old age, in a similar 
fashion to how vessel walls stiffen and change in arteriosclerosis. 
Hachiya et al. (43) suggested that continuous and repetitive expo-
sure to environmental mechanical stress, mostly in an unrecog-
nized and inevitable manner in daily life, becomes a potential 
driving force for Aβ and tau aggregation (43).

A great number of studies have suggested that amyloid cascade 
may occur in parallel and their onset and rate could be under 
the influence of a series of environmental risk factors (44). 
Mechanical stress has been positioned as an environmental fac-
tor that may provoke disturbances in the cellular quality control 
systems and molecular chaperones that target misfolded proteins, 
such as tau and Aβ (43). Computational simulations have shown 
that Aβ structure could be twisted, flexed, and bent by the imposi-
tion of shear forces (45), which suggests that shear stress may 
influence Aβ misfolding and aggregation. Tau proteins, in turn, 
may resist and accumulate elastic stress, which seems to protect 
axonal microtubule from mechanical deformation (46). Amyloid 
peptides, others than Aβ, have been described in mechanical 
loading environments, such as heart valves exposed to high shear 
stress (47) or in the joint cartilage (48). Amyloid adhesion and 
nucleation, critical events in Aβ aggregation, can be mechanically 
induced by tensional forces exerted in amyloid nanofibers (49, 
50). Atomistic simulations also showed that helical nanostructure 
of Aβ oligomers may induce neurotoxicity by mechanical damage 
on membrane structure (51).
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taBLe 1 | selected transgenic and mechanical stress-based models displaying ad pathological hallmarks.

rodent models transgenic Mechanical stress arterial  
hypertension

Hpn

app tau appxtau traumatic brain injury

CCi Fpi Mld/Wd

Amyloidosis ++ − + ++ + ++ ++ +
Tauopathy ?a ++ + ++ + ?b + +
Neuroinflammation ++ + + ++ + + ++ +
Neuronal loss ?c ?c − ++ + ++ ?d +
Cognitive impairment ++ ++ + ++ ++ ++ ?d +

Reference (79–81) (79–82) (83–91) (92–97) (83, 90, 98, 99) (77, 78, 100) (75–106)

Comparison between transgenic and mechanical stress rodent models as a function of five hallmark features of AD pathology.
(+) Feature present in mice or rat models.
(++) Feature present in both mice and rat models.
(?) Unknow.
aOnly increased p-tau but no tau deposits.
bTau transgenic mouse.
cOnly present in a few models.
dOnly when associated with white matter and focal lesions.
APP, amyloid precursor protein; CCI, controlled cortical impact; FPI, fluid percussion injury; Mld, mild repetitive trauma; WD, weight drop; NPH, normal pressure hydrocephalus.
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ad risk Factors may be Linked to Mechanical 
stress exposure
Epidemiological and neuropathological data suggest a tight asso-
ciation between AD and the exposure to mechanical stress fac-
tors. Extracranial mechanical stressors predisposes an individual 
to AD later in life, as observed in traumatic brain injury (TBI) 
(52) and occupational exposure in athletes (boxers, football, and 
soccer players) and military personnel (53). Neuropathological 
analysis of TBI tissues in humans has led to notable findings 
regarding AD pathological features. Abnormal accumulation 
of Aβ deposits (54) and cytoskeletal tau proteins, pathological 
hallmarks of AD, has been constantly detected after isolated or/
and repetitive cranial impacts (55, 56).

Mechanical energy can also exert stress within intracranial 
environment. Cerebrovascular blood flow accompanying every 
heartbeat generates forces that can displace the brain tissue by 
tens of micrometers (57). Similarly, mechanical interactions 
constantly occur between brain parenchyma and cerebrospinal 
fluid (CSF) (58). These mechanical stressors interacting with 
brain compartments are confined within the rigid structure 
of the skull. Changes in intracranial hydrodynamics may 
result in an increased risk of AD as seen in NPH, since several 
studies have demonstrated neuropathological evidence of AD 
in NPH patients (59–62). NPH is characterized by transient 
intracranial pressure peaks, while CSF pressure measurements 
usually remain within the normal range. The accumulation 
of hydrodynamic loads leads to chronic mechanical stress on 
the ventricular walls, and ultimately on the brain parenchyma 
(63). The frequency of tau-amyloid deposits through cortical 
biopsies taken during shunt placement has been shown to be 
greater than that of the general population, suggesting that 
NPH and AD may occur as a result a coexisting hydrodynamic 
pathophysiology (64–66).

Cerebrovascular hemodynamic stress, caused by atherosclero-
sis, heart diseases, and arterial hypertension, also affects cogni-
tion and are among the most important risk factors for AD (67). 

These vascular conditions interact with intracranial mechanical 
constraints, and so could be considered as “mechanical” risk 
factors (68). Arterial hypertension increases brain hemodynamic 
stress as a result of pulsating shock waves (some 30  million/
year) produced by the external surface of the arterial wall in 
contact with the brain parenchyma (69). Atherosclerosis can 
increase brain arterial stiffness, increasing mechanical damage of 
the perivascular tissue (70) and leading to accumulation of Aβ 
plaques (71) and cognitive decline (40, 72).

Mechanical stress Models of ad-Like pathology
Effects related to endogenous mechanical energy in AD pathology 
have been widely overlooked in hypotheses involving a postulated 
molecular amyloido-centric pathway, such as the amyloid cascade 
theory (73) derived from reductionistic transgenic animal muta-
tion models that do not account for the principles of mechanics. 
Extracellular accumulation of Aβ and intracellular accumula-
tion of tau in brain tissues and neuroinflammation have been 
described not only in transgenic animal models of AD but also in 
mechanical stress-based diseases of different mechanisms, such 
as TBI, arterial hypertension, and NPH. As observed in humans, 
AD-like pathology is also present in numerous experimental 
models of TBI using mice, rats, rabbits, pigs, and monkeys (74). 
Animal models of NPH have revealed accumulation of tau and 
Aβ deposits in brain tissues subjected to hydrodynamic stress (75, 
76). It have been also found that rodent models subject to high 
levels of blood pressure, or hemodynamic stress, demonstrate an 
accumulation of Aβ and tau aggregates (77, 78). These mechani-
cal stress models may increase our knowledge of how different 
mechanical factors, from both the external and the internal 
environment, could influence pathophysiological mechanisms 
underlying AD. Table  1 compares five hallmark features from 
transgenic and mechanical stress rodent models of AD pathol-
ogy. Amyloidosis, tauopathy, gliosis, neuronal loss, or cognitive 
impairment could be present in at least four of the five selected 
mechanisms of mechanical stress.
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taBLe 2 | Core hypotheses liking mechanical stress and the 
pathophysiology of cancer, inflammation, and alzheimer’s disease (ad).

Condition Hypothesis

Cancer Increased interstitial pressure may accelerate carcinogenesis
Mechanical forces may induce cell polarity, and consequently 
modulate cell divisions in specific directions

Chronic 
inflammation

Increased interstitial pressure (hyperosmolarity) may drive 
inflammation

AD Accumulation of mechanical energy during lifespan 
may accelerate amyloid cascade, tauopathy, and 
microarchitectural changings in brain tissues
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Mechanics related to Brain atrophy and Brain 
amyloidosis in ad
In general, biological tissues adapt to higher levels of stress by 
changing cross-sectional area, density, or volume. In a recent 
work, our group estimated increments of mechanical stress 
undergoes by the tissues during brain shrinkage. Selecting AD as 
a primary model of a non-linear dynamic, chronically progressive 
degenerative disease, pressure equivalents were related to atrophy 
and found to be 42% higher in AD brains comparatively to normal 
aging brains (5.92 versus 3.43 mmHg, respectively). The phenom-
enon of mechanical brain fatigue, or the increased amplitude of 
oscillations generated by arterial, hydraulic, or external shock 
waves, was suggested to mainly contribute to the accumulation of 
mechanical stress in AD (107). Another example of how organs 
adapt to stress consists in changes in its mechanical properties. In 
AD, slow cumulative changes in the microarchitecture of the brain 
could impact its mechanical properties (108, 109). The elasticity 
and stiffness of the brain vary substantially in normal humans as 
well as with age and the state of the disease (110). Cerebral stiff-
ness, which can be measured by magnetic resonance elastography 
(MRE) (111), decreases when AD pathology is present in both 
humans and transgenic mice models (108, 112). However, the 
extent to which mechanical dynamics influence AD pathophysiol-
ogy, and vice-versa, remains a mystery. AD deposits could increase 
the resilience of neuronal tissues to mechanical stressors and 
consequently increase the tolerance to subsequent stresses. Like 
muscle fibers, neuronal tissues may adapt to physical stresses by 
altering their structure and composition to better meet the biologi-
cal requirements of routine energy loads. It raises the possibility 
that mechanical stress levels, which exceed the maintenance range 
of brain tissues, could trigger and accelerate protein misfolding, 
aggregation, and deposition. The higher the exposure to mechani-
cal stress, the more likely an early onset of the disease will be (43).

Conclusion

The role of mechanical forces in the pathogenesis of chronic 
inflammation, AD, and cancer has been overlooked. In addition 
to genetic factors, the accumulation of mechanical energy could 
underlie biological cascade pathways in inflammation, cancer, 
and AD (Table 2). This hypothesis has to be tested before any 
conclusion can be drawn. The extent to which mechanical 
energy influences the pathophysiology of these conditions, and/
or whether mechanics is just an effect of biological processes, 
remains a mystery. Mechanical stress could be the cause, the 
consequence, and/or might also simultaneously interact with 
biological processes. We point to the importance of accumu-
lated mechanical stress as an environmental and endogenous 
factor that pushes cell and tissue functioning over the disease 
threshold.
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