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Introduction: The aim of this work was to assess the dosimetric impact of the
interfraction variations during breast radiotherapy.

Materials and methods: Daily portal imaging measurements were prospectively per-
formed in 10 patients treated with adjuvant whole breast irradiation (50 Gy/25 fractions).
Margins between the clinical target volume and the planning target volume (PTV) were
5mm in the three dimensions. Parameters of interest were the central lung distance
(CLD) and the inferior central margin (ICM). Daily movements were applied to the baseline
treatment planning (TP1) to design a further TP (TP2). The PTV coverage and organ at
risk exposure were measured on both TP1 and TP2, before being compared.

Results: A total of 241 portal images were analyzed. The random and systematic errors
were 2.6 and 3.7 mm for the CLD, 4.3 and 6.9 mm for the ICM, respectively. No significant
conseguence on the PTV treatments was observed (mean variations: +0.1%, p=0.56
and —1.8%, p =0.08 for the breast and the tumor bed, respectively). The ipsilateral lung
and heart exposure was not significantly modified.

Conclusion: In our series, the daily interfraction variations had no significant effect on the
PTV coverage or healthy tissue exposure during breast radiotherapy.

Keywords: dosimetry, interfraction variations, breast radiotherapy, central lung distance, inferior central margin

Introduction

Breast-conserving surgery and adjuvant radiotherapy are the standard treatments of patients with
early-stage breast cancer (BC). Postoperative irradiation is pivotal as it lessens the relative risk of
local failure (absolute reduction of 15.7% at 10 years) and, therefore, the probability of BC death
(absolute reduction of 3.8% at 15years) (1). During the last decades, the modalities of breast
radiotherapy evolved from two-dimensional irradiation to intensity-modulated radiation therapy
(IMRT) (2). Three-dimensional (3D) conformal radiotherapy is the technique most commonly
used in BC treatment. To do so, the target volumes (gross tumor volume, GTV; clinical target
volume, CTV) and healthy organs are delineated on a computed tomography (CT) scan. Then,
margins are added to define the planning target volume (PTV) considering the internal organ
motion and the patient setup error (3). Portal imaging (PI) plays a key role in the patient positioning
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management and, consequently, in the treatment quality. Target
volume motion can be studied using two parameters: the inter-
fraction movements, measured between two different treatment
days, and the intrafraction variations, assessed during one single
radiotherapy session (4).

Although the patient setup uncertainties are considered in the
PTV delineation, interfraction movements should be limited in
order to reduce the risk of inadequate target volume coverage
and/or to prevent the occurrence of toxicities. This work had
for purpose to assess the setup variations during whole breast
radiotherapy using daily PI, a simple and reproducible technique
(5-7). The relevance of the PTV margins was evaluated in order
to improve the treatment quality.

We prospectively studied the role of the interfraction varia-
tions on the target volume coverage and healthy tissue exposure
during radiotherapy indicated for early-stage BC. Intrafraction
movements were not considered in this work.

Materials and Methods

This study was carried out in accordance with the recommen-
dations edited by the Head Committee of the Gustave Roussy
Radiotherapy Department with written informed consent from all
subjects. All patients gave written informed consent in accordance
with the Declaration of Helsinki.

Population Description

A cohort of 10 consecutive patients (mean age: 57.5 years; range:
39-77) was treated for early-stage BC with breast-conserving
surgery and axillary dissection or sentinel node biopsy followed by
adjuvant whole breast irradiation. A left-sided tumor was reported
in six patients and a right-sided one in four patients.

All patients had whole breast irradiation (50 Gy in 25 fractions
over 5 weeks) followed by a tumor bed boost (16 Gy in 8 fractions
over 2 weeks). Regional lymph node irradiation (supra- and infra-
clavicular, axillary, internal mammary nodes) was not considered
in this study.

Simulation and Treatment Planning

The simulation was completed using a CT scan without iodine
contrast agent infusion (Siemens Somatom® Sensation Open -
24 slices). Patients were in the supine position on the Med Tec
(Model MT-350-N) inclined breast board with both their arms
up and behind the head. Image acquisition was performed from
the neck to the upper abdomen in 3-mm slices using the free-
breathing technique. No immobilization device was used. The
clinical mammary gland borders, lumpectomy scar, and post-
surgical induration were outlined with radio-opaque wires.

The GTV had been removed and was not delineated. The clin-
ical target volume 1 (CTV1) was defined by the mammary gland
delineation: (i) anterior border, 5 mm under the skin; (ii) posterior
border, the upper face of the pectoralis major muscle and the ribs;
(iii) medial border, the clinical and radiological root; (iv) lateral
border, the clinical and radiological marker; (v) superior border,
the upper clinical and radiological limit encompassing the axillary
extension of the mammary gland; (vi) inferior border, the infra-
mammary fold and/or the lower clinical marker in case of large

breast size. The clinical target volume 2 (CTV2) corresponded
to the tumor bed, identified by the breast remodeling and the
surgical clips, with a 15-mm expansion in three dimensions (8, 9).
Furthermore, a 5-mm margin was added to the CTV1 and CTV2
in three dimensions to create the planning target volumes 1 and
2 (PTV1 and PTV2, respectively). The following healthy organs
were delineated: the ipsilateral lung and the heart (from the base
till the level of the bifurcation of the pulmonary artery).

Dosimetric optimization was performed in the transverse,
sagittal, and coronal planes (treatment planning 1: TP1) using the
Dosisoft®/Isogray® (v4.1) treatment planning system. The patients
were treated with 6-MV X-ray tangential beams. Wedges were
used to improve the PTV coverage and dose homogeneity, which
should be kept between 95 and 107% of the prescribed dose (3).
Doses and volumes were systematically recorded.

Patient Positioning Control and Study
Parameters: CLD and ICM

Interfraction movements were daily assessed using an electronic
PI device. The portal images of the medial tangential beam treat-
ing the whole mammary gland were acquired before each of
the 25 first fractions. The central lung distance (CLD) and the
inferior central margin (ICM) (Figure 1) were measured on the
first acquired portal image by the medical physicist and compared
with the digital reconstructed radiography (DRR) (6, 10). The
CLD and ICM were defined to assess the interfraction variations

FIGURE 1 | Description of the inferior central margin and central lung
distance on a digital reconstructed radiography performed on the
treatment planning system Isogray® according to Fein et al. (6) and
Kong et al. (10). The nipple and the surgical scar are, respectively, delineated
in yellow and purple. CLD, central lung distance; ICM, inferior central margin.
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along the anteroposterior and craniocaudal axes, respectively. The
CLD and ICM were delineated on every daily portal image by the
medical physicist. The measured data were then verified by both
the medical physicist and the radiation oncologist. According to
the methods reported in previously published articles, the mea-
surements were performed on portal images (Figure 1), so that
the lateral shifts could not be quantified (6, 7, 11, 12).

The DRR, created from the simulation data, was the reference
image for every radiotherapy session. The interfraction variations
evaluation was based on the comparison of the CLD and ICM
estimated on the daily portal images with the DRR data.

Considering the CLD and ICM individually, the SD, random,
and systematic errors were assessed. The SD was determined
according to the formula reported by Fein et al. (6). The random
and systematic errors were estimated using the methods published
by Rosenthal et al. (13). The random error corresponds to the
deviation of the data measured on the daily portal images from
the mean values. The systematic error is the difference between
the mean values and the simulation data (13).

Effects of the Interfraction Variations on the
Target Volume Coverage and OAR Exposure

For each patient, an additional treatment planning was performed
considering the CLD and ICM mean values (treatment planning
2: TP2). TP2 was compared with the baseline treatment planning
(TP1) to assess the role of the daily interfraction variations on
the target volume coverage and organ at risk (OAR) exposure.
The following dosimetric parameters were studied: the volumes
encompassing 95% of PTV1 (PTV1 V95) and 95% of PTV2
(PTV2 V95), for the ipsilateral lung; the percentages of volume
receiving 20 and 30 Gy (V20 and V30, respectively), for the heart;
V30 and the mean dose. The differences in terms of PTV coverage
and OAR exposure were expressed in relative and absolute values,
respectively.

Statistical Analyses

Quantitative data were expressed in mean values and SDs consid-
ering the sample size. Qualitative data were expressed in percent-
ages. TP2 results were compared with those obtained from TP1
using a Wilcoxon test for the mean values as the variables were

non-normally distributed, whereas qualitative data were com-
pared using a chi-square test. Significance level was 0.05. Statistics
were performed using the Statistical Analysis System software
SAS® 9.2 (SAS Institute Incorporation, Cary, NC, USA).

Results

Initial Treatment Planning

On the DRR, the mean CLD was 20.8 mm (range 16.3-26.4 mm)
and the mean ICM 27.1 mm (range 13.1-39.0 mm) (Table 1).
The CLD exceeded 20 mm in 116 portal images (48.7% of the
total number assessed) and 25 mm in 43 (18.1%). For one patient,
due to the superficial isocenter position, the ICM could not be
measured (patient #9).

The mean CTV1 was 559.2 cc (range 35.6-951.7 cc) and the
mean PTV1719.8 cc (range 90.7-1182.9 cc). The mean CTV2 was
60.6 cc (range 33.6-92.2 cc) and the mean PTV2 93.9 cc (range
11.4-148.8 cc).

The mean ipsilateral lung dose was 6.8 Gy (range 4.5-9.3 Gy).
The mean ipsilateral lung V20 and V30 were 10.7% (range
6.7-16.2%) and 9.4% (range 6.1-14.5%), respectively (Table 1).
In case of left-sided BC (n =6), the mean heart dose was 2.6 Gy
(range 0.9-4.7 Gy) and the mean heart V30 1.6% (range 0-4.0%)
(Table 1).

Interfraction Variations
A total of 241 portal images were analyzed (Table 2). Considering
the whole cohort, the mean CLD measured on portal images was
19.9 mm (range 11.7-26.3 mm) and the mean ICM was 22.8 mm
(range 9.0-34.0 mm) (Table 2).

One SD was estimated at 5.3 and 9.4 mm for the CLD and the
ICM, respectively. The random and systematic errors were 2.6 and
3.7 mm for the CLD, 4.3 and 6.9 mm for the ICM, respectively.

Effects of the Interfraction Variations on the PTV
Coverage and OAR Exposure

The interfraction movements did not significantly affect the PTV1
V95 and PTV2 V95 coverage (respective mean variations esti-
mated at +0.1%, p = 0.56; and —1.8%, p = 0.08). However, a mean
extension of 8.3% (range 2.2-21.8%) was observed for PTV1 V95

TABLE 1 | Individual dosimetric data according to the baseline simulation (treatment planning 1).

Patient CLD (mm) ICM (mm) PTV1 V95 (cc) PTV2 V95 (cc) Ipsilateral lung Ipsilateral lung Heart V30 (%) Mean heart
V20 (%) V30 (%) dose (Gy)
1 16.3 39.0 214.1 54.4 6.7 6.1 0 0.9
2 17.6 13.1 1255.4 481.9 8.3 7.4 NA NA
3 19.0 32.6 500.5 1911 8.9 7.7 4.0 4.7
4 17.5 34.7 1868.6 448 9.1 8.0 NA NA
5 18.6 13.2 1376.8 426.4 9.2 8.5 NA NA
6 26.4 26.9 829.1 277.6 12.2 10.8 0.2 1.7
7 20.0 33.4 1017.2 370.8 11.2 10.0 1.2 2.6
8 229 19.7 1392.9 4141 10.2 9.4 NA NA
9 24.0 NA 573.0 213.4 14.7 11.3 1.4 2.3
10 25.3 31.0 1072.5 228.3 16.2 14.5 2.6 3.5

CLD, central lung distance; ICM, inferior central margin; NA, not assessable; PTV1, planning target volume 1 (whole mammary gland); PTV2, planning target volume 2 (tumor bed);
TP1, treatment planning 1; TP2, treatment planning 2; V20, volume receiving at least 20 Gy, /30, volume receiving at least 30 Gy; V95, volume receiving at least 95% of the prescribed

dose.
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TABLE 2 | Individual dosimetric data considering the mean interfraction variations (treatment planning 2).

Patient Number of acquired CLD (mm) ICM (mm) PTV1V95 PTV2V95 (cc) Ipsilateral lung Ipsilateral lung Heart Mean heart
portal images (cc) V20 (%) V30 (%) V30 (%) dose (Gy)

1 25 16.7 34.0 260.8 61.2 8.0 7.4 0 0.8

2 25 14.4 12.9 1186.4 465.2 6.5 5.8 NA NA

3 25 19.5 21.4 527.1 179.1 10.8 9.4 4.1 3.9

4 25 1.7 34.1 1570.5 391.2 4.5 3.4 NA NA

5 20 22.5 9.0 1456.5 429.9 1.1 9.8 NA NA

6 24 26.3 19.8 818.1 268.4 12.5 1.2 0.2 1.5

7 25 19.5 29.0 1039.6 373.9 1.6 10.3 1.3 2.4

8 22 19.4 181 1256.3 395 7.6 6.8 NA NA

9 25 25.2 NA 610.5 217 14.6 13.2 2.1 2.6

10 25 24.4 271 986.2 220.7 14.2 125 1.7 2.8

CLD, central lung distance; ICM, inferior central margin; NA, not assessable; PTV1, planning target volume 1 (whole mammary gland); PTV2, planning target volume 2 (tumor bed);
TP1, treatment planning 1; TP2, treatment planning 2, V20, volume receiving at least 20 Gy; /30, volume receiving at least 30 Gy; V95, volume receiving at least 95% of the prescribed

dose.

TABLE 3 | Planning target volume coverage variations.

Patient PTV1 V95 (cc) Variation (%) PTV2 V95 (cc) Variation (%)
TP1 TP2 TP1 TP2
1 2141 260.8 +21.8 54.4 61.2 +12.5
2 1255.4 1186.4 —55 481.9 465.2 —35
3 500.5 5271 +5.3 191.1 1791 —6.3
4 1868.6 1570.5 —15.9 448 391.2 —12.7
5 1376.8 1456.5 +5.8 426.4 429.9 +0.8
6 829.1 818.1 -1.3 277.6 268.4 —3.3
7 1017.2 1039.6 +2.2 370.8 373.9 +0.8
8 1392.9 1256.3 -9.8 4141 395 —4.6
9 573.0 610.5 +6.5 213.4 217 +1.7
10 1072.5 986.2 -8.0 228.3 220.7 —33

PTV1, planning target volume 1 (whole mammary gland); PTV2, planning target volume 2 (tumor bed); TP1, treatment planning 1; TP2, treatment planning 2; V95, volume receiving at

least 95% of the prescribed dose.

in five patients. The PTV2 V95 was increased in four patients
(mean value: 3.9%, range 0.8-12.5%) (Tables 2 and 3). On the
other hand, the PTV1 V95 and PTV2 V95 were lessened in five
and six patients with mean decreases of 8.1% (range 1.3-15.9%)
and 5.6% (range 3.3-12.7%), respectively.

When the interfractions movements were applied to TP1, the
mean heart dose variation was 0.3 Gy (p = 0.15) (Tables 2 and 4).
The mean differences in terms of ipsilateral lung V20, V30, and
heart V30 were, respectively, 0.5 (p =0.45), 0.4 (p =0.59), and 0
points (p = 1). For all patients, whatever the treatment planning
considered, the ipsilateral lung V20, V30, and the heart V30 did
not exceed 20, 15, and 5%, respectively.

Discussion

The main purpose of this prospective study was to prospectively
assess the interfraction variations in patients treated with 3D
conformal breast radiotherapy. In our series, the patient setup
errors did not significantly affect either the PTV coverage or the
healthy tissue exposure.

Using a technique close to ours, Smith et al. studied the inter-
fraction variations by measuring the CLD on portal images in
eight patients managed for BC (7). The treatment simulation was
performed using a fluoroscopic imaging device or a CT scan. The
mean CLD was 1.33cm (0.59-2.94), and patients repositioning

implied CLD variations ranging from 0.38 to 1.62 cm. Moreover,
this study showed a correlation between the CLD and the OAR
exposure (ipsilateral lung, heart).

Other devices can be used to estimate the patient setup. Baroni
et al. also assessed the interfraction movements on four patients
referred for left breast radiotherapy (14). Measurements were
performed using an opto-electronic position detection system.
After considering the breathing movements, the mean 3D shifts
reported for the different markers (sternal tattoo points, upper
and lower field limits) were reduced to almost 2 mm. The dosi-
metric effects of these setup errors were limited: the mean vari-
ations of the CTV receiving <95% and more than 107% of the
daily dose were 1.0 and 0.4%, respectively. Similar trends were
reported regarding the ipsilateral lung and heart exposure. The
dosimetric consequences of the interfraction variations were not
statistically significant. These results tend to show the interest
of the opto-electronic localization device to optimize the patient
positioning.

If the tattoo points and field borders remain commonly used to
set up the patients, the isocenter position has also to be considered.
According to Prabhakar et al., the doses administered to the heart,
both lungs and contralateral breast significantly increased due to
an isocenter shift, particularly in the posterior direction (15). The
authors suggested a setup error in isocenter lower to 3 mm to avoid
potential complications induced by radiotherapy.
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TABLE 4 | Organ at risk exposure variations.

Patient  Ipsilateral lung V20 (%) Variation Ipsilateral lung V30 (%) Variation Heart V30 (%) Variation @ Mean heart dose (Gy) Variation
(points) (points) (points) (Gy)
TP1 TP2 TP1 TP2 TP1 TP2 TP1 TP2
1 6.7 8.0 +1.3 6.1 7.4 +1.3 0 0 0 0.9 0.8 —0.1
2 8.3 6.5 -1.8 7.4 5.8 —-1.6 NA NA NA NA NA NA
3 8.9 10.8 +1.9 7.7 9.4 +1.7 4.0 41 +0.1 4.7 3.9 -0.8
4 9.1 4.5 —4.6 8.0 3.4 —4.6 NA NA NA NA NA NA
5 9.2 111 +1.9 8.5 9.8 +1.3 NA NA NA NA NA NA
6 12.2 12.5 +0.3 10.8 11.2 +0.4 0.2 0.2 0 1.7 1.5 —-0.2
7 11.2 11.6 +0.4 10.0 10.3 +0.3 1.2 1.3 +0.1 2.6 2.4 —-0.2
8 10.2 7.6 —2.6 9.4 6.8 —2.6 NA NA NA NA NA NA
9 14.7 14.6 —0.1 11.3 13.2 +1.9 1.4 2.1 +0.7 2.3 2.6 +0.3
10 16.2 14.2 —-2.0 14.5 125 —-2.0 2.6 1.7 —-0.9 3.5 2.8 —-0.7

V20, volume receiving at least 20 Gy; V30, volume receiving at least 30 Gy; TP1, treatment planning 1; TP2, treatment planning 2; NA, not assessable.

In a prospective series of 10 patients treated in the prone
position, Mitchell et al. assessed the inter- and intrafraction vari-
ations using an electronic PI device (12). The measurements were
performed on the portal images of the medial tangential beam
treating the whole breast. The authors took into account the gantry
angle deviation from the horizontal axis in order to evaluate more
accurately the patient setup along the anteroposterior axis. This
method was used due to the respiratory motion variability in the
sagittal plane. In this study, the median correction related to the
gantry angle was estimated at 2% and considered as negligible.
Therefore, in our work, we did not calculate this parameter.

In our study, the random and systematic errors remained below
5mm for the CLD. Regarding the ICM, the random and system-
atic errors were assessed at 4.3 and 6.9 mm, respectively. As the
target volume coverage and OAR exposure were not significantly
modified by the interfraction variations, 5-mm margins seem
relevant to delineate the PTV. Nevertheless, a 7-mm expansion
along the craniocaudal axis can be discussed.

If the presented results are close to those reported in the lit-
erature (16-23), they have to be cautiously interpreted. The CLD
and ICM are measured using a two-dimensional imaging, whereas
breast radiotherapy is performed using the 3D conformal tech-
nique. The target volume deformation, rotation, and shrinkage
are not considered in the portal image analysis (24). The lateral
shifts have not been assessed in our work. The cone beam-CT
(CBCT) provides 3D anatomical information and can reduce the
patient positioning uncertainties. The random and systematic
errors decreased using CBCT imaging (25). Similar results were
observed with cone beam tomosynthesis (26, 27).

In our study, the consequences of the interfraction movements
on the PTV coverage have been assessed by the V95 individual
variations. Meanwhile, other parameters, such as the conformity
index or the homogeneity index, have been used to evaluate the
target volume treatment in 3D conformal radiotherapy (28-30).
In this small cohort (10 patients), no relevant subgroup analysis
could be performed.

Moreover, the intrafraction movements, especially the respira-
tory motion, have not been measured in our work. During one-
single session, especially in IMRT, breathing movements can lead
not only to PTV dose heterogeneity but also to increased lung
and heart doses (31). Qi et al. reported the dosimetric variations

during one breathing cycle in patients treated with 3D conformal
radiotherapy for early-stage BC (32). Modifications of the tumor
bed coverage were estimated between 1 and 5% but the most sig-
nificant consequences were described for the internal mammary
node treatment: up to 28% of the volume receiving a minimum
dose of 45 Gy. No significant difference was reported regarding the
healthy tissue exposure. The dosimetric effects of the breathing
movements and the isocenter shifts were assessed in 16 patients
by Furuya et al. using three radiotherapy techniques: conventional
wedge, field-in-field, and irregular surface compensator plan (33).
The impacts of respiratory motion were similar from one tech-
nique to another. The published results showed a significant effect
of the isocenter position discrepancies along the anteroposterior
axis: reduction of the CTV V95 and increase of the ipsilateral lung
V20. The most important dosimetric consequences were reported
with the irregular surface compensator technique.

The effects of the setup uncertainties were also described in
patients treated with IMRT for BC (34-36). Considering the
wedge, simple, and full IMRT radiation techniques, van Mourik
et al. estimated random and systematic errors at about 3-4 and
1 mm, respectively (34). A suboptimal PTV treatment consecutive
to the setup uncertainties was observed in the wedge and simple
IMRT techniques. The full IMRT, performed without glancing
open fields, was the technique most affected by the breast remod-
eling, leading to a PTV underdosage. During the whole treatment
of four patients referred for helical TomoTherapy®, Goddu et al.
reported that the uncorrected discrepancies could lead to signifi-
cant dose reductions in PTV (35). The left lung exposure was not
significantly modified by these setup variations. In a series of 10
patients treated with standard IMRT, the individual systematic
errors were estimated at 5.7 mm along the lateral axis, 2.8 mm
considering the anteroposterior plane, and 2.3 mm longitudinally
(36). The individual random errors were 3.9 mm laterally, 3.5 mm
vertically, and 3.2 mm along the longitudinal axis. Considering the
daily PTV variations, the mean homogeneity index was 0.93.

Different techniques were assessed to reduce the uncertainties
related to the patient movements: Alpha Cradle® immobilization
device (6), prone positioning (12, 37). Fein et al. evaluated the
Alpha Cradle® device in 13 patients treated with adjuvant breast
radiotherapy (6). Patient setup was performed using on-line PI
(6). The random and systematic errors were 4.4 and 3.9 mm for
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the CLD; 6.3 and 6.1 mm for the ICM, respectively. The prone
and supine positions were prospectively compared in terms of
setup errors and respiratory motion (12). According to Mitchell
et al., in patients treated in the prone position, the use of fidu-
cial markers put on the CT scan simulation tattoos seemed
to reduce the random and systematic errors, respectively, esti-
mated at 1.32 and 0.47 cm in the anteroposterior plan (12). Kirby
et al. reported a more important systematic error in patients
treated in the prone position (3.1-4.3 versus 1.3-1.9 mm in the
supine position). On the other side, the chest wall and tumor
bed clip motion significantly decreased (0.5+0.2mm in the
prone position versus 2.7 £ 0.5 mm in the patients treated supine,
P <0.001) (37).

In terms of OAR exposure, the CLD is reliable to assess the
ipsilateral lung irradiation. Kong et al. reported a linear correla-
tion between the CLD and the percentage volumes of ipsilateral
lung receiving 20, 30, and 40 Gy (10). The ipsilateral lung vol-
ume exposed to high doses of irradiation significantly increased
when the CLD exceeded 30 mm (10). Bornstein et al. showed a
statistically significant relationship between the CLD calculated
on the simulation images and the volume of ipsilateral lung within
the tangential fields (38).
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As a conclusion, in this series of patients treated with adjuvant
radiotherapy for early-stage BC, limited interfraction variations
were observed using daily PI. Differences were larger along the
craniocaudal axis than in the sagittal plane. The reported vari-
ations had no significant impact on the target volume coverage
or OAR exposure. The 5-mm margins used to delineate the PTV
seems relevant, without jeopardizing the treatment quality. Our
results have to be confirmed using daily 3D imaging in a higher
number of patients.
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