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INTRODUCTION

Poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in cellular homeostasis,
including DNA transcription, cell-cycle regulation, and DNA repair (1, 2). PARPs can detect
DNA damage and bind to DNA single strand breaks (SSBs) through their N-terminal zinc finger
domains. DNAbinding activates theC-terminal catalytic domain, which hydrolyzesNAD+ to attach
poly ADP-ribose (PAR) polymers covalently to nuclear proteins, including PARP itself. Negatively
charged PAR polymers promote recruitment of DNA repair proteins, and auto-PARylation causes
dissociation of PARPs from DNA, allowing completion of DNA repair. In the absence of PARP
activity, unrepaired SSBs can lead to more deleterious double strand breaks (DSBs), which require
high fidelity, homologous recombination (HR) or low fidelity, non-homologous end joining (NHEJ)
for repair.

In vitro and in vivo studies have demonstrated that tumor cells harboring defects inDNArepair are
highly sensitive to PARP inhibitors, leading to genomic instability and cell death. Two publications
demonstrated the concept of synthetic lethality in BRCA-deficient cells treated with PARP inhibitors
(3, 4). Cells lacking functional alleles of BRCA are defective in HR repair and have an increased
susceptibility to cause tumor development. Loss of BRCA or inhibition of PARP alone has little effect
on in vitro and in vivo tumor growth; however, loss of function of both proteins enhances anti-tumor
activity. Restoring BRCA expression blocks the cytotoxic effects of PARP inhibitor treatment.

Several clinical PARP inhibitors are under investigation in Phase 2 and Phase 3 clinical trials as
monotherapy in cancers with DNA repair defects or in combination with radiation, chemotherapy,
or other targeted agents (Table 1). Progress in PARP inhibitor development has led to the recent
accelerated approval of Lynparza (olaparib) by theU.S. Food andDrugAdministration (5). Lynparza
is currently indicated as monotherapy for patients with advanced germline BRCA-mutated ovarian
cancer who have received three or more prior lines of chemotherapy. Lynparza was approved
with a companion diagnostic test to select patients with deleterious or suspected deleterious
BRCA mutations. PARP inhibitors are anticipated to have a much broader clinical application
in additional tumor types, particularly those with DNA repair defects and in combination with
chemotherapy and other targeted agents. In light of renewed interest in PARP inhibitors and the
recent approval of Lynparza, this review will highlight data of PARP inhibitors in in vitro and
in vivo cancer models and explore some of the clinical applications and challenges of PARP inhibitor
therapy.

MECHANISMS OF ANTI-TUMOR EFFECT OF PARP INHIBITORS

Poly (ADP-ribose) polymerase inhibitors are structurally similar in that they contain a nicotinamide
moiety and mimic the NAD+ substrate. PARP inhibitors competitively bind to the catalytic domain
of PARPs and inhibit PAR synthesis with half-maximal inhibitory concentration (IC50) values in
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TABLE 1 | PARP inhibitors in Phase 2 and Phase 3 clinical developmenta.

PARP inhibitor Clinical trial Therapy Tumor type

Olaparib Phase 2 Monotherapy Ovarian, peritoneal, fallopian tube, breast, colorectal, lung, Ewing’s sarcoma, prostate, pancreatic,
advanced tumors

Combination Breast, ovarian, peritoneal, fallopian tube, endometrial, gastric, prostate, lung, pancreatic

Phase 3 Monotherapy Breast, ovarian
Combination Ovarian, peritoneal, fallopian tube, gastric
Maintenance Ovarian, pancreatic

Veliparib Phase 2 Monotherapy Ovarian, fallopian tube, peritoneal, breast
Combination Breast, ovarian, peritoneal, fallopian tube, colorectal, lung, cervical, prostate, liver, glioblastoma,

melanoma, pancreatic, advanced tumors

Phase 3 Combination Breast, lung, glioblastoma

Rucaparib Phase 2 Monotherapy Breast, ovarian, fallopian, peritoneal, pancreatic

Phase 3 Combination Breast
Maintenance Ovarian, fallopian tube, peritoneal

Niraparib Phase 2 Monotherapy Ovarian

Phase 3 Monotherapy Breast
Maintenance Ovarian

Talazoparib Phase 2 Monotherapy Breast, ovarian, endometrial, advanced tumors

Phase 3 Monotherapy Breast

E7016 Phase 2 Combination Melanoma

aCompleted and active clinical trials obtained from www.clinicaltrials.gov, data accessed August 2015.

the low nanomolar range (6–8). PARP inhibitors were developed
to block the enzymatic activity of PARPs and prevent SSB repair
by inhibiting the base excision repair (BER) pathway, and ini-
tial clinical development focused on potentiating the effects of
chemotherapy and radiation (6, 9, 10). Subsequent studies demon-
strated that PARP inhibitors alone were cytotoxic in HR-deficient
cells (3, 4, 11). Based on these findings, a model was proposed
in which PARP inhibition causes unrepaired SSBs, which are
subsequently converted to DSBs, leading to synthetic lethality
in HR-deficient cells (4). However, knockdown of XRCC1, the
protein immediately downstream of PARP in the BER pathway
did not lead to synthetic lethality (12), suggesting that loss of
PARP activity is critical for synthetic lethality, but the loss of BER
is not.

Poly (ADP-ribose) polymerases function in other aspects of
DNA repair, and emerging data suggest other mechanisms of
action for the anti-tumor activity of PARP inhibitors in HR-
deficient cells (13, 14). One potential mechanism proposes that
PARP inhibition activates NHEJ in HR-deficient cells, leading
to genomic instability and cell death (12). In vitro studies have
demonstrated that PARPs can regulate components of the NHEJ
machinery, including DNA-dependent protein kinase (DNA-PK),
Ku70, and Ku80 (15–18). In HR-deficient cells, PARP inhibitor
treatment induced the activation of DNA-PK and phosphoryla-
tion of downstream substrates and increased NHEJ of a reporter
plasmid containing a DSB (12). Pharmacological blockade or
loss of NHEJ proteins reduced chromosomal aberrations and the
cytotoxic effects of PARP inhibition, indicating a role for NHEJ in
PARP inhibitor activity.

In vitro studies have demonstrated that the activity of PARP
inhibitors may also involve formation of deleterious PARP–DNA
complexes, which hinder DNA replication and repair (19–21).

Avian cells lacking PARP1 and PARP2 were resistant to olaparib
treatment and remained viable at concentrations greater than
10 μM (19). In contrast, olaparib caused significant cytotoxicity
in wild type cells and increased levels of γ-H2AX, a marker of
DNA damage. PAR polymers were undetectable by ELISA in
both olaparib-treated wild type cells and PARP-deficient cells,
suggesting that PARP inhibition is distinct from genetic deletion
of PARP.

A comparison of PARP inhibitors demonstrated comparable
inhibition of PAR synthesis by Western blot and ELISA (19,
20). In contrast, each PARP inhibitor showed varying ability
to induce PARP–DNA complexes in the presence of alkylating
agent. In the absence of PARP inhibitor, PARP1 was detected
in the nuclear soluble fraction by Western blot and accumulated
in the chromatin-bound fraction following PARP inhibitor treat-
ment. In tumor cells, BMN 673 (talazoparib) induced greater
accumulation of PARP1 and PARP2 in the chromatin-bound
fraction compared to olaparib and rucaparib. Niraparib induced
greater PARP–DNA binding than olaparib, and veliparib was the
least effective enhancer of PARP–DNA binding at concentrations
that maximally inhibited PARP enzymatic activity. PARP–DNA
binding was detected at pharmacologically relevant concentra-
tions and correlated with the cytotoxicity of each agent in vitro.
In vivo, enhanced PARP–DNA binding did not correlate with
better anti-tumor activity but resulted in increased toxicity (22).
The significance of differential PARP–DNA binding on effi-
cacy and tolerability requires further investigation in the con-
text of different tumor types and different PARP inhibitor and
chemotherapy regimens. The complex role of PARPs in cellular
homeostasis, including DNA repair, highlights the need to eval-
uate PARP inhibitors for modulating other biological functions
of PARPs.
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FUTURE CHALLENGES OF PARP
INHIBITOR DEVELOPMENT

Clinical evaluation of the pharmacodynamic (PD) activity of
PARP inhibitors has focused primarily on measuring inhibition
of ex vivo enzymatic activity or PAR incorporation in tumor
tissues and peripheral blood mononuclear cells (PBMCs). In a
Phase 0 clinical trial, the National Cancer Institute and Abbott
Laboratories validated a sandwich immunoassay to evaluate the
PD response of veliparib during clinical development (23–25).
The immunoassay measured changes in PARylated substrates col-
lected from peripheral blood and tumor biopsy samples. While
PD evaluations have demonstrated target engagement by veliparib
and other PARP inhibitors, it is currently unclear what level of
PARP inhibition is required to translate into a clinical response.
In the case of olaparib, patients with BRCA-deficient ovarian or
breast cancer demonstrated maximal PARP inhibition in PBMCs
at doses greater than 60mg BID olaparib capsules; however, dose-
dependent anti-tumor activity was observed at higher doses of 100
and 400mg BID olaparib capsules (26–28).

Several factors may contribute to the lack of a clear relation-
ship between PARP inhibition and clinical activity. Exploratory
analysis of olaparib pharmacokinetic (PK)/PD data suggested that
sustaining unbound steady-state trough concentrations above the
IC90 for PARP inhibition affords better clinical efficacy.1 These
results correlated with in vivo PK/PD modeling of mouse tumor
xenograft data that demonstrated a marked increase in DNA SSBs
when PAR levels were decreased bymore than 90%, and exceeding
this threshold improved the anti-tumor activity of olaparib in
BRCA-deficient tumors. A simulation of unbound steady-state
trough concentrations in patients receiving 100, 200, and 400mg
BID olaparib capsules indicated that patients receiving 400mg
BID achieved steady-state trough concentrations exceeding the
IC90 value for PARP inhibition. Other potential reasons for lack of
a PK/PD relationship include off-target effects of PARP inhibitors
or variability in PK data. Another possibility is that the cyto-
toxicity of PARP inhibitors may involve other mechanisms of
action.

To date, investigation of the mechanisms of resistance to PARP
inhibitor anti-tumor effects has been limited (29, 30). Poten-
tial mechanisms of resistance to PARP inhibitors may involve
restoration of HR or modulation of PARP itself. One potential
mechanism was demonstrated in the Capan-1 human metastatic
pancreatic adenocarcinoma cell line, which lacks a wild type
copy of BRCA while harboring a 6174delT mutant BRCA allele.
This mutation causes a frameshift in the normal open reading
frame (ORF), resulting in expression of truncated BRCA protein
and a deficiency in HR (31, 32). Analysis of Capan-1 clones
resistant to PARP inhibitors showed that additional mutations
(i.e., deletion, insertion, or deletion/insertion) within BRCA in
these cells rectified the 6174delT frameshiftmutation and restored
BRCA2 normal ORF and BRCA function. Additional evidence
that at least a partial restoration of HR can lead to resistance to

1Pharmacology/Toxicology NDA review: olaparib 2014. Available from: http:
//www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206162Orig1s000PharmR.
pdf

PARP inhibitors include secondary mutations in the BRCA gene,
restoring expression of wild type BRCA protein in patients (33)
and somatic mutation of TP53BP1 (34, 35).

In addition to restoration of HR, studies have also correlated
resistance to PARP inhibitors with PARP itself and PD markers
such as γ–H2AX (36, 37). In an in vivo study, responsiveness
of mice bearing TC-71 Ewing sarcoma tumors to a combination
of talazoparib and temozolamide was correlated with decreased
levels of total or cleaved PARP and increases in γ–H2AX; however,
tumors that were resistant to the combination treatment were
shown to have some cleaved PARP but no decrease in total or
cleaved PARP, or increases in γ–H2AX (38). Although the status
of the genes involved in HR was not evaluated in tumors tested in
this study, these results suggest that another potential mechanism
of resistance to anti-tumor effects of PARP inhibitors may involve
regulation of PARP itself.

The most concerning potential adverse reactions associated
with PARP inhibition are myelodysplastic syndrome and acute
myeloid leukemia (MDS/AML), especially in patients harboring
a germline BRCA mutation. BRCA1 is critically involved with
the Fanconi anemia proteins in repairing DNA damage, whereas
BRCA2 is itself a Fanconi anemia protein. Biallelic mutations of
BRCA2 are linked to Fanconi’s anemia, a genetic disorder char-
acterized by congenital abnormalities and a profound increase
in cancer predisposition, namely AML (39, 40). The U.S. Pack-
age Insert for Lynparza (olaparib) contains the following warn-
ing for the development of MDS/AML: MDS/AML have been
confirmed in 6 out of 298 (2%) patients enrolled in a single
arm trial of Lynparza monotherapy, in patients with deleteri-
ous or suspected deleterious germline BRCA-mutated advanced
cancers2. In a randomized placebo controlled trial, MDS/AML
occurred in 3 out of 136 (2%) patients with advanced ovarian
cancer treated with Lynparza. Overall, MDS/AML were reported
in 22 of 2,618 (<1%) patients treated with Lynparza. The majority
of MDS/AML cases (17 of 22 cases) were fatal, and the dura-
tion of therapy with Lynparza in patients who developed sec-
ondaryMDS/cancer-therapy relatedAMLvaried from<6months
to >2 years. All patients had previous chemotherapy with plat-
inum agents and/or other DNA damaging agents. The addi-
tion of further DNA damage induced by chemotherapy or other
environmental factors, coupled with enhanced impairment of
a compensatory repair pathway by means of PARP inhibition,
may prime patients with germline DNA repair deficiencies for
the development of MDS/AML. Monitoring of complete blood
counts and perhaps PBMCs for micronuclei is warranted for
patients receiving PARP inhibitors, and further investigations
should be performed for prolonged hematologic toxicity (see text
footnote 2).

CONCLUSION

Notwithstanding the current knowledge regarding the biological
role of PARP and its demonstrated clinical benefit in cancers with
germline BRCA mutations, future studies are needed to improve

2LYNPARZA™(olaparib) label: Available from http://www.accessdata.fda.gov/
scripts/cder/drugsatfda/
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the therapeutic potential of PARP inhibitors. For example, better
understanding of the contribution of the various mechanisms
of action in vivo, in the context of different PARP inhibitors
and different tumor types, together with better understanding of
mechanisms of resistance will aid in improving the therapeutic
potential of this class of drugs by optimizing patient selection (e.g.,
based on baseline or PARP inhibitor-mediated changes in HRD
profile) or optimizing selection of therapeutic agents in combi-
nation clinical trials by targeting separate mechanisms of drug

resistance. Additionally, studies are needed to identify predictive
biomarkers and to develop validated, diagnostic tests to extend the
therapeutic landscape of PARP inhibitors beyond BRCA-mutated
tumors (41–43).

AUTHOR NOTE

This article reflects the views of the authors and should not be
construed to represent FDA’s views and policies.
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