
October 2015 | Volume 5 | Article 2251

Review
published: 16 October 2015

doi: 10.3389/fonc.2015.00225

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Ignacio Perez De Castro,  

Spanish National Cancer Research 
Centre (CNIO), Spain

Reviewed by: 
Deborah Stroka,  

University of Bern, Switzerland  
Marcos Malumbres,  

Spanish National Cancer Research 
Centre (CNIO), Spain  

Adrian Thomas Saurin,  
University of Dundee, UK

*Correspondence:
Veronica Krenn  

veronica.krenn@imba.oeaw.ac.at; 
 Andrea Musacchio  

andrea.musacchio@mpi-dortmund.
mpg.de

†Present address: 
Veronica Krenn,  

IMBA-Institute for Molecular 
Biotechnology, Vienna, Austria

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the  

journal Frontiers in Oncology

Received: 10 August 2015
Accepted: 30 September 2015

Published: 16 October 2015

Citation: 
Krenn V and Musacchio A (2015) The 

Aurora B kinase in chromosome 
bi-orientation and spindle checkpoint 

signaling.  
Front. Oncol. 5:225.  

doi: 10.3389/fonc.2015.00225

The Aurora B kinase in chromosome 
bi-orientation and spindle checkpoint 
signaling
Veronica Krenn1*† and Andrea Musacchio1,2*

1 Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany, 2 Faculty of 
Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany

Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key 
player in chromosome segregation. As part of a macromolecular complex known as 
the chromosome passenger complex, Aurora B concentrates early during mitosis in the 
proximity of centromeres and kinetochores, the sites of attachment of chromosomes to 
spindle microtubules. There, it contributes to a number of processes that impart fidelity 
to cell division, including kinetochore stabilization, kinetochore–microtubule attachment, 
and the regulation of a surveillance mechanism named the spindle assembly checkpoint. 
In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex 
network of interactions that feed back on its localization and activation state. In this 
review, we discuss the multiple roles of Aurora B during mitosis, focusing in particular 
on its role at centromeres and kinetochores. Many details of the network of interactions 
at these locations remain poorly understood, and we focus here on several crucial out-
standing questions.

Keywords: centromere, kinetochore, spindle assembly checkpoint, kinase, phosphatase, Aurora B, chromosome 
passenger complex, bi-orientation

GeNeRAL ReMARKS

Cells executing mitosis are challenged in ways that can jeopardize their viability and survival (1). The 
duplicated chromosome pairs (sister chromatids) in the mother cell need to orient on the mitotic 
spindle so that they can be equally distributed to the two daughter cells after the cohesion that holds 
them together is dissolved at the metaphase-to-anaphase transition. This process of “bi-orientation” 
requires that the sister chromatids establish stable “end-on” interactions with microtubules emanat-
ing from opposite poles of the mitotic spindle (Figures  1A,B) (2–4). Sister chromatids that fail 
to bi-orient are mis-segregated into the wrong daughter cell, or separated from the bulk of cor-
rectly segregated chromosomes forming the primary nucleus of daughter cells and secluded into 
extra-nuclear structures called micronuclei. Either fate of mis-oriented chromosomes can have dire 
consequences for cell physiology (5, 6).

Aurora B is a member of the Aurora family of Serine/Threonine (S/T) protein kinases. Originally 
discovered as a gene required for maintenance of ploidy in Saccharomyces cerevisiae and named 
increase in ploidy-1 (IPL1) (8), Aurora B was later found to control several aspects of chromosome 
segregation in all eukaryotes (9–11). Two additional members of the Aurora family named Aurora 
A and Aurora C exist in mammals (12, 13). Substrates of these Aurora kinases usually conform to 
the consensus [RK]-[RK]-X-[TS]-Θ, where X is any residue and Θ is a hydrophobic or aromatic 
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residue. For instance, Aurora B phosphorylates human KNL1 
(CASC5) on the RRVSF motif, which, in the non-phosphorylated 
version, is a recruitment motif for protein phosphatase 1 (PP1) 
(14–17). Broad analyses of Aurora B substrates and consensus 

FiGURe 1 | Chromosome–spindle interactions. (A) A simple spindle with 
two chromosomes at metaphase. When chromosomes are bi-oriented, the 
sister chromatids are attached to microtubules, and the microtubules point to 
opposite spindle poles. (B) Two main modes of kinetochore–microtubule 
attachment predominate in mitosis. Lateral attachment (left) to the 
microtubule lattice (as opposed to the microtubule end) is typical of early 
phases of chromosome congression to the equatorial plane of the mitotic 
spindle and may not fully engage the core kinetochore machinery devoted to 
microtubule binding but rather molecular motors (7). “End-on” attachment 
(right) is typical of the final stages of attachment and involves core 
kinetochore machinery. (C) Schematic depiction of centromeres and 
kinetochores. Centromeres host CENP-A, the histone H3 variant, at much 
higher levels than other segments of the chromosome. CENP-A binds to a 
subset of 16 or 17 CCAN subunits, collectively represented as a blue oval. 
The KMN network binds directly to microtubules. (D) Various types of 
kinetochore–microtubule attachment modes, including erroneous 
attachments that require correction and that will engage the spindle assembly 
checkpoint (red flashes). Different “offenses” may provide a graded 
checkpoint response (variable size of the red flash), with lack of attachment 
providing a more robust response and merotelic attachment a weak one.

target sequences have been reported (18, 19). Although Aurora 
kinases share a similar consensus, distinct subcellular localiza-
tions ensure that they deliver activity to distinct substrates and 
regulate different aspects of mitosis (19, 20).

In this review, we discuss the role of Aurora B in the regulation 
of chromosome segregation, focusing in particular on the roles 
of Aurora B during prometaphase, the phase of mitosis during 
which chromosomes attempt to create stable interactions with 
spindle microtubules. Readers are also referred to comprehensive 
reviews that discuss the role of Aurora B also in other phases of 
mitosis (20, 21).  

iNTRODUCTORY CONCePTS i: 
CeNTROMeReS AND KiNeTOCHOReS

Sister chromatids interact with spindle microtubules through 
specialized and structurally complex protein assemblies known 
as kinetochores (22, 23). On each chromosome, the kinetochore 
is established on a unique genetic locus named the centromere 
(Figure 1C). Centromeres, which may consist of several million 
base pairs of DNA in metazoans, are specialized chromatin 
domains whose hallmark is the enrichment of the histone H3 
variant CENP-A (also known as CenH3) (24). At centromeres, 
CENP-A containing nucleosomes are embedded in histone 
H3-containing chromatin at a ratio that, even if estimated to be 
as little as 1 CENP-A nucleosomes over 25 H3 nucleosomes, is 
greatly superior to that in bulk chromatin (25).

CENP-A acts as a platform for the recruitment of kinetochore 
proteins collectively defined as the constitutive centromere-asso-
ciated network (CCAN), most of which localize at centromeres 
during the entire cell cycle (26). These proteins form the so-called 
“inner kinetochore.” Upon entry into mitosis, an additional 
protein complex, the Knl1 complex–Mis12 complex–Ndc80 
complex (KMN) network, is recruited to the CCAN. The KMN 
network in the “outer kinetochore” interacts directly with spindle 
microtubules (27) (Figure 1C).

iNTRODUCTORY CONCePTS ii: eRROR 
CORReCTiON AND THe SPiNDLe 
ASSeMBLY CHeCKPOiNT

Two feedback mechanisms control the process of kinetochore–
microtubule attachment during mitosis, and Aurora B contributes 
decisively to both of them. These pathways are named error cor-
rection (EC) and spindle assembly checkpoint (SAC, also known 
as mitotic checkpoint, metaphase checkpoint, or “wait anaphase 
signal”). Error correction is a “local” mechanism that allows 
kinetochores selectively to stabilize interactions with microtu-
bules that drive chromosome bi-orientation and to weaken those 
interactions that do not, such as the erroneous configurations 
known as syntelic and merotelic attachment (Figure  1D) (28). 
This description of EC summarizes the interpretation of pioneer-
ing chromosome micromanipulation experiments carried out 
over 45  years ago by Bruce Nicklas (29), but is nothing more 
than a statement of fact, partly because we are still far from a 
full molecular comprehension of EC. EC is believed to depend 
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FiGURe 2 | The spindle assembly checkpoint and error correction.  
(A) The SAC pathway originates at kinetochores and converges, through 
several steps, on the assembly of the mitotic checkpoint complex (MCC), 
which acts as the SAC effector. MCC has been proposed to target the 
complex of APC/C pre-bound to a second molecule of Cdc20 (which can act 
both as an APC/C co-activator and as an MCC subunit) (46, 47). APC/CCdc20 
promotes poly-ubiquitylation (Ub) of Cyclin B and Securin, promoting mitotic 
exit and separation of sister chromatids. MCC inhibits this activity of APC/
CCdc20 until all chromosomes have achieved bi-orientation, at which point the 
SAC becomes “satisfied” (it subsides). (B) In this model of Aurora B function, 
any kinetochore–microtubule interaction, even if erroneous, satisfies the SAC. 
Aurora B is not a SAC component, but its ability to recognize and correct 
improper attachment makes it activate the SAC indirectly through generation 
of unattached kinetochores (as an intermediate in error correction), which are 
considered the only source of SAC signal. (C) In this alternative model, any 
tensionless kinetochore is a source of SAC signal, albeit of different signal 
strengths (size of the red flashes). Aurora B is directly required both for error 
correction and for the SAC. (B,C) were adapted from Ref. (48).
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on the ability of the kinetochore–centromere system to detect 
tension, associated with bi-orientation, or lack of tension, associ-
ated with lack of bi-orientation. While tension at the bi-oriented 
chromatids suppresses error correction, lack of tension may not 
necessarily require error correction (e.g., when lack of tension is 
due to lack of attachment), but it will require it when kinetochores 
that are bound to microtubules fail to build tension (as in the case 
of syntelic or merotelic attachments, Figure 1D).

The KMN complex captures dynamic microtubules to cre-
ate load-bearing attachments (30, 31). For error correction to 
occur, kinetochore (KMN)–microtubule interactions need to 
be sufficiently dynamic to allow the destabilization of erroneous 
attachments. Aurora B is a key component of the error correction 
machinery (32, 33). Aurora B inhibition through small-molecule 
inhibitors or inhibitory antibodies stabilizes incorrect attach-
ments (32–36). Conversely, Aurora B overexpression causes 
continuous disruption of KT–MT attachments (37), while Aurora 
B re-activation allows the selective destabilization of incorrect 
attachments (38–40). Many of the proteins at the interface with 
microtubules are Aurora B substrates (41).

Similarly to the EC, the SAC also requires kinetochores (42, 
43). In contrast to the EC, however, the SAC has the ability to 
extend into a “global” signal that diffuses away from kineto-
chores and prevents mitotic exit in the presence of even a single 
unattached or improperly attached kinetochore (44). The SAC 
pathway converges on the assembly of a checkpoint effector com-
plex, the mitotic checkpoint complex (MCC), which targets and 
inhibits the anaphase-promoting complex or cyclosome (APC/C, 
Figure 2A). The activity of this ubiquitin (Ub) ligase targets Cyclin 
B and Securin, which are, respectively, the activator of the main 
mitotic “engine”, the Cdk1 kinase, and a stoichiometric inhibitor 
of the protease Separase, which is required for dissolution of 
sister chromatid cohesion. Proteasome-dependent destruction of 
Cyclin B and Securin upon their ubiquitination by the APC/C 
inactivates Cdk1 and activates Separase, respectively, triggering 
mitotic exit and sister chromatid separation (Figure 2A) (4, 45). 
Cells in which the checkpoint is altered or artificially inactivated 
undergo precocious mitotic exit in the presence of unattached 
or incorrectly attached chromosomes and are therefore prone to 
mis-segregation events (44).

The general role of Aurora B activity in the EC and the SAC has 
been widely debated (28, 49). Early models based on experiments 
with attenuated alleles of Aurora B or at non-saturating doses of 
small-molecule inhibitors identified in Aurora B an exclusive 
component of the EC machinery (Figure  2B). According to 
these models, Aurora B contributed indirectly to SAC activation 
by generating unattached kinetochores, which became identified 
as the only structures capable of activating the SAC (32, 50).

This view has been progressively revised, partly because the 
molecular evidence in favor of a direct role of Aurora B in SAC 
control has been growing (34–36, 48, 51–54) and partly because 
there has been a conceptual evolution regarding what the SAC may 
be monitoring at kinetochores, with a shift from a pure “microtu-
bule occupancy” model to an “intra-kinetochore tension” model 
(41, 55–58) (Figure  2C). Importantly, results obtained with 
different experimental approaches have caused the community 
to oscillate in their preference for a model or the other. However, 

a full assessment of the virtues and shortcomings of these models 
remains out of reach, as the molecular understanding of the con-
ditions that lead to EC and SAC activation or silencing remains 
rudimentary, at least in relation to the considerable complex-
ity of the process. Furthermore, while these two pathways are 
separable in their downstream components, they may be largely 
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or even completely non-separable in the sensory apparatus that 
activates or switches them off at the “outer kinetochore,” where 
they operate. For instance, cyclin-dependent kinase 1 (Cdk1), 
Aurora B, monopolar spindle 1 (Mps1), and budding uninhibited 
by benzimidazoles 1 (Bub1), all mitotic protein kinases, are 
required to promote correct kinetochore–microtubule-binding 
configurations, as well as for the SAC response (59). They are 
likely to regulate both phenomena at the same time and from the 
same place, the kinetochores. In this review, we focus on some 
of the molecular details that implicate Aurora B in these two 
pathways.

AURORA B iS A SUBUNiT OF THe CPC

Aurora B kinase is embedded in a multi-protein complex known 
as the chromosome passenger complex (CPC), whose subunits 
are codependent for stability and localization (60–64). The three 
additional CPC subunits are named inner centromeric protein 
(INCENP, and known as Sli15p in yeast)], Survivin (Bir1p) and 
Borealin (also known as CSC-1, Dasra, and Nbl1p) (63, 65–69) 
(Figure 3A). The CPC consists of two functionally distinct mod-
ules (20): a module delivering the catalytic activity, composed 
of Aurora B and a ~50-residue segment at the C-terminal end 
of INCENP, the so-called IN-box (62, 67, 70–74); and a module 
mediating localization, consisting of a ~45-residue segment at the 
N-terminal end of INCENP, Survivin, and Borealin (64, 75–84). 
The two modules are connected by the central part of INCENP 
(Figure 3B and see below).

Activation of Aurora B kinase arises from multiple regulatory 
steps, including the binding of the IN-box of INCENP around the 
Aurora B active site, the Aurora B-mediated phosphorylation of 
the IN-box on a Thr-Ser-Ser (TSS) motif, and the auto-phospho-
rylation of Aurora B at Thr232 (abbreviated as AB-T232-P) in the 
activation segment (70, 72, 85). Thus, Aurora B activation resem-
bles that of many other kinases, in that it requires interaction with 
a partner protein and phosphorylation. Phosphorylation at the 
TSS and at the Aurora B activation segment is likely to occur in 
trans (70) and may therefore be sensitive to the local concentra-
tion of the CPC (86, 87).

Besides the intrinsic mechanisms of regulation described 
above, Aurora B may also be controlled by extrinsic mechanisms. 
For instance, phosphorylation of Ser311 of Aurora B by check-
point kinase 1 (Chk1) may promote catalytic activation of Aurora 
B near kinetochores (88, 89). In addition, phosphorylation of the 
CPC targeting subunit Borealin by Mps1 has also been proposed 
to regulate Aurora B activity (90), but this remains controversial 
as neither Aurora B nor its activity are grossly perturbed by 
Mps1 inhibition (91–93). Furthermore, the protein TD-60 has 
been indicated as an additional CPC subunit required for CPC 
centromere targeting and Aurora B activation (94, 95). A recent 
study revealed that TD-60 is as a guanine nucleotide exchange 
factor (GEF) for the small Ras-like GTPase RalA, and that the 
latter modulates Aurora B activity and localization (96). While 
the mechanisms through which the RalA GEF activity of TD-60 
influences Aurora B localization and activity requires further 
investigation, it seems now clear that TD-60 is not part of the 
CPC.

One of the most exciting chapters in the study of Aurora B 
kinase has been the development of highly specific and selective 
chemical inhibitors, spurred by the identification of this kinase as 
a potential target in oncology (97). Leaving clinical implications 
aside (98), small-molecule ATP-competitive inhibitors such as 
Hesperadin and ZM447439 proved invaluable tools for acute 
mitotic inhibition of Aurora B function and for the investigation 
of its mitotic functions in basic research laboratories (34, 35).

THe LOCALiZATiON MODULe OF THe 
CPC: CeNTROMeRe LOCALiZATiON  
AND BeYOND

The localization module targets the CPC to the centromere, 
where the bulk of the CPC localizes during mitosis. Crucial for 
centromere targeting is the CPC subunit Survivin, a member of a 
family of inhibitor of apoptosis (IAP) proteins containing a BIR 
domain (99). While Survivin might have lost its function as inhibi-
tor of apoptosis, typical of other IAPs, its BIR domain has retained 
the ability of recognizing the N-terminus of target proteins. In 
Survivin, this ability is leveraged to bind a short N-terminal seg-
ment of Histone H3 (78, 80, 81) (Figure 4A). In fact, Survivin 
binds a short N-terminal segment of Histone H3 that must 
include a phosphorylated version of Thr3 (H3-T3-P) for efficient 
recognition (76, 78, 80, 81, 83, 84). The kinase responsible for 
this preeminently mitotic modification of Histone H3 is named 
Haspin (100). By recognizing H3-T3-P at centromeres, Survivin 
targets the CPC to the centromere (Figure  4B). Whether this 
H3-T3-P-dependent mechanism operates in yeast has remained 
unclear, because deletion of the yeast haspin-like kinases does not 
result in a growth defect phenotype (101). In yeast, a survivin-
dependent mechanism may rely on the interaction of the Survivin 
homolog Bir1 with Ndc10, a subunit of the CBF3 centromeric 
complex (102, 103).

Besides H3-T3-P, also the phosphorylation of Thr120 of 
Histone H2A by Bub1 kinase (H2A-T120-P, H2A-S121-P in 
fission yeast) has been implicated in centromere recruitment 
of the CPC (81, 104, 105) (Figure  4B). The role of this mark, 
which is detected at kinetochores but not at centromeres, is more 
elusive. It appears to be crucial to regulate a homeostatic circuit 
that dynamically controls the activity and abundance of protein 
kinases, including Plk1 and Aurora B, and protein phosphatases, 
including members of the protein phosphatase 2A (PP2A) 
family associated with the B56 regulatory subunit (PP2A-B56), 
at kinetochores and centromeres. Specifically, H2A-T120-P is 
believed to promote recruitment of Shugoshin proteins (SGOL1 
and SGOL2/TRIPIN in humans) (106, 107). These, in turn, 
control the recruitment of proteins that play a prominent role 
in error correction, including kinesin-13 family members such 
as MCAK, a microtubule depolymerase and Aurora B substrate, 
and the PP2A-B56 protein phosphatase complex, which balances 
abundance and activity of Aurora B and Plk1, as well as the phos-
phorylation of important CPC targets (108–118).

In addition to the recognition of histone marks, other mecha-
nisms have been implicated in CPC centromere recruitment or 
activation, such as post-translational modifications of Survivin, 
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FiGURe 3 | Structural organization of the CPC. (A) Schematic representation of human CPC subunits with main structural features. (B) Structural organization 
of the localization module of the CPC (PDB ID 2QFA) (77) and of the catalytic module (PDB ID 2BFX) (70). The linker between the N- and C-terminal regions of 
INCENP encompasses more than 800 residues. (C) Sequence of the putative coiled-coil region of INCENP shows that its features are hardly compatible with 
coiled-coil folding (due to insufficient number and irregular spacing of hydrophobic residues). pI defines isoelectric point.
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Borealin, and INCENP, including phosphorylation by Aurora 
B itself, Cdk1, Mps1, and Plk1 (90, 119–123). Direct binding 
of Borealin to double-strand DNA has also been reported (64). 
Finally, there is evidence that oligomerization of the localization 
module also contributes to its localization (64, 124). How these 
features may impinge on CPC centromere targeting remains 
poorly understood.

iNCeNP, THe BRiDGe CONNeCTiNG THe 
TwO CPC MODULeS

The functional properties of INCENP that have remained 
mechanistically obscure are now starting to emerge. INCENP is a 
rather large protein (918 residues for Isoform 1 in humans; source 
Uniprot: http://www.uniprot.org) (Figure 3A). Large parts of the 
INCENP primary sequence are low-complexity and unlikely to 
adopt a defined three-dimensional tertiary (and even second-
ary) structure. A predicted coiled-coil between residues 528 and 
791 of INCENP is often considered an exception. More careful 

scrutiny, however, leads to exclude that this segment of INCENP 
is a genuine coiled-coil. It contains too few hydrophobic residues 
to support coiled-coil oligomerization and its frequent stretches 
of positively and negatively charged residues (Figure  3C) may 
produce false-positive classifications as coiled-coils. Analysis of 
INCENP residues 528–791 with REPPER, a program that detects 
short repeats and predicts periodicities in protein sequences 
(125), suggests that it lacks the regular sequence pattern typical 
of coiled-coils. In agreement with this idea, a very recent study on 
avian INCENP showed that this region (residues 503–715, corre-
sponding to residues 528–791 of human INCENP in Figure 3A) 
folds as a single alpha helix (SAH) domain, rather than as a coiled-
coil (126). SAH can unfold reversibly under force, thus extending 
up to 2.5-fold over their rest length. Because the N-terminal part 
of the SAH domain contains a second microtubule-binding 
domain (126), in addition to the one already identified in the 
N-terminus of INCENP (residues 48–85 of the human protein) 
(60, 74, 127, 128), it is a potential candidate for regulation by 
microtubule attachment.
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FiGURe 4 | Mechanism of CPC recruitment to centromeres. (A) Crystal 
structure of the complex of Survivin with a peptide encompassing the 
N-terminal region of Histone H3 (PDB ID 4A0J). The peptide has sequence 
Ala-Arg-Thr(P)-Lys, where (P) indicates that Thr3 is phosphorylated. Asp71 
(D71) is implicated in the recognition of the free N-terminus of Ala2 (the 
N-terminal Met1 is removed by an aminopeptidase). (B) Haspin kinase 
phosphorylates Thr3 of histone H3 (H3-T3-P) in the centromere region to 
allow recruitment of the CPC. Bub1 kinase phosphorylates Histone H2A on 
Thr120 (H2A-T120-P) near kinetochores (i.e., the modification does not 
extend to centromeres). In principle, both H3-containing and CENP-A 
containing nucleosomes may contain this modification.
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INCENP also contains a large disordered region (residues 
48–527, Figure  3A), stuffed with phosphorylation sites. 
The UNIPROT (http://www.uniprot.org) reports at least 24 
phosphorylation sites in residues 119–514 of human INCENP. 
Phosphorylation of Thr388 in this segment has been implicated 
in binding and targeting of Plk1 (129). As discussed more 
thoroughly below, Cdk1-dependent phosphorylation of Thr59 
within this segment has important consequences for CPC 
localization.

THe SPATiAL SePARATiON MODeL OF 
AURORA B FUNCTiON

While it is clear that Aurora B substrates at centromeres and 
kinetochores undergo dynamic changes in their phosphoryla-
tion state during the relatively short time it takes kinetochores 
to attach to the spindle, it is uncertain to which extent these 
changes reflect the dynamic regulation of Aurora B activity by 
the intrinsic and extrinsic mechanisms discussed above (41). 
Rather, current models of Aurora B function focus primarily on 
the tension-dependent separation of Aurora B from its substrates 
as the basis of Aurora B regulation in EC and the SAC (41, 58). To 
appreciate this argument, it is important to explain the geometry 

of centromeres and kinetochores, their variation during bi-orien-
tation, and how Aurora B may position itself within this system. 
The size of kinetochores is roughly equivalent to the wavelength 
of visible light, and in first approximation kinetochores appear 
as diffraction limited “spots” in the light microscope. In HeLa 
cells, the distance between the centroids of “spots” correspond-
ing to inner kinetochore proteins in the two sister kinetochores 
(inter-kinetochore distance) grows from ~0.9 μm in the absence 
of microtubule binding in prometaphase (i.e., in the absence of 
tension) to ~1.4  μm upon bi-orientation at metaphase (when 
chromosomes are end-on-attached and under full tension) (130) 
(Figure 5A). Similar increases in inter-kinetochore distance have 
been measured in other cell types: inter-kinetochore distance 
increases from ~1.1 μm in the absence of microtubule binding to 
~2.2 μm upon bi-orientation in newt lung cells (131), and from 
0.72 to 0.94 μm in Drosophila S2 cells (57).

Thus, tension introduces macroscopic changes in the organi-
zation of the inter-kinetochore space between sister kinetochores. 
Importantly, tension also modifies the internal structure of 
the kinetochore, a condition referred to as intra-kinetochore 
stretch (Figure  5A). In S2 cells, for instance, the span of the 
kinetochore [from CENP-A to the centromere-proximal end of 
the Ndc80 subunit (also known as Hec1), measured along the 
inter-kinetochore axis] is ~65 nm in the absence of tension, and 
102 nm in the presence of tension (57) (Figures 5B,C). Similar 
tension-driven increases in stretch are observed within human 
and yeast kinetochores (132, 133). The precise structural changes 
underlying the establishment of intra-kinetochore tension, how-
ever, remain unknown.

The spatial separation model builds on the observation that an 
Aurora B FRET sensor shows constitutive, tension-independent 
phosphorylation when positioned close to Aurora B at the inter-
face between the centromere and inner kinetochore, but tension-
sensitive phosphorylation when positioned more distantly from 
the kinase (55) (Figures 5D,E). More specifically, Aurora B phos-
phorylates a FRET sensor located at the centromere–kinetochore 
interface (because fused to the CENP-B protein) regardless of 
attachment status and despite the very significant increase in inter-
kinetochore distance upon bi-orientation. Conversely, Aurora B 
phosphorylates the same FRET sensor now fused to a subunit of 
the Mis12 complex, in the outer kinetochore, when chromosomes 
are not under tension, but does so less effectively when tension 
is present at metaphase (55). Analogous observations have 
been made with bona fide Aurora B substrates (41, 55–58, 130, 
134) and Aurora B substrates located in the outer kinetochore 
become progressively dephosphorylated during the attachment 
process (134–136). Furthermore, artificial repositioning of 
Aurora B to the outer kinetochore prevents dephosphorylation 
of outer kinetochore substrates (55). The persistence of Aurora B 
phosphorylation on a sub-class of “proximal” substrates despite 
full tension suggests that the kinase activity of Aurora B may not 
per se be force dependent.

Thus, it appears that certain substrates, and in particular 
substrates in the KMN network that mediates the EC and SAC 
responses, become physically separated from the kinase as ten-
sion arises (41). In the absence of tension, such as in syntelic 
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FiGURe 5 | effects of tension on centromere and kinetochore structure. (A) Chromosome lacking tension (left) or under tension (right). The centroid of the 
distributions of proteins in the kinetochore, including CENP-B, CENP-A, CCAN subunits, and Mis12 (part of the KMN network) is represented as a circle along the 
inter-kinetochore axis. Each centroid has a defined coordinate along the axis (57). Microtubules cause changes in the position of the centroids. (B,C) Under low 
tension (B), inter-kinetochore distance in HeLa cells is ~900 nm (0.9 μm), whereas the distance between the centroids of the distributions of CENP-A and Mis12 is 
~65 nm in Drosophila and as little as ~40 nm in human kinetochores (132). CENP-B binds the CENP-B box in alpha-satellite DNA at centromeres, and extends 
slightly beyond CENP-A toward the centromere (55). Under high tension (C), inter-kinetochore distance grows to 1400 nm (1.4 μm), whereas the distance between 
the centroids of the CENP-A and Mis12 distributions grows to 100 nm (57). (D,e) A FRET sensor responding to Aurora B phosphorylation was fused either to 
CENP-B or to Mis12 (55). Under low tension (D), the sensor is phosphorylated regardless of its position, suggesting that Aurora B can reach both positions with 
similar efficiency. Under high tension (e), the outermost sensor cannot be phosphorylated efficiently (possibly because it becomes dephosphorylated), whereas the 
innermost sensor continues to be phosphorylated. (F) The phosphorylation potential of Aurora B decays very rapidly after the position defined by the innermost 
FRET sensor (fused to CENP-B) when chromosomes are under stretch. This rapid decay takes place in ~200 nm or less along the inter-kinetochore axis.
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attachment, substrates remain phosphorylated and attachments 
intrinsically unstable. In conclusion, the “phosphorylation 
potential” of Aurora B is dampened with a sharp edge within the 
very short distance that separates centromeres from kinetochores 
under tension, whereas it is largely insensitive to the considerable 
degree of stretching of the inter-kinetochore region (Figure 5F). 
This clearly suggests that Aurora B is able to read intra-kinetochore 
tension rather than inter-kinetochore tension, but how it achieves 
this has remained unclear.

ReADiNG iNTRA-KiNeTOCHORe 
TeNSiON: FROM CeNTROMeReS?

It was initially hypothesized that the spatial separation that 
promotes stabilization of kinetochore–microtubule attachment 
might be linked to the increase in the distance from centromeres, 
where the bulk of Aurora B is positioned, to kinetochores, where 
the substrates of Aurora B that mediate microtubule attachment 
are located (33). With increasing distances, indicative of end-on 
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FiGURe 6 | Two possible models to account for the gradient of Aurora 
B phosphorylation. (A) The “centromere gradient” model predicts that the 
CPC becomes recruited to centromeres as illustrated in Figure 4B, and it 
then dissociates from them, creating a gradient of CPC concentration (and 
therefore, by inference, of substrate phosphorylation). We note, however, that 
it is unlikely that this gradient could account for the sharp transition of 
phosphorylation potential of Aurora B within the very limited scale length of 
the kinetochore (see Figure 5). (B) An alternative model posits that an active 
form of the CPC is anchored near the kinetochore, and that the centromere 
pool is not strictly required for function (it was therefore omitted from the 
drawing). Proximity to H2A-T120-P might lead to the activation of this 
kinetochore pool of the CPC. Interactions with kinetochore subunits are also 
possible.
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attachment, the ability of Aurora B at centromeres to reach its 
substrates would progressively decrease, allowing a progressive 
stabilization of the kinetochore–microtubule interface. Implicit 
in this model is the existence of a sharp and separable cen-
tromere–kinetochore boundary, but a precise definition of what 
this boundary looks like is missing. If we consider that CENP-A 
is embedded in centromeric chromatin containing abundant 
histone H3 nucleosomes, H3-T3-P is likely to extend to the 
immediate periphery of kinetochores, and there is no obvious 
reason why the CPC should not bind to these H3 nucleosomes. It 
is unknown whether these nucleosomes become separated from 
CENP-A containing nucleosomes when tension builds up follow-
ing microtubule end-on attachment to kinetochores.

Because the subunits of the CPC turn over at centromeres with 
halftimes (t1/2) of <1  min (137–139), an alternative hypothesis 
is that a gradient of Aurora B substrate phosphorylation may 
be created by initial recruitment of the CPC to H3-T3-P to the 
centromere and by subsequent release and diffusion from cen-
tromeres (41) (Figure 6A). Indeed, this mechanism (“centromere 
gradient”) can create gradients of Aurora B substrate phospho-
rylation (140–142). We note, however, that such gradients are 
relatively flat and form over length scales of several micrometers 
(140–142). It is therefore unlikely that this diffusible gradient of 
Aurora B would generate the very sharp edge of activity observed 
within the ~100 nm (0.1 μm) length scale of the kinetochore.

The idea that the phosphorylation gradient of Aurora B is 
created by centromere recruitment and release of the CPC is also 
at odds with the results from experiments in which centromere 

enrichment of the CPC was prevented by targeted mutations in 
CPC subunits. For example, a Survivin mutant impaired in its 
ability to bind H3-T3-P supports chromosome segregation and 
long-term viability of DT40 cells deprived of endogenous Survivin 
(82). Similarly, the deletion of residues 1–228 of Sli1 (Sli15ΔN) 
rescues the lethality of BIR1 in S. cerevisiae, even if Sli15ΔN does 
not localize to centromeres (see below) (101). Furthermore, phos-
phorylation of an inner kinetochore substrate of Aurora B, Ser7 of 
CENP-A (CENP-A-S7-P) is unaltered after depletion or inhibition 
of Haspin with 1 μM 5-ITu (5-iodotubercidin), a concentration of 
the drug that clears centromeres of H3-T3-P (78, 143). Altogether, 
these observations suggest that a gradient of Aurora B substrate 
phosphorylation at the centromere–kinetochore interface can be 
established also in the absence of Aurora B at centromeres.

… OR FROM KiNeTOCHOReS?

An alternative hypothesis for Aurora B function is that the 
functionally relevant pool of Aurora B resides near or at kine-
tochores, rather than centromeres (22, 59). Strikingly, it was 
shown that centromeric accumulation of Aurora B is subordinate 
to kinetochore establishment. An ectopic kinetochore built at a 
chromosome site containing a Lac-O array, by tethering seg-
ments of the kinetochore CCAN subunits CENP-C or CENP-T, 
promotes accumulation of H3-T3-P and of the CPC in an area 
comprised between the two ectopic tethering sites, suggesting 
that the ectopic kinetochore dictates the position of the “cen-
tromere” (144). Remarkably, the CENP-C and CENP-T segments 
used in these experiments do not recruit CENP-A, suggesting 
that the latter is not required for CPC recruitment at the ectopic 
“centromere.” Establishment of this ectopic centromere likely 
involves kinetochore-associated Bub1, which may promote the 
recruitment of Sgo1. Sgo1, in turn, plays a crucial role in the 
establishment and protection of centromeric cohesion (104, 
107, 115, 145). In S. cerevisiae, the core centromere (a ~125 bp 
segment on which the kinetochore is built) and two kinetochore 
proteins, Iml1 and Chl4 (respectively, related to the CCAN 
subunits CENP-L and CENP-N in humans), are important for 
the spreading of Sgo1 to pericentromeric regions (146).

Further emphasizing the role of kinetochores in CPC localiza-
tion is the observation that the abundance of the centromere pool 
of Aurora B in diploid human cells is controlled dynamically by 
kinetochore attachment status, with misaligned chromosomes 
showing an enrichment of Aurora B (135). En passing, this 
dynamic kinetochore-driven enrichment of Aurora B at cen-
tromeres requires Aurora B and Plk1 activity, but not Mps1’s 
(135). The dispensability of Mps1 is further testified by experi-
ments showing that chemical inhibition of Mps1 activity does not 
affect the total levels of H3-T3-P, the phosphomark that recruits 
the CPC to centromeres (124). However, Mps1 may modulate the 
timing of CPC accumulation at the centromere (147).

The role of kinetochores is further supported by the obser-
vation that Knl1, one of the outer kinetochore KMN subunits, 
is required for Aurora B activation, and that the active form of 
Aurora B (monitored through AB-T232-P) resides at kineto-
chores rather than at centromeres (148–150). Identifying the 
precise reason for this is a crucial question for future analyses. 
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FiGURe 7 | “Dog leash” model of CPC function. (A) The idea behind the “dog leash” model is that the localization module of the CPC (the owner) is tethered at 
the base of kinetochores. INCENP acts as a “dog leash” that allows the “dog,” Aurora B, to phosphorylate substrates only within limits defined by the length of the 
linker (which may vary, e.g., as a consequence of phosphorylation). This defines a boundary between regions where the dog is allowed and regions where it is not. 
(B,C) Application of the dog leash model to kinetochores. Under low tension (B), Aurora B can reach out in the kinetochore and phosphorylate substrates there. 
Under high tension (C), substrates (e.g., in the KMN network) have crossed the boundary defined by the leash and become unreachable. Note that in this drawing 
the CPC is tethered at the base of the kinetochore and its position is stationary, but this may not be the case and tension might increase its distance from the 
CENP-A base of the kinetochore. The function of a phosphatase is implicit in the model.
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It is plausible that the centromere, contrary to the prometaphase 
kinetochore, represents a domain of high phosphatase activity 
that prevents the accumulation of the active form of Aurora B. 
The kinetochore pool of Aurora B was recently observed under 
conditions of Haspin inhibition, and was shown to depend on 
dimerization of Borealin (124).

Sli15ΔN, the Sli15 mutant discussed in the previous section, is 
also observed at kinetochores in cells depleted of Bir1/Survivin, 
suggesting that kinetochore localization of this mutant is survivin 
independent (101). Remarkably, while the Sli15ΔN mutant res-
cued chromosome segregation and the lethality associated with 
loss of Bir1/Survivin in S. cerevisiae, it was synthetic lethal with 
two normally non-essential CCAN subunits at the kinetochore, 
Mcm21 and Ctf19 (respectively, homologous to CENP-O and 
CENP-P of higher eukaryotes) (101, 151). These two proteins 
and their binding partners Okp1 and Ame1 (considered to be 
homologous to CENP-Q and CENP-U, respectively) have been 
previously shown to promote kinetochore recruitment of the 
CPC and to be necessary for the error correction activity of the 
CPC in S. cerevisiae (152–154).

How Aurora B is recruited to kinetochores is unclear, but a 
hint comes from the observation that INCENP is phosphorylated 
on Thr59 (INC-T59-P) by Cdk1 kinase, the master regulator of 
cell division (64, 129, 155). A phosphomimetic T59E mutant 
causes INCENP to persist on chromosomes rather than to 
become relocated on the central spindle at anaphase (155, 156). 
With the decline in tension upon sister chromatid dissolu-
tion in anaphase, the T59E mutant causes the re-activation of 
typical Aurora B-dependent events at kinetochores, including 
the recruitment of Mps1, Bub1, and BubR1. Thus, “stripping” of 
the CPC from centromeres might be required to prevent EC and 
SAC re-activation during anaphase. However, retention of CPC 
localization is per se not sufficient for a complete re-activation of 
these pathways (156–160).

Of note, both H3-T3-P and H2A-T120-P are removed from 
centromeres at anaphase (81, 161), suggesting that the T59E 
INCENP mutant may not be retained on chromosomes through 
these phosphomarks but via a different, currently uncharacter-
ized interaction. Phosphorylation of INC-T59-P may prevent an 
interaction of INCENP with the MKLP2 kinesin, which is required 
to relocate the CPC to the central spindle at anaphase (156, 162, 
163). Alternatively, it might mediate a direct interaction with one 
or more kinetochore subunits. This pathway is conserved in S. cer-
evisiae, where dephosphorylation of Cdk1-dependent sites on Sli15 
was shown to be important for CPC relocation at anaphase (123).

Thus, the active CPC pool that generates the intra-kinetochore 
phosphorylation gradient discussed above may reside within 
kinetochores, rather than being delivered there by a diffusible 
gradient of the kinase (Figure 6B). How does this kinetochore 
pool of the CPC generate the observed phosphorylation gradient 
within kinetochores? We have previously proposed that INCENP 
might act as a flexible arm whose maximal extension limits the 
reach of Aurora B within kinetochores (22). In this “dog leash” 
model, intra-kinetochore stretch promoted by microtubule bind-
ing might create relative movements of the Aurora B substrates 
relative to the tethered CPC, until substrates become unreach-
able by the kinase (Figure 7). As discussed above, the coiled-coil 
domain of INCENP has been recently shown to contain a SAH 
domain (126). In agreement with the “dog leash” model, it was 
shown that the length of the SAH domain modulates the ability 
of Aurora B to reach its substrates in the centromere and in the 
outer kinetochore (126).

… OR FROM MiCROTUBULeS?

Yet, another hypothesis is that Aurora B performs its functions 
from microtubules (101). This theory builds on previous work 
characterizing INCENP/Sli15 as a microtubule-binding protein 
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FiGURe 8 | A model for localization of CPC. The initial step in 
accumulation of CPC to centromeres may involve Cdk1/Cyclin B, which 
phosphorylates INCENP-T59 and possibly other sites on CPC. Initial CPC 
activity at kinetochores recruits Bub1, which in turn, after phosphorylating 
H2A-T120, promotes recruitment of Sgo1, PP2A, and Plk1. These, in turn, 
promote activation of Haspin and centromere accumulation of the CPC. See 
main text for additional detail.
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(discussed above). Indeed, Sli15ΔN, the already discussed dele-
tion mutant rescuing the lethality of the bir1 deletion in S. cer-
evisiae, localizes strongly to microtubules (101). Another recent 
study suggests that microtubules regulate Aurora B localization 
and activity in prometaphase (164). Albeit attractive, the hypoth-
esis that microtubule localization is sufficient for CPC function 
requires further evaluation, not least because CPC function 
is delivered also in cells lacking microtubules altogether (e.g., 
because treated with spindle poisons). We reason that because 
the Sli15ΔN mutant retains kinetochores localization, the most 
parsimonious interpretation of its ability to suppress the lethality 
of the bir1 deletion is that it does so from kinetochores.

A MODeL FOR CPC LOCALiZATiON  
AND FUNCTiON

Based on the discussion above, we propose a tentative model for 
the mechanism of CPC localization (Figure 8). Cdk1-mediated 
phosphorylation of INCENP may be the initial trigger causing 
the recruitment of a pool of the CPC to kinetochores through 
interactions with yet to be identified subunits, possibly within 
the CCAN at the inner kinetochore. At kinetochores, Aurora 
B contributes to the recruitment of Bub1 kinase, which creates 
H2A-T120-P to recruit a kinetochore pool of Sgo1 (107, 115). The 
latter is responsible for the homeostatic control of phosphoryla-
tion at kinetochores through recruitment of PP2A phosphatase 
and Polo-like kinase 1 (Plk1). How these proteins interact at 
kinetochores is largely unclear and requires further analysis.

We surmise that execution of this pathway may have two 
main consequences: (1) limiting the activation of Aurora B to the 
kinetochore pool and (2) igniting a positive feedback loop that 
promotes Haspin activation and further CPC accumulation at 
centromeres via phosphorylation of H3-T3-P in neighboring H3 
nucleosomes. Aurora B itself, Plk1, Bub1, and, to a lesser extent, 
Mps1 may be involved in this positive feedback loop (62, 120, 
121, 124, 135, 145, 147, 165). Although Bub1 acts downstream 
from Mps1 in the SAC pathway (3), there is significant residual 
Bub1 at kinetochores of cells in which Mps1 activity has been 
inhibited (91, 92).

Of note, H2A-T120-P is limited to kinetochores (115). 
Although it has been proposed that the CPC may localize at 
the intersection of H2A-T120-P and H3-T3-P (81), the overlap 
between these two marks may be limited to the inner kine-
tochore, whereas the localization domain of Aurora B is broader 
and clearly extends to the centromere. However, H2A-T120-P 
may contribute, by recruiting Shugoshin, to limit the activation 
of Aurora B to the kinetochore pool (149), although the details of 
this mechanism remain obscure. Sgo1 may also provide another 
anchoring point for the CPC at kinetochores, as the BIR domain 
of Survivin recognizes the N-terminal region of Sgo1 (76).

MeCHANiSMS OF eRROR CORReCTiON

A comprehensive picture of the contribution of Aurora B to the 
establishment of bi-orientation is still missing, but there has 
been substantial progress in recent years. Importantly, Aurora 
B has also been shown to regulate the structural stability of the 

kinetochore. For instance, it phosphorylates the CCAN subunit 
CENP-C/Mif2 to confer robustness to kinetochore function 
(166). In addition, phosphorylation of human Dsn1/Mis13 at 
two closely spaced residues (S100 and S109) increases the binding 
affinity of the Mis12 complex for CENP-C (42, 134, 166–171).

As already discussed above, anaphase retention of the CPC 
on kinetochores by expression of the T59E INCENP mutant or 
by suppression of MKLP2 (see above) leads to loss of tension 
that re-activates Aurora B-dependent pathways, including re-
recruitment of Mps1, Bub1, and BubR1 (156). Nevertheless, 
kinetochores remain attached to their microtubule fibers under 
these conditions, indicating that re-activation of Aurora B is 
not sufficient for error correction. The crucial missing factor 
is the activity of Cdk1, which declines at anaphase due to 
degradation of Cyclin B. Artificial retention of Cdk1 activ-
ity in cells that have undergone sister chromatid separation 
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leads to extensive destabilization of kinetochore–microtubule 
 attachments (158, 159, 172).

Aurora B contributes at least three, partly related functions, to 
the process of bi-orientation: (1) the modulation of microtubule-
binding affinity of the kinetochore to allow or prevent maturation 
of attachments; (2) the regulation of microtubule dynamics by 
controlling the activity and localization of microtubule-asso-
ciated proteins; (3) the control of the localization of additional 
proteins involved in the regulation of kinetochore–microtubule 
attachment, including protein phosphatases that antagonize the 
phosphorylation of Aurora B substrates (4, 173).

A widely studied example of how Aurora B modulates the 
affinity of kinetochores for microtubules is the phosphorylation 
of multiple residues on a disordered and positively charged 
~80-residue tail at the N-terminus of Ndc80/Hec1, a subunit of 
the Ndc80 complex (30, 31, 174–178). This segment of Ndc80 
neighbors a calponin-homology (CH) domain that binds directly 
to microtubules (174, 179). Different models have been proposed 
for how Ndc80 phosphorylation modulates the binding affinity of 
the Ndc80 complex for microtubules (174, 175, 178, 180–182). A 
rigorous recent analysis suggested that each new phosphorylation 
event on the Ndc80 tail determines a relatively small decrease in 
microtubule-binding affinity by the Ndc80 complex, regardless 
of which specific position, among the eight or nine available, 
becomes phosphorylated (177). In this model, the phospho-
rylation sites of the Ndc80 tail configure a “rheostat” capable of 
increasing the microtubule-binding affinity of individual Ndc80 
complexes by a factor as small as 20- and as large as 100-fold 
when transiting from a fully phosphorylated form of the protein 
to a fully dephosphorylated one (174, 177). Because the degree 
of phosphorylation of the Ndc80 tail is maximal when tension 
is low (e.g., in the absence of microtubules) (148), it is plausi-
ble that dephosphorylation of the Ndc80 complex is a gradual 
process that occurs concomitantly with the generation of tension 
within kinetochores. Consistent with this hypothesis, expression 
of a non-phosphorylatable mutant of the Ndc80 complex leads 
to hyper-stretched kinetochore–microtubule attachment and 
frequent attachment errors (31, 148, 181). Ndc80 has also been 
shown to have a direct influence on the dynamics of kinetochore 
microtubules, and Ndc80 phosphorylation may influence this 
property (183). Importantly, another Aurora family member, 
Aurora A, has also been very recently implicated in this correc-
tion mechanism (184, 185).

In addition to microtubule binding by the KMN network, 
other Aurora B substrates are important for the stabilization 
of the kinetochore–microtubule interface. The Dam1 complex 
in S. cerevisiae and the SKA complex in higher eukaryotes are 
structurally unrelated but may perform analogous functions as 
stabilizers of kinetochore–microtubule attachment (186–193). 
Contrary to the Ndc80 complex, both the Dam1 and the SKA 
complexes are able to form processive, load-bearing attachments 
to depolymerizing microtubule in vitro, and both contribute to 
retaining the Ndc80 complex at depolymerizing microtubule tips, 
possibly enhancing the overall processivity of microtubule bind-
ing (191–197). Importantly, Aurora B phosphorylation negatively 
regulates the association of the SKA and Dam1 complexes with 
Ndc80 (194–196, 198–201). An analogous pattern is also observed 

for the kinetochore recruitment of another microtubule-binding 
complex, the Astrin–SKAP complex (202). Thus, recruitment of 
these additional microtubule-binding complexes likely “seals” the 
kinetochore–microtubule interface of bi-oriented sister chroma-
tids on which the phosphorylation of Aurora B has already faded.

Aurora B also controls kinetochore localization and activity 
of the non-conventional kinesin-13 family member mitotic 
centromere-associated kinesin (MCAK, Kif2C), which plays 
an important role in error correction as a microtubule depoly-
merase at microtubule ends (39, 203–210). Kinetochore and 
centromere recruitment of MCAK requires Aurora B phospho-
rylation of MCAK (203, 206, 210) and the presence of Sgo2 (113, 
114, 118, 211).

Also dependent on Aurora B is the recruitment of CENP-E, a 
kinesin that plays an important role in the initial, lateral attach-
ment of kinetochores to microtubules that precedes end-on 
attachment (7, 35, 212, 213). Conversion from an initial lateral 
attachment to end-on attachment occurs also in budding yeast 
(214). It has been proposed that lateral attachments may be insen-
sitive to Aurora B activity, and therefore may be able to provide a 
mechanism for establishment of initial kinetochore–microtubule 
attachments even when Aurora B activity is high (4, 200).

Finally, Aurora B is in an antagonistic relationship with 
protein phosphatases, most notably of the protein phosphatase 
1 (PP1) and PP2A-B56 families (4). These phosphatases counter 
phosphorylation by Aurora B kinase and other downstream 
kinases both in the EC and in the SAC (15, 109, 215–218). Many 
details of the complex molecular mechanisms subtending to the 
antagonism of Aurora B and PP1 and PP2A phosphatases remain 
to be elucidated. The following examples illustrate the complexity 
of this regulation.

Distinct interactions of the B56 regulators with Sgo1, Sgo2, 
and with the checkpoint component BubR1 recruit the PP2A 
holoenzyme to centromeres and kinetochores during mitosis 
(108, 115, 211, 219). The interaction of PP2A-B56 with BubR1 
requires the so-called kinetochore attachment regulatory domain 
(KARD) motif of BubR1, which undergoes multisite phospho-
rylation (presumably) at kinetochores, partly mediated by Plk1 
(219). Interference with the interaction of PP2A with the KARD 
domain leads to an elevation of Aurora B substrate phospho-
rylation in the outer kinetochore and prevents the stabilization 
of kinetochore–microtubule attachment (219).

Repo-Man, a protein scaffold that interacts with the PP1 phos-
phatase, is responsible for the clearance of the Haspin-mediated 
phosphorylation of H3-T3-P (161). Aurora B counteracts the 
chromatin recruitment of Repo-Man by phosphorylating it on 
Ser893, thus ultimately preventing the dephosphorylation of 
H3-T3-P. Dephosphorylation of Ser893, which might follow the 
release of the CPC from its centromeric localization at anaphase, 
requires an interaction of Repo-Man with PP2A, which is medi-
ated by a motif closely related to the KARD motif of BubR1 (220).

Kinetochore recruitment of PP1 requires interactions with 
Knl1 and with CENP-E (15, 16, 221). Aurora B prevents kine-
tochore targeting of PP1 by phosphorylating a PP1-docking motif 
on Knl1 (15, 16). In S. cerevisiae, a requirement for kinetochore 
recruitment of PP1 to Knl1 (known as Spc105 in this organism), 
without which the SAC cannot be silenced, resulting in cell 
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lethality, can be bypassed if Aurora B activity is compromised 
(16). Both PP1 and PP2A have been implicated as suppressors 
of  the Mps1-dependent phosphorylation of the multiple Met- 
Glu-Leu-Thr (MELT) repeats of Knl1 that provide a docking site 
for the Bub1/Bub3 complex at kinetochores (215, 216).

AURORA B iN THe SAC

The SAC effector MCC consists of three SAC proteins, Mad2 
(mitotic arrest deficient 2), Bub3 (budding uninhibited by benzi-
midazoles 3), BubR1 (Bub1-related 1, the human ortholog of yeast 
Mad3), and the APC co-activator Cdc20. Additional SAC compo-
nents are Mad1, the kinases Mps1 (monopolar spindle protein 1), 
and Bub1 (budding uninhibited by benzimidazoles 1), and, lim-
itedly to metazoans, the components of the  Rod-Zwilch-ZW10 
complex (RZZ). All SAC components contribute to the formation 
of the MCC and therefore to APC/C inhibition (3, 45).

The mechanisms through which Aurora B regulates the SAC 
are likely to be closely interwoven with the mechanisms that 
trigger error correction. As already pointed out in the previous 
paragraph, retention of Aurora B activity on chromosomes during 
anaphase is insufficient to cause error correction, but is sufficient 
to recruit bona fide SAC components, such as Mps1, Bub1, and 
BubR1, despite the retention of robust kinetochore fibers (156, 
158–160, 172). This observation argues that Aurora B plays a direct 
role in the recruitment of the SAC components also in the absence 
of error correction and of unattached kinetochores. Incidentally, 
the observation that Mps1 can be recruited to anaphase chromo-
somes that have retained kinetochore fibers needs to be reconciled 
with the recent proposition that microtubules compete directly 
with Mps1 localization to kinetochores (222, 223).

Aurora B appears to occupy an upstream position in the 
pathway of recruitment of SAC components, as its inhibition 
prevents kinetochore recruitment of all other SAC components 
(35, 48, 52, 224, 225). Co-inhibition of Aurora B and Mps1 has 
profound synergistic effects in the impairment of SAC signaling 
(48, 52). Aurora B inhibition prevents Mps1 recruitment, and 
artificially tethering Mps1 to the kinetochore bypasses the check-
point requirement for Aurora B in human cells, suggesting that 
a primary function of Aurora B in the SAC is the recruitment of 
Mps1 (51, 52). Conversely, when a downstream SAC component, 
such as Mad1:Mad2 is tethered to kinetochores, the resulting 
mitotic arrest depends on Aurora B (51, 226, 227).

Mps1 becomes recruited to the Ndc80 complex of the kine-
tochore (222, 223, 228, 229). The precise role of Aurora B in 
the recruitment of Mps1 remains unclear, but a role of Ndc80 
phosphorylation has been suggested (223, 229). However, the 
observation that Aurora B activity becomes at least partly dis-
pensable for kinetochore recruitment of Mps1 when the Mps1 
TPR region is deleted suggests that Aurora B does not need to 
generate a docking site for Mps1 on Ndc80 but rather regulates a 
conformational transition within Mps1 (230).

After its Aurora B-dependent recruitment to kinetochores, 
Mps1 promotes the recruitment of downstream SAC component 
by phosphorylating Knl1 on multiple MELT repeats to dock the 
Bub1:Bub3 complex (231–234). The latter, in turn, elicits the 
formation of a comprehensive assembly of SAC protein that may 
facilitate SAC signaling from kinetochores (235–240).

CONCLUSiON

Aurora B and the CPC are crucial for successful chromosome 
segregation during cell division. The two pathways Aurora B con-
trols, error correction and the SAC, are tightly interwoven and 
interdependent. Both appear to rely on spatial control of Aurora 
B activity, but the precise molecular basis for this spatial control 
remains unknown. Future analyses will have to rigorously test the 
implications of the models that have been proposed to explain the 
spatial regulation of Aurora B activity, including the “centromere 
gradient” model and the “dog leash” model. It is hoped that global 
analyses of Aurora B substrate phosphorylation within the frame-
work of predictable alterations of CPC and kinetochore function 
will finally shed light on the molecular basis of a mechanism that 
is indispensable for life.
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