
October 2015 | Volume 5 | Article 2281

Original research
published: 16 October 2015

doi: 10.3389/fonc.2015.00228

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Mar Carmena,  

The University of Edinburgh, UK

Reviewed by: 
Bernd E. R. Nuernberg,  

University of Tuebingen Hospitals and 
Clinics, Germany  

Deilson Elgui De Oliveira,  
Faculdade de Medicina de 
Botucatu – UNESP, Brazil

*Correspondence:
Erica A. Golemis  

erica.golemis@fccc.edu

†Anna S. Nikonova and Alexander Y. 
Deneka have contributed  

equally to this work.

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the 

journal Frontiers in Oncology

Received: 08 June 2015
Accepted: 01 October 2015
Published: 16 October 2015

Citation: 
Nikonova AS, Deneka AY, Eckman L, 
Kopp MC, Hensley HH, Egleston BL 

and Golemis EA (2015) Opposing 
effects of inhibitors of Aurora-A and 

EGFR in autosomal-dominant 
polycystic kidney disease.  

Front. Oncol. 5:228.  
doi: 10.3389/fonc.2015.00228

Opposing effects of inhibitors 
of aurora-a and egFr in  
autosomal-dominant polycystic 
kidney disease
Anna S. Nikonova1† , Alexander Y. Deneka1,2† , Louisa Eckman1, Meghan C. Kopp3 ,  
Harvey H. Hensley1 , Brian L. Egleston1 and Erica A. Golemis1*

1 Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA, 2 Kazan Federal University,  
Kazan, Russia, 3 Cancer Biology, Drexel University College of Medicine, Philadelphia, PA, USA

Aurora-A kinase (AURKA) overexpression in numerous tumors induces aneuploidy, in 
part because of cytokinetic defects. Alisertib and other small-molecule inhibitors target-
ing AURKA are effective in some patients as monotherapies or combination therapies. 
Epidermal growth factor receptor (EGFR) pro-proliferative signaling activity is commonly 
elevated in cancer, and the EGFR inhibitor erlotinib is commonly used as a standard 
of care agent for cancer. An erlotinib/alisertib combination therapy is currently under 
assessment in clinical trials, following pre-clinical studies that indicated synergy of
these drugs in cancer. We were interested in further exploring the activity of this drug 
combination. Beyond well-established functions for AURKA in mitotic progression,
additional non-mitotic AURKA functions include control of ciliary stability and calcium 
signaling. Interestingly, alisertib exacerbates the disease phenotype in mouse models for 
autosomal-dominant polycystic kidney disease (ADPKD), a common inherited syndrome 
induced by aberrant signaling from PKD1 and PKD2, cilia-localized proteins that have 
calcium channel activity. EGFR is also more active in ADPKD, making erlotinib also of 
potential interest in this disease setting. In this study, we have explored the interaction 
of alisertib and erlotinib in an ADPKD model. These experiments indicated erlotinib-
restrained cystogenesis, opposing alisertib action. Erlotinib also interacted with alisertib 
to regulate proliferative signaling proteins, albeit in a complicated manner. Results sug-
gest a nuanced role of AURKA signaling in different pathogenic conditions and inform the 
clinical use of AURKA inhibitors in cancer patients with comorbidities.
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inTrODUcTiOn

In its role as a mitotic regulator, Aurora-A kinase (AURKA) accumulates through G2 at the centro-
some, becomes active at G2/M transition, and remains active through M phase as it translocates 
along the mitotic spindle to the midzone, with the bulk of AURKA degraded at the midbody at 
cytokinesis. A large number of proteins have been identified that directly associate with AURKA 
either in its N-terminal unstructured domain or C-terminal kinase domain, and regulate AURKA 
activation, including the highly studied TPX2 (1–7), but in addition, the scaffolding factors NEDD9, 
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nucleophosmin/B23, PAK kinases, CEP192, and others (8–12). 
Human AURKA is overexpressed in many tumors arising from 
breast, colon, ovary, and other tissues, and to function as an onco-
gene when exogenously expressed in numerous cell line models 
(13–18). AURKA overexpression is invariably associated with 
increased number of centrosomes and multipolar spindles, which 
arise as consequence of failed cytokinesis, and reflect failure to 
downregulate AURKA activity at the end of mitosis. Inhibitors 
designed to block AURKA mitotic activity are currently undergo-
ing clinical assessment as cancer therapeutics, with MLN8237/
alisertib in multiple late-stage trials (19, 20).

Although most work on AURKA focuses on the activity of 
this protein in mitotic cells, a number of studies have now identi-
fied additional functions of AURKA in non-mitotic cells. For 
example, AURKA activity is required for neurite extension, in a 
post-mitotic cell population (21, 22). AURKA is also transiently 
activated by elevated cytoplasmic calcium, which triggers calmo-
dulin binding to the N-terminal unstructured domain of AURKA 
and enhances binding to some partners, such as NEDD9, and 
reciprocally, AURKA phosphorylation of the polycystin 2 (PC2) 
calcium channel can inhibit its activity in interphase cells (23, 
24). In addition, growth factor stimulation of quiescent ciliated 
cells induces NEDD9 expression and AURKA activation, leading 
to resorption of the cilium (25). These latter activities were of 
particular interest, as they not only potentially informed some 
roles of AURKA relevant to cancer (26, 27) but also connected 
AURKA activity to another pathological condition, autosomal-
dominant polycystic kidney disease (ADPKD).

Autosomal-dominant polycystic kidney disease arises from 
inactivating mutations in the genes PKD1 or PKD2, and currently 
has few treatment options (28). Formation of cysts is marked by 
multiple phenotypic changes in the cells lining renal tubules 
[reviewed in Ref. (28)]. These pleiotropic changes reflect the 
complex cellular action of the polycystins PC1 and PC2, products 
of the PKD1 and PKD2 genes. ADPKD is classified as a ciliopathy 
(29), based on the obligate functional heterodimerization of PC1 
and PC2 on cell cilia, where PC1 normally acts as a flow sensor 
to trigger the calcium channel activity of PC2: calcium influx and 
other signaling interactions of the PC1/PC2 heterodimer act to 
restrain cell growth and govern the polarity of cell division in 
normal cells (30). Loss of cilia or defects in ciliary function can 
independently induce cyst formation (31).

As ADPKD signaling defects have become better understood, 
an unexpected feature has been the recognition that they pos-
sess extensive similarity to signaling defects seen in cancer (32). 
Exploiting these convergences, current research into the effective 
clinical management of ADPKD has been exploring the inhibition 
of signaling proteins, such as mTOR and SRC, that typically have 
elevated expression or activity in response to mutation of PC1/
PC2 signaling, and actively contribute to cystic growth [reviewed 
in Ref. (30)]. Given the connections described above among 
AURKA, PC2, and cilia, and the identification that AURKA itself 
is elevated in cystic epithelia (23, 33), we previously explored effi-
cacy of AURKA inhibition in controlling cyst growth in a mouse 
model of ADPKD (33). The initially surprising result of this study 
was that alisertib strongly exacerbated cyst formation. However, 

this outcome was compatible with an independent study that in 
the specific context of driver lesions in PKD1 or PKD2, genetic 
ablation of cilia reduces symptoms, suggesting the hypothesis 
that it is abnormal signaling rather than loss of signaling from 
the cilium that induces cyst formation (34). If so, then inhibiting 
signaling processes downstream of polycystins would potentially 
oppose the activity of alisertib. Epidermal growth factor receptor 
(EGFR) is activated in ADPKD (35, 36), and interacts with poly-
cystins (37). In cancer, the combination of erlotinib and alisertib 
was first suggested by an siRNA screen that identified genes that 
influenced cellular response to inhibition of EGFR (38). In this 
work, AURKA inhibitors were shown to combine effectively with 
both small molecule and antibody inhibitors of EGFR in vitro and 
in vivo, providing the conceptual basis for two ongoing clinical 
trials (NCT01471964 and NCT01540682, clinicaltrials.gov). In 
the current study, to probe these novel actions of AURKA in 
ADPKD, we have evaluated the interaction of the EGFR inhibitor 
erlotinib with alisertib in control of cyst formation.

MaTerials anD MeThODs

Mouse strains and Drug Treatment
Conditional Pkd1−/− mice in which tamoxifen induction of the 
Cre-flox regulatory system permits targeted inactivation of 
the Pkd1 gene in vivo have been described (33, 39, 40). Pkd1fl/
fl;Cre/Esr1+ (referred to as Pkd1−/−), and control mice lacking an 
intact Cre-flox system (Pkd1fl/fl;Cre/Esr1−) mice were injected 
intraperitoneally with tamoxifen [250 mg/kg body weight (BW), 
formulated in corn oil] on post-natal days P2 and P3 for the early 
cyst induction, or post-natal days P35 and P36 for late cyst induc-
tion, to induce Pkd1 deletion in the test group, as described (39). 
Alisertib (Millennium Pharmaceuticals, Inc., Cambridge, MA, 
USA) was formulated in 10% 2-hydroxypropyl-β-cyclodextrin 
(Sigma Aldrich, St. Louis, MO, USA) with 1% sodium bicarbo-
nate and 20 mg/kg administered orally twice daily (BID), using 
a 5-day on/2-day off schedule. Erlotinib was formulated in 10% 
DMSO saline and 10 mg/kg administered orally once daily (QD), 
using a 5-day on/2-day off schedule. Treatment began at the age 
of 4 months and cyst growth monitored by magnetic resonance 
micro-imaging (MRI); mice were euthanized 10 weeks after the 
beginning of treatment to collect kidneys and liver for analysis. 
The Institutional Animal Care and Use Committee (IACUC) of 
Fox Chase Cancer Center approved all experiments involving 
mice.

Mri Protocol and image analysis
Magnetic resonance micro-imaging was performed exactly as 
described in Ref. (33, 41, 42). Briefly, mice were anesthetized with 
1–2% isoflurane in O2 and then imaged using a vertical bore 7-T 
magnet, Bruker DRX300 spectrometer, ParaVision 3.0.2 software 
(Bruker), and a single tuned 1H cylindrical radiofrequency coil. 
Kidney and cyst volume were quantified using Image J (43). For 
estimation of kidney volume, the kidney parenchyma was manu-
ally surrounded while excluding the renal pelvis, and summing 
up the products of area measurements of contiguous images and 
slice thickness, as in Ref. (44). Subsequently isolated kidney areas 
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were prepared using defined settings for background subtraction 
and band passing, with a threshold set for each kidney based on 
the original images by targeting threshold values designating 
the transition between parenchyma and cyst at the border of the 
larger cysts in the kidneys. Cyst volume was estimated using a 
semi-automatic threshold approach (45, 46).

Tissue Preparation and histology
All tissues were collected and fixed in 10% phosphate-buffered 
formaldehyde (formalin) for 24–48 h, dehydrated and embedded 
in paraffin. Hematoxylin and eosin (H&E) stained 5 μm sections 
were used for morphological evaluation.

Western Blotting
To analyze the expression levels of individual proteins, kidney tis-
sues were lysed and resolved by SDS-PAGE. Western blotting was 
performed using standard procedures, and developed by chemi-
luminescence using Luminata Western HRP substrates (Classico, 
Crescendo and Forte) (EMD Millipore) and Immun-Star AP 
Substrate (Bio-Rad Laboratories). Quantification of signals on 
Western blots was done using the NIH ImageJ Imaging and 
Processing Analysis Software with signaling intensity normal-
ized to loading control (β-actin or vinculin). Primary antibodies 
included anti-Src (Cell Signaling, #2110), anti-phospho-Src 
Tyr418 (Abcam, #ab4816), anti-S6 (Cell Signaling, #4858), anti-
phospho-S6 S235/236 (Cell Signaling, #2317), anti-phospho-ERK 
Thr202/Tyr204 (Cell Signaling, #9101), anti-phospho-EGFR 
Y1068 (Cell Signaling, #3777), anti-phospho-EGFR Y1173 
(Invitrogen, #44794G), anti-EGFR (Cell Signaling, #2646), 
anti-phospho-Akt S473 (Cell Signaling, #4060), anti-Akt (Cell 
Signaling, #2920), anti-Aurora-A (mouse, BD Transduction, 
#610939 and rabbit, Cell Signaling, #3092), anti-histone H3 (Cell 
Signaling, #3638S), anti-vinculin (Sigma, #V9131), and mouse 
anti-β-actin conjugated to HRP (Abcam, #ab49900). Secondary 
anti-mouse and anti-rabbit HRP-conjugated antibodies (GE 
Healthcare) were used at a dilution of 1:10,000 and secondary 
anti-mouse and anti-rabbit AP-conjugated antibodies (Jackson 
Immunoresearch Labs) were used at a dilution of 1:5,000.

Phosphorylation assay
Histone H3 (Upstate, Charlottesville, VA, USA) was used as 
substrate for AURKA kinase activity, using standard methods. 
Parallel aliquots without [γ32P]ATP were processed for SDS-
PAGE. To assess Aurora-A activation, we performed an in vitro 
kinase assay using AURKA immunoprecipitated from whole 
kidney lysates using beads conjugated with anti-Aurora A anti-
body (Bethyl Laboratories, S300-070-3). Immunoprecipitation 
samples were incubated overnight with antibody at 4°C, washed, 
and resolved by SDS-PAGE.

statistical analysis
Analyses were performed using STATA version 12. Data were 
analyzed using Wilcoxon rank-sum tests and generalized linear 
models with appropriate family and link functions (e.g., Gaussian 
or Gamma families with log or identity links). Where neces-
sary, we estimated growth curves using generalized estimating 

equations (GEE) with exchangeable or Markov working correla-
tion matrices to account for correlated data (46).

resUlTs

alisertib and erlotinib Treatment of a 
conditional Knockout Model for aDPKD: 
Modest effect on Kidney Volume and Weight
We used a previously described Pkd1 conditional knockout 
mouse model in which tamoxifen induction of a Cre-flox 
regulatory system allows targeted inactivation of the Pkd1 gene 
in vivo (39, 40). In this system, the loss of Pkd1 at post-natal day 
28 results in development of renal cysts at ~4.5–5  months of 
age, progressing to severe enlargement of the kidney and renal 
failure at 6–7 months of age. The experimental outline is shown 
in Figure 1A. We defined four cohorts of Pkd1−/− mice: Cohort 1 
(n = 11), vehicle (10% cyclodextrin, 1% sodium hydrocarbonate, 
and 5% dextrose, with 10% DMSO mixed in 1:1 ratio) twice a 
day; Cohort 2 (n = 16), alisertib, 20 mg/kg, twice a day (40 mg/
kg daily); Cohort 3 (n  =  13), erlotinib, 10  mg/kg, once a day; 
and Cohort 4 (n  =  14), alisertib 20  mg/kg, twice a day plus 
erlotinib, 10 mg/kg, once a day (2 h after the morning dose of 
alisertib). Parallel cohorts 5–8 were also run, with wild type mice 
that received the same dosing regimen: each of these cohorts 
contained 8–10 animals. Starting at the time of injection, mice 
were weighed weekly. Treatment with alisertib or alisertib plus 
erlotinib resulted in slower weight gain over 10  weeks in both 
wild type and Pkd1−/− groups, while erlotinib alone had no effect 
on weight gain (Figure 1B).

For analysis of kidney enlargement over time, Pkd1−/− and wt 
mice were assessed at 4, 5.5, and 6.5 months of age using a MRI 
approach (41) (Figure  2A). In general, drug effects on rate of 
kidney growth did not rise to statistical significance. Following 
normalization to BW, alisertib slightly increased the rate of kid-
ney growth versus vehicle-treated Pkd1−/− mice at all time points 
(Figure 2B). Erlotinib did not significantly affect growth, at all 
time periods. The alisertib/erlotinib combination initially resulted 
in a rate of kidney growth similar to vehicle or erlotinib-treated 
mice, but at latter time points, the ratio of kidney volume to BW 
indicated a phenotype more similar to alisertib. However, it is 
important to note that mice treated with this drug combination 
had a significantly lower BW (Figure 1B), which likely contrib-
utes to the difference. As a control, we established that no drug 
affected kidney volume increase in wild type mice (Figure 2C). 
After 10 weeks, mice were euthanized and kidney weight to BW 
ratio directly determined. This confirmed findings from MRI, 
with a non-statistically significantly trend toward elevated BW 
in Pkd1−/− mice treated with alisertib or alisertib/erlotinib, and 
all mice with a Pkd1−/− genotype having a statistically significant 
greater kidney weight than all wt mice (Figure  2D). Hepatic 
cysts are a common feature of ADPKD in humans, occurring in 
a significant number of patients. In a previous study, we showed 
that inhibition of HSP90 significantly reduced liver cyst burden 
(42), while also reducing the rate of development of kidney cysts 
(41). In the present study, the alisertib effect was specific to kidney 
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tissue, and no effect was seen with any drug treatment in liver 
from wild type or Pkd1−/− mice (Figure 2E).

alisertib and erlotinib Treatment of a 
conditional Knockout Model for aDPKD: 
Drug interactions in control of cyst 
Development
The development of cysts was analyzed by quantification of MRI 
imaging (Figures 2A and 3A), and subsequently confirmed by 
visual assessment of hematoxylin and eosin (H&E) stained tissues 
collected after 10 weeks of treatment (Figures 3B,C). No wild type 
mice developed cysts. Among the Pkd1−/− mice, there was some 
heterogeneity in cyst development between individual animals, 
in concordance with the basic biology of the disease and previous 
reports using the model (39–41). Notably, the erlotinib treatment 
strikingly reduced cystogenesis in most animals, at all time points, 
in a statistically significant effect (Figure 3A). Alisertib treatment 
elevated cyst growth early, and cystogenesis was much greater 
than in vehicle-treated animals by the experimental endpoint, as 
previously noted (33). Interestingly, the alisertib/erlotinib combi-
nation treatment caused an initial delay in the formation of cysts, 
similar to erlotinib. However, at later time points, the beneficial 
effect was lost, and at experimental endpoint, the overall pheno-
type resembled alisertib-treated mice. Mice treated with alisertib 
or erlotinib plus alisertib had an extremely heterogeneous phe-
notype at the experimental endpoint. Although the majority had 
highly cystic kidneys, some had only limited cysts, suggesting a 
stochastic effect in response to drug between individual animals, 
and accounting for the large error bars.

signaling consequences of alisertib and 
erlotinib Treatment Pkd1−/− and wt 
Kidneys
To better understand the functional interaction of inhibition of 
AURKA and EGFR, we analyzed activation of the signaling of 

FigUre 1 | alisertib and erlotinib treatment of a conditional knockout model for aDPKD. (a) Experimental design. In vivo experiments were performed 
using a conditional knockout mouse model for tamoxifen-induced, Cre-dependent ablation of Pkd1 (39). (B) Body weight (BW) dynamics for the course of the 
treatment (vehicle, alisertib, erlotinib, alisertib + erlotinib), measured weekly. Differences between genotypes and drug treatment groups at 10 weeks were 
statistically significant between alisertib and alisertib + erlotinib versus the vehicle-treated groups in both wt and Pkd1−/− groups. *P < 0.01 relative to vehicle.

these drug targets and of signaling pathways relevant to ADPKD 
in kidney tissue collected from Pkd1−/− and wt mice after 10 weeks 
of drug treatment.

Under conditions of vehicle treatment, AURKA expression was 
elevated in Pkd1−/− versus wt kidneys, as previously reported (33) 
(Figure 4A). In vitro kinase analysis of phosphorylation of the 
substrate histone H3 (HH3) by AURKA immunoprecipitated from 
kidney lysates, or the autophosphorylation of immunoprecipi-
tated AURKA, normalized to total levels of immunoprecipitated 
kinase (Figure 4B), surprisingly indicated that drug treatments 
did not produce statistically significant effects on AURKA activ-
ity. However, parallel Western analysis (Figures 4C,D) indicated 
that total levels of AURKA were significantly depleted in tissue 
treated with each of the drugs, particularly in those treated with 
alisertib or alisertib plus erlotinib. Generally, similar effects of 
drug treatment were observed in wt kidneys. Hence, the primary 
consequence of alisertib treatment was to reduce overall AURKA 
activity by reducing total AURKA expression.

Epidermal growth factor receptor activation is reflected by 
phosphorylation of EGFR at Y1068, which allows it to associ-
ate with GRB2 to activate downstream signaling cascades (47), 
and at Y1173, which is important for SHC binding and EGFR 
internalization (48). Total EGFR expression was not elevated 
in wt versus Pkd1−/− kidneys (Figure 4A). However, in Pkd1−/− 
kidneys, Y1068 phosphorylation was significantly increased 
by treatment with alisertib, or alisertib plus erlotinib, and 
Y1173 phosphorylation was increased, albeit to a lesser degree 
(Figures  4E–G). Furthermore, in Pkd1−/− kidneys, total EGFR 
expression was also elevated by treatment with alisertib or the 
alisertib/erlotinib combination (Figures 4E,H). Together, these 
results emphasized the role of AURKA inhibition in potentiating 
proliferative signaling relevant to a severe cystic phenotype. By 
contrast, no drug treatment significantly affected EGFR expres-
sion or phosphorylation on Y1173 in relation to vehicle in wt kid-
neys, although interestingly, the alisertib/erlotinib combination 
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FigUre 2 | effects of alisertib and erlotinib on kidney growth. (a) Representative images of murine kidneys acquired by using magnetic resonance 
micro-imaging (MRI) approach, at 4 (top) and 6.5 (bottom) months of age following treatment with vehicle, alisertib, erlotinib, and a combination of these drugs. 
(B,c) Quantification of the MRI imaging results for kidney volume, normalized to body weight for Pkd1−/− (B) and wt (c) mice. Differences at experimental endpoint 
(10 weeks of treatment) are not statistically significant. (D,e) Direct measurement of kidney (D) and liver (e) weight normalized to body weight for Pkd1−/− and wt 
mice at experimental endpoint (10 weeks of treatment). Top – graphs representing results; bottom – summary of P-values for the presented data. *P < 0.05, 
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
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significantly induced Y1068 phosphorylation in a subset of wt 
kidneys (Figures 4E–H).

We then analyzed the activity and expression of the ADPKD-
related proteins S6, SRC, ERK1/2, and AKT (Figures 4 and 5). For 
S6, AKT, and SRC, total levels were elevated in Pkd1−/− versus wt 
kidneys (Figure 4A). The patterns of response to drug treatment 
were complicated for these downstream pro-proliferative pro-
teins. Focusing first on alisertib in Pkd1−/− kidneys, this treatment 
significantly reduced levels of total S6 and SRC, and increased total 
levels of ERK1/2 (Figure 5). However, alisertib also resulted in a 
very significant increase in the ratio of active (phosphorylated) 
S6, leading to a net gain in S6 activity in kidney lysates, compat-
ible with an increased cystic phenotype. By contrast, activity of 
SRC and ERK was reduced by alisertib in Pkd1−/− kidneys. These 

patterns of expression and activation were very different from 
those evoked by alisertib treatment of wt kidneys. In wt kidneys, 
alisertib very significantly reduced S6 and ERK1/2 activation, and 
reduced SRC expression. Alisertib treatment also resulted in a 
variable pattern of SRC activation, with three mice having very 
high levels of phosphorylated SRC, but most having SRC activity 
reduced. Whereas erlotinib or erlotinib plus alisertib effectively 
reduced ERK1/2 and S6 activity in wt kidneys, these treatments 
were less effective in Pkd1−/− kidneys. With the exception of 
effect on total ERK1/2 expression in Pkd1−/− kidneys, erlotinib, 
and erlotinib plus alisertib resulted in statistically non-distinct 
effects on the expression and activation of the signaling proteins 
analyzed. This was surprising, given the very different results of 
these treatments on cystic phenotype.
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FigUre 3 | cystogenesis during drug treatment in Pkd1−/− and wt mice. (a) Ratio of renal cyst volume to body weight in Pkd1−/− mice in the four drug 
treatment groups. *P < 0.05 and **P < 0.01 relative to vehicle treatment. (B) Representative images of collected livers (top) and kidneys (bottom) from each 
treatment cohort; scale bar, 1 cm. (c) Representative light microscopy images from H&E slides, reflecting cystic burden of Pkd1−/− and wt mice in all treatment 
groups at experimental endpoint (10 weeks of treatment). Images taken at 20× magnification; scale bar, 50 μm.
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DiscUssiOn

As significant findings, this study has established that the 
cystogenic activity of the AURKA inhibitor in ADPKD can be 
partially reversed by treatment with erlotinib, and for the first 
time showed that erlotinib itself has a potent activity in limiting 
cystic growth. Second, it also demonstrated that erlotinib and 
alisertib elicited distinct response profiles in the kidneys of wt 
versus Pkd1−/− mice, potentially reflecting differences in signal-
ing landscape associated with the replacement of the normal 
renal parenchyma with cysts. Third, it also demonstrated that in 
the context of drug treatment, changes in degree of cystogenesis 
in Pkd1−/− mice could not be aligned with specific changes in 
expression or activity of AKT, S6, ERK1/2, or SRC, in spite of 
the common association of elevated activity of these signaling 
proteins with disease etiology. Finally, as discussed below, this 
work emphasized some significant differences between the 
interactions of alisertib and erlotinib in the context of ADPKD 

versus cancer, such that this treatment is potentially beneficial in 
cancer but not ADPKD.

These findings confirmed earlier reports that AURKA activ-
ity was associated with cyst formation, and that inhibition of 
AURKA exacerbated cystogenesis in the context of genetic loss 
of Pkd1 (23, 24, 33). A particularly interesting finding was that 
treatment with alisertib alone or in combination with erlotinib 
was more strongly associated with loss of AURKA protein, rather 
than inhibition of AURKA activity. There are two potential 
explanations for this observation. First, AURKA expression is 
highly regulated by protein degradation, and the protein is more 
susceptible to degradation when catalytically inactive (49, 50). 
Hence, alisertib treatment may be elevating the rate of AURKA 
destruction, and in this context, the elevated activity of the 
remaining AURKA may represent a sub-population effectively 
protected by interaction partners (49, 50). Second, AURKA 
expression has been reported as most abundant and active in 
the renal epithelia of early cysts (23, 24, 33). However, in the 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


FigUre 4 | Drug inhibition of targets in Pkd1−/− and wt mice. (a) Quantification of Western data for indicated proteins from kidney lysates prepared from 
vehicle-treated wt or Pkd1−/− mice, normalized to β-actin or vinculin-loading control. *P < 0.05 and **P < 0.01 relative to vehicle treated. (B) Aurora-A (AURKA) was 
immunoprecipitated from kidney lysates and used for in vitro kinase with γ-32P-ATP to indicate autophosphorylation and phosphorylation of histone H3 kinase (HH3) 
(top two rows), with parallel blots probed by Western to allow normalization to total AURKA and HH3 in reaction. Quantitation of data from complete cohort of mice 
in each treatment group, indicating ratio of phosphorylated HH3 or AURKA to total immunoprecipitated AURKA in wt and Pkd1−/− mice following indicated drug 
treatments. *P < 0.05, **P < 0.01, and ***P < 0.001 relative to vehicle treated. (c) Western analysis showing representative expression of total Aurora-A (tAURKA) in 
kidney lysates after 10 weeks of treatment with indicated drugs, with β-actin loading control. (D) Quantitation of data from complete cohort of mice in each 
treatment group, indicating ratio of total AURKA to β-actin in wt and Pkd1−/− mice following indicated drug treatments. **P < 0.01 relative to vehicle treated. (e) 
Western blot with representative images of kidney lysates from each treatment cohort showing expression of EGFRphosphorylated (ph) at the indicated amino acids, 
total EGFR (tEGFR) or β-actin loading control. (F–h) Quantitation of data from complete cohort of mice in each treatment group, indicating ratio of phEGFR-Y1068 
to tEGFR (F), phEGFR-Y1173 to tEGFR (g), or tEGFR to loading control (h). *P < 0.05, **P < 0.01, and ***P < 0.001, relative to vehicle treated.
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tissue isolated at the end of this experiment and used for signal-
ing analysis, the majority of tissue in alisertib- and alisertib/
erlotinib-treated cells reflects loss of normal renal structure and 

replacement with enlarged late-stage cysts that have in many 
cases lost epithelial lining, and fibrotic tissue. In this interpre-
tation, a difference in tissue composition explains the loss of 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


FigUre 5 | Drug inhibition of aDPKD-related signaling proteins in Pkd1−/− and wt mice. S6 (a), SRC (B), ERK1/2 (c), and AKT (D) in kidney lysates after 
10 weeks of treatment with indicated drugs. Western analysis (left) showing representative expression of phosphorylated and total expression of proteins and 
quantitation of data (right) from complete cohort of mice in each treatment group with analysis, as described in Figure 4. (a–D) Ratios of phosphorylated to total 
protein for S6 (a), SRC (B), ERK1/2 (c), and AKT (D) are shown in the left graph, and ratios of total protein to β-actin or vinculin (vinc) loading control are shown in 
the right graph. *P < 0.05, **P < 0.01, and ***P < 0.001 relative to vehicle treated.
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