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Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring 
space or radiotherapy cancer patients, increases their risk of developing secondary 
cancers and other health-related problems. Bone marrow (BM), the site in the body 
where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood 
cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge 
and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative 
stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early 
hematopoietic progenitors can lead to an accumulation of mutations whereas long-last-
ing oxidative stress can impair hematopoiesis itself, thereby causing long-term damage 
to hematopoietic cells in the BM niche. We report here that low-dose 1H- and 56Fe-IR 
significantly decreased the hematopoietic early and late multipotent progenitor (E- and 
L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after 
exposure. Both 1H- and 56Fe-IR increased the expression of pluripotent stem cell mark-
ers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate 
that low doses of 1H- and 56Fe-IR may induce endogenous cellular reprogramming of BM 
hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and 
that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. 
This could then be propagated to successive cell lineages. Persistent impairment of BM 
progenitor cell populations can disrupt hematopoietic homeostasis and lead to hemato-
logic disorders, and these findings warrant further mechanistic studies into the effects of 
low-dose IR on the functional capacity of BM-derived hematopoietic cells including their 
self-renewal and pluripotency.
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iNTRODUCTiON

Exposure to ionizing radiation (IR), specifically high-energy 
protons (1H) and ions with high charge and high energy (HZE 
particles), is one of the major risks during spaceflight beyond 
low Earth orbit (LEO) (1, 2). For example, astronauts on future 
Mars missions are expected to encounter ~0.6 Sv of IR during 
180 days transit to Mars (3). In this case, it is estimated that 
each cell in an astronaut’s body will be traversed by a low-dose 
1H every 3–4 days, helium nuclei every few weeks, and HZE 
particles, such as iron (56Fe), every few months. The radiation 
encountered by astronauts in LEO in proximity of the van Allen 
belt is mostly from 1H particles from solar winds, trapped in 
the earth’s magnetic field (4). This type of low linear energy 
transfer (LET) radiation, including γ rays and X-rays, deposit 
relatively little energy as they pass through matter. However, 
venturing beyond the van Allen belt and into deep space, astro-
nauts will encounter a significant amount of galactic cosmic 
radiation which contains not only high-energy 1H and alpha 
particles but also high-LET radiation from HZE particles, such 
as 56Fe and 28Si (4). These high-LET HZE ions have a greater 
propensity for ionization and they deposit large amounts of 
energy along their tracks; and thus have greater potential for 
causing damage to tissues. These types of low- and high-LET 
radiation are also encountered on earth. For example, low 
energy 1H and HZE carbon ion IR are being used in cancer 
radiotherapy regimens for patients suffering from breast can-
cer, esophageal cancer, adenocarcinoma, and hepatocellular 
carcinoma (5–10). To date, the biological effects of low-dose 
1H and HZE ion IR have not been fully investigated.

Radiation dose is an important factor for consideration in 
the biological effects of low- and high-LET radiation. Although 
epidemiological studies based on atomic bomb survivors and 
cancer radiotherapy patients have provided insight into the 
biological effects of moderate to high doses of IR (11, 12), the 
effects of low-dose IR over long periods of time remain to be 
elucidated. A single high dose of radiation may induce signifi-
cant tissue and cell damage; however, the biological effects of 
low-dose IR may be more relevant in disease processes, owing 
to IR-induced aberrations at the genetic or epigenetic levels. 
This “reprogramming” can be propagated in surviving cells and 
can have long-term implications in the health of the IR exposed 
individual.

This article focuses on the biological relevance of low-dose 
low-LET 1H and high-LET HZE 56Fe radiation. Charged 1H par-
ticles are the most abundant radiation found in deep space and 
HZE particles (1% of galactic cosmic rays) contribute to more 
than 40% of the equivalent dose exposure for the astronauts (4, 
13, 14). Notably, low-energy 1H particles are also being used 
as a source of radiation for the treatment of cancers owing to 
their favorable radiation dose distribution in cancerous tissue 
(15, 16). Therefore, studying the biological consequences of 
these types of radiation is of significance for understanding 
the consequences of both space missions and cancer therapy 
regimens.

eFFeCTS OF iONiZiNG RADiATiON 
ON THe BONe MARROw

Radiation-induced DNA Damage 
and Oxidative Stress in BM Cells
Ionizing radiation promotes the induction and accumulation of 
mutations as a result of DNA damage and inefficient DNA repair. 
IR deposits energy along specific “tracks” which lead to clustering 
of DNA lesions (17). The extent of clustering depends on the ioni-
zation density and type of radiation, with more clustered damage 
often observed after exposure to heavy-ion radiation, such as 56Fe 
particles. Such clustered DNA damage caused by high-LET radia-
tion can lead to double strand breaks (DSBs) in DNA and muta-
tions in the absence of proper DNA repair processes (18). Such 
DSBs can be repaired by non-homologous end-joining (NHEJ) or 
homologous recombination (HR). The NHEJ pathway seems to 
play a significant role in DNA repair after exposure to either 1H or 
heavy-ion radiation while HR appears to be more important after 
heavy-ion radiation (19). Error-prone DNA repair during NHEJ, 
due to lack of a suitable template, can be a source of mutations 
post-IR. It should be noted that cells within the bone marrow 
(BM) often exhibit low levels of expression of many DNA repair 
proteins, suggesting they may have an inherent inability to repair 
DNA damage induced by radiation, and therefore are at increased 
risk of mutations (20). In support of this contention are studies 
showing that BM cells from mice exposed to 0.5–3 Gy, 1 GeV/n 
radiation with 56Fe particles showed significantly increased chro-
mosomal damage using multi-color FISH techniques (21, 22). 
1H-IR of 1 Gy, 100 MeV also induced significant DNA damage in 
mouse BM cells, as assessed by phospho-H2AX foci and multi-
color FISH analysis (23, 24).

Exposure of cells to IR can also increase oxidative stress in 
cells by inducing reactive oxygen or nitrogen species (ROS or 
RNS), which are the result of interactions between IR and water 
with other biomolecules in the cell (25). 1H-IR of 1 Gy, 150 MeV 
caused increased oxidative stress as determined by ROS levels 
and concomitant increases in expression of Nox4 in BM cells 
(24). ROS and RNS thus generated can interact with DNA and 
cause more DNA lesions, in addition to those induced by direct 
DNA damage caused in the radiation tracks. Chronic exposure 
to oxidative stress can lead to accumulation of such DNA lesions 
and promote mutagenesis (26). Therefore, the DNA damage and 
oxidative stress induced in BM by IR, specifically 1H- and 56Fe-IR, 
could lead to accumulation of DNA lesions and result in muta-
tions in the hematopoietic stem and progenitor cells.

Hematopoiesis in Adult Bone Marrow
The BM niche is the predominant site of hematopoiesis and the 
differentiation of blood cells. This unique microenvironmental 
niche is also extremely sensitive to low-dose IR exposure 
(27–29). Disruption of hematopoietic homeostasis can result in 
hematologic disorders and impact the function of vital organs; 
for example, abnormalities in hematopoietic cells in the BM 
can be propagated to the successive blood lineages and result in 
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leukemia. Therefore, it is important to understand the effects of 
exposure to 1H- and 56Fe-IR on BM.

Unlike the ablative effect of gamma radiation (γ-IR) on the BM, 
both short- and long-term effects of particle radiation on this site of 
hematopoiesis are less understood. Hematopoietic stem cells (HSCs) 
comprise <0.1% of the BM of adults, yet they produce all of the 
circulating blood cells that are responsible for constant maintenance 
and immune protection of the body (28). This exquisitely regulated 
process known as hematopoiesis occurs in the BM of adults and 
is responsible for both the maintenance of the primitive HSC and 
for inducing maturation of these cells to specific blood lineages as 
the need arises for those particular cell types. Discrete functions 
performed by the hematopoietic niche may require different growth 
factors and diverse interactions with different cells types within the 
site. These various interactions between HSCs and BM stromal cells 
ensure appropriate cell output to the circulation that change with 
specific stimuli and demands. Definitive hematopoiesis in the adult 
BM begins with the differentiation of self-renewing HSCs to hemat-
opoietic multipotent progenitor cells (HPCs or MPPs) (28, 30). 
These progenitor cells can give rise to the different blood lineages 
but lack self-renewal capacity. The MPPs develop into committed 
common lymphoid (CLP) and myeloid (CMP) progenitor cells. The 
CLP population differentiates into the lymphocyte (NK, B, and T 
cells) lineages while the CMP gives rise to megakaryocytes, eryth-
rocytes, monocytes, and granulocytes (neutrophils, basophils, and 
eosinophils). These mature blood cells then exit the BM and enter 
circulation where they perform important functions. Erythrocytes 
(red blood cells) are important for oxygen transport, megakaryo-
cytes for blood clotting, and white blood cells (WBCs; namely lym-
phocytes, monocytes, and granulocytes), function in adaptive and 
innate immune defenses. Therefore, the process of hematopoiesis in 
the BM controls the development of all these blood lineages and is 
responsible for maintaining hematologic homeostasis.

effects of 1H Radiation on Circulating 
Blood Cells and Hematopoietic Precursors
Many studies have examined the effects of radiation on circulat-
ing blood cells. Irradiation of mice with up to 2 Gy of 1H caused 
significant changes to the peripheral immune cell populations, 
with different populations exhibiting different sensitivities 
(31–33). Within the lymphocyte populations, B cells were found 
to be most sensitive to radiation, followed by T cells and then 
NK cells which were the most resistant (31). Decreases in WBC 
populations were dependent on 1H-IR dose, but not on dose rate, 
energy, or fractionation (32, 33). The effects of simulated solar 
particle events, which are comprised of  1H (up to 155 MeV), with 
a heterogeneous 1H dose distribution, also revealed significant 
reduction (60–90% compared to baseline) in frequencies of 
circulating WBCs, lymphocytes, neutrophils, monocytes, and 
eosinophils in both murine and porcine models (34, 35). Murine 
splenic immune cell populations were impaired at 4 months post-
IR with 2 Gy 1H, indicating a long-term radiation effect on the 
precursor hematopoietic populations (36). This was confirmed 
in recent studies demonstrating that total body irradiation of 
mice with 1 Gy, 150 MeV of 1H caused significant reduction in 
HSC (Lin−c-kit+Sca-1+) numbers and pluripotency, even at time 

points as late as 22 weeks after radiation (24). These changes were 
attributed to the increased levels of oxidative stress in the HSCs, 
causing increased HSC cell cycling and reduced self-renewal 
capacity, and resulting in long-term HSC injury. Although 1H-IR 
is a low-LET radiation, its effects on DNA are more damaging 
than X-rays, indicating the greater capacity to induce changes at 
the molecular level (37).

effects of HZe 56Fe Particle Radiation on 
Circulating Blood Cells and Hematopoietic 
Precursors
Exposure to HZE particles, such as 56Fe, can have even more 
detrimental effects on BM hematopoietic precursors and mature 
blood cells. Rats exposed to 1–4 Gy (5 GeV/nucleon) of 56Fe-IR 
had significantly lower counts of circulating leukocytes and mono-
cytes compared to non-irradiated rats for as long as 9  months 
post-IR (38). Mice irradiated with 6–8 Gy (1 GeV/nucleon) of 
56Fe particles also showed significantly lower WBC counts 7 days 
post-IR and lower recovery at 4 weeks post-IR compared to γ-IR 
mice (39). Examination of the BM revealed extensive cell death, 
cell cycle arrest and significant selective reduction of myeloid pre-
cursor cells in mice exposed to 2–4 Gy of 56Fe-IR. Cell cycle arrest 
of BM cells at the G1 phase up to 66 h post-IR was also found in 
another study with mice irradiated with 1 Gy (1 GeV/nucleon) 
of 56Fe ions (40). Cell cycle arrest corresponded to an increase in 
cells with 56Fe radiation-induced chromosomal aberrations (41). 
At the molecular level, exposure to 600 MeV, 0.4 Gy 56Fe radiation 
induced DNA hypermethylation in HPCs up to 22 weeks post-IR, 
suggesting epigenetic reprogramming (42).

Therefore, we hypothesize that particle radiation, such as 1H 
and 56Fe, which induce profound changes in BM hematopoietic 
cells, including at the molecular level, may play a significant role 
in the development of hematological cancers, and thus merits 
further studies.

eXPOSURe TO 1H AND 56Fe RADiATiON 
HAS LONG-TeRM eFFeCTS ON BONe 
MARROw HeMATOPOieTiC 
MULTiPOTeNT PROGeNiTOR 
POPULATiONS
1H and 56Fe Radiation induced Significant 
Decrease in Bone Marrow Multipotent 
Progenitor Cell Numbers
To extend our knowledge of the effects of particle radiation on BM 
hematopoietic populations, whole-body radiation was performed 
on mice with 0.5 Gy (1 GeV) 1H and 0.15 Gy (1 GeV/n) 56Fe par-
ticles. Fluorescence-activated cell sorting (FACS) was then used 
to isolate early and late multipotent progenitors (E- and L-MPPs) 
from BM cells over a time course of 40 weeks post-IR. E-MPPs 
were defined as Lin−/c-kit+/Sca1+/CD34+/AC133+ and L-MPPs 
were Lin-/c-kit+/Sca1+/CD34+/AC133− (43, 44). Compared to 
control mice, 1H-IR caused an initial transient spike in E-MPP 
and L-MPP cell numbers followed by significant downregulation 
of these populations at 8 weeks post-IR (Figures 1A,B; Table 1). 
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In contrast, 56Fe-IR caused significant loss of E-MPPs and L-MPPs 
immediately after IR, which was maintained up to 8 weeks post-
IR (Figures 1A,B; Table 1). By 40 weeks, the E-MPP and L-MPP 
populations had recovered and were comparable to control levels 
for both 1H and 56Fe radiation (Figures 1A,B). These findings are 
consistent with the study that showed γ-IR, even at the low dose 
of 0.4  Gy, was observed to rapidly induce apoptosis in human 
embryonic stem (ES) cells (45).

FiGURe 1 | e-MPP and L-MPP cell numbers are downregulated by 56Fe- and 1H-iR but recover to control levels by 40 weeks post-iR. Effect of full-body 
single dose of proton (1H) at 0.5 Gy, 1 GeV and iron (56Fe) at 0.15 Gy, 1 GeV/nucleon of ionizing radiation (IR) on survival of multipotent progenitor cell populations 
was examined. The survival of (A) E-MPPs and (B) L-MPPs in the BM after particle IR in C57BL/6NT mice were determined at 1, 2, 4, 8, 12, 28, and 40 weeks 
post-IR. Total BM-derived mononuclear cells were triple-stained with FITC-labeled RAM34 antibody (that consists of CD34, c-kit, and Sca1 antibodies), PE-Cy7-
AC133, and PE-hematopoietic lineage cocktail (CD3e, Ly-6G/Ly-6C, CD11b, CD45R/B220, TER-119), then sorted by FASC for (A) E-MPPs (CD34+/c-kit+/Sca-1+/
AC133+/Lin−) and (B) L-MPPs (CD34+/c-kit+/Sca-1+/AC133−/Lin−). Percentage changes in cell numbers were calculated relative to control sham irradiated mice, 
which was set to 100% for each time point. Solid lines represent mean ± SEM (n = 6/group) for 1H-IR (solid blue lines) and 56Fe-IR (solid red lines). “*” represents 
statistically significant differences compared to control with p < 0.05.

1H and 56Fe Radiation Significantly 
Upregulated expression of Pluripotency 
Markers in Bone Marrow L-MPPs
Human ES cells that survived γ-IR exposure exhibited features 
of pluripotency at 3  weeks post-IR exposure (45). To decipher 
the molecular events in our radiation study, the expression of 
pluripotency markers Sox2, Nanog, and Oct4 was examined in 
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the L-MPPs for a period of 40 weeks following irradiation with 
1H or 56Fe particles. The qRT-PCR analysis revealed a significant 
increase in expression of these markers at 8 and 40 weeks after 
both 1H and 56Fe irradiation (Figures  2A–C). Of note, it has 
been shown that ES cells exposed to 3  Gy high-LET carbon 
ion radiation also maintain their pluripotent state and express 
Oct3/4 and Sox2; data which agree with our current observa-
tions (46). Based on these observations, one could hypothesize 
that the increase in expression of the pluripotency markers in 
L-MPPs at 8 weeks post-radiation with 1H or 56Fe in our study 
could be the result of preferential expansion of radio-resistant 
cells. Indeed, this contention is supported by cancer biology 
studies that have shown a correlation between expression of 
Oct4 and Sox2 protein and increased resistance of cancer cells 
to radiotherapy (47, 48). However, the reduced cell numbers we 
observed at the 8-week time point post-IR (Figure 1B; Table 1) 
argues against this explanation. An alternative hypothesis to 
explain our observations is that 1H- or 56Fe-IR-induced genetic 
“reprogramming” of the existing L-MPPs. Consistent with this 
notion, γ-IR was reported to induce reprogramming of cancer 
stem cells that express the pluripotency genes Oct4, Sox2, Nanog, 
and Klf4 in a Notch-dependent manner for up to 5 days post-IR 
(47, 49). Furthermore, forced expression of Nanog, Oct4, Sox2, 
and Lin28 were sufficient to reprogram human somatic cells 
into pluripotent stem cells (50). Constitutive overexpression of 
Nanog alone is sufficient to promote proliferation of human ES 
cells while maintaining pluripotency and Oct4 expression (51, 
52). Collectively, our data and previously published data strongly 
suggest that low doses of 1H- or 56Fe-IR may induce reprogram-
ming of the L-MPPs to a state of pluripotency while promoting 
proliferation to replenish the progenitor populations.

Analysis of L-MPPs After exposure to 
1H and 56Fe Radiation Revealed Distinct 
Long-Term Genetic Programming
A significant increase in expression of these genes was also 
observed at 40 weeks post-irradiation with 1H and 56Fe particles 

TABLe 1 | 56Fe- and 1H-iR resulted in decreased e-MPP and L-MPP cell 
numbers.

iR type weeks

1 2 4 8 12 28 40

(A) e-MPP
1H% 665↑* 3↓ 13↓ 52↓ 17↓ 66↓ 15↑
56Fe% 74↓ 44↓ 16↓ 26↓ 3↓ 69↓ 55↓**

(B) L-MPP
1H% 203↑* 23↓ 21↓ 63↓ 16↓ 36↑*** 13↑
56Fe% 65↓ 25↓ 23↓ 25↓ 6↓ 17↓ 15↑

Representation of % change difference in cell number for (A) E-MPPs (CD34+/c-kit+/
Sca-1+/AC133+/Lin−) and (B) L-MPPs (CD34+/c-kit+/Sca-1+/AC133−/Lin−) from 
full-body 1H-IR and 56Fe-IR mice when compared to respective control cell numbers 
at each time point set at 100%. The arrows show the direction up or down for the 
population change.
*p < 0.001.
**p < 0.01.
***p < 0.03.

(Figures 2A–C). In order to examine this more closely, a multi-
tude of hematopoiesis-related genes were analyzed in the L-MPPs 
at the 40-week time point, employing a PCR array for a pilot 
study (Table 2). Overall, 1H- and 56Fe-IR induced distinct genetic 
programs in the L-MPPs, with observable similarities and differ-
ences. We found that exposure of L-MPPs to either 56Fe- or 1H-IR 
markedly downregulated the expression of several genes that play 
key functions in the process of hematopoiesis, including CD164 
(sialomucin), which increases adhesion of CD34 + cells to BM 
stroma and downregulates HPC proliferation (53, 54), and Fut10, 
which can fucosylate selectins for recruitment of progenitors to 
BM stroma (55, 56) (Table 2). It is possible that downregulation 
of adhesion molecules could be involved in mobilization of 
progenitor cells and increase their proliferation. Transcription 
factors that play an important role in hematopoiesis, such as Cbfb 
and Ash2l, were downregulated to a greater extent in L-MPPs 
exposed to 56Fe-IR compared to 1H-IR indicating a larger insult 
by 56Fe radiation on BM cells (Table 2) (57, 58). This conclusion 
is also supported by the observed decrease in expression of 
immune receptors TLR3 and TLR4, and the co-receptor CD14 
in 56Fe-IR L-MPPs, indicating compromised immune responses 
and immune cell mobilization (Table 2) (59, 60). However, 1H-IR 
L-MPPs showed an increase in expression of these genes, signify-
ing activation of a different epigenetic program. Increased TLR3, 
TLR4, and CD14 expression on hematopoietic progenitor cells 
has been correlated with skewing toward myeloid cell differentia-
tion as observed in aging (61, 62). It is possible that the 1H- and 
56Fe-IR may promote the differentiation of these progenitors into 
the myeloid and lymphoid lineages, respectively. 1H-IR exposed 
L-MPPs showed increased expression of Notch1 and its down-
stream target, Rbpj. In contrast, L-MPP cells from mice exposed 
to 56Fe-IR showed a discernable decrease in expression of these 
genes (Table 2). Since activation of Notch1 was shown to promote 
myeloid differentiation via Rbpj (63), these data may be indicative 
of myeloid and lymphoid skewing in MPPs induced by 1H- and 
56Fe-IR, respectively. On the other hand, expression of other 
Notch signaling molecules (Notch4, Jag1, and Jag2) were increased 
in L-MPPs exposed to 1H- and 56Fe-IR (Table 2). Interestingly, 
increased Notch signaling could potentially promote endogenous 
reprogramming of the cells, as indicated by reports of increased 
differentiation of cancer stem cells in response to Notch inhibition 
(64, 65). Therefore, these preliminary gene expression data also 
supports the possibility of radiation-induced reprogramming of 
BM progenitors to maintain pluripotency.

Other studies illustrating radiation-induced endogenous 
reprogramming have been largely conducted in cancer models. 
For example, inhibition of Notch signaling partially prevented 
radiation-induced reprogramming of differentiated breast cancer 
cells (isolated from patients) into cancer stem cells, thereby pre-
venting their re-acquisition of expression of pluripotency genes 
Oct4, Nanog, and Klf4 (47). High doses of γ-IR was also shown to 
re-program hepatocellular cancer cell lines to acquire stemness 
phenotype (49). At the molecular level, radiation can induce epi-
genetic reprogramming in terms of DNA methylation which can 
also have important implications in BM progenitor populations 
(66). Mouse mesenchymal stem cells exposed to non-IR promoted 
an adipose phenotype (67). Collectively, these observations lend 
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FiGURe 2 | expression of pluripotency markers are upregulated in BM-derived L-MPPs post-irradiation with 1H or 56Fe particles. After whole-body 
irradiation with 0.5 Gy, 1 GeV 1H and 0.15 Gy, 1 GeV/n 56Fe particles, mononuclear cells from bone marrow of C57BL/6NT mice were sorted into L-MPPs 
(CD34+/c-kit+/Sca-1+/AC133−/Lin−) by FACS at multiple time points over 40 weeks post-IR. Levels of (A) Nanog, (B) Oct4, and (C) Sox2 were analyzed using 
Taqman probes by qRT-PCR. Relative mRNA levels were calculated with respect to control sham irradiated animals. Bars represent mean ± SEM (n = 6/group) for 
control (solid black bars), 1H-IR (solid blue bars), and 56Fe-IR (solid red bars). “*” represents statistically significant differences compared to control with p < 0.05.

TABLe 2 | exposure to 1H or 56Fe particles caused notable changes in 
hematopoietic genes in L-MPPs at 40 weeks post-radiation.

Group Gene Relative mRNA levels 
in 1H-iR L-MPPs

Relative mRNA levels 
in 56Fe-iR L-MPPs

Transcription factors Cbfb 0.75↓ 0.30↓
Ash21 0.98↓ 0.45↓

Adhesion molecules CD164 0.484↓ 0.28↓
FutlO 0.22↓ 0.06↓

Immune receptors TLR4 2.91↑ 0.73↓
TLR3 12.81↑ 0.63↓
CD14 1.32↑ 0.03↓

Notch signaling Notch1 1.83↑ 0.60↓
Notch4 5.24↑ 2.29↑
Jagl 7.22↑ 2.72↑
Jag2 2.152↑ 1.75↑
Rbpj 1.622↑ 0.32↓

After whole-body irradiation with 0.5 Gy, 1 GeV 1H and 0.15 Gy, 1 GeV/n 56Fe particles, 
mononuclear cells from bone marrow of C57BL/6NT mice were sorted into L-MPPs 
(CD34+/c-kit+/Sca-1+/AC133−/Lin−) by FACS at 40 weeks post-IR. These experiments 
were repeated at least twice. Expression of multiple hematopoietic gene transcripts was 
analyzed using a RT2 PCR array. Fold changes were calculated with respect to control 
sham irradiated animals. The arrows show the direction up or down for the fold change.

October 2015 | Volume 5 | Article 2316

Muralidharan et al. IR-induced endogenous reprogramming of BM-progenitors

Frontiers in Oncology | www.frontiersin.org

further credibility to our postulation of radiation-induced repro-
gramming of BM cells, at the molecular level.

iMPLiCATiONS OF RADiATiON-iNDUCeD 
CHANGeS iN BONe MARROw 
HeMATOPOieTiC PROGeNiTOR CeLLS

In our studies into the effects of low-dose low-LET 1H and high-
LET 56Fe-IR on BM hematopoietic progenitor populations, the 
most striking results were the significant loss of cell numbers and 
the changes in pluripotent markers in the surviving cells. The 
long-lasting decrease in the E-MPP and L-MPP populations in 
the irradiated mice over the course of 40 weeks suggests disrupted 
hematopoietic homeostasis. Such perturbation of hematopoiesis 
has the potential to lead to hematological disorders including 
blood cancers. With regard to the observed genetic changes 
induced by IR in the surviving L-MPP cell fractions at the 8- and 
40-week time point, and supported by the literature reviewed 
herein, we posit that low-dose IR, especially particle radiation, 
can induce mutations in the hematopoietic progenitor pools in 
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the BM while concomitantly reprogramming them to a more 
primitive pluripotent state. While such reprogramming may 
be beneficial to replenish the progenitor cell pools within the 
radiation-depleted BM compartments, it may also have severe 
repercussions on the functions of the subsequent blood cell line-
ages (Figure 3). One can readily envision the radiation-induced 
reprogramming of BM progenitor cells, which may also contain 
radiation-induced mutations, will affect the phenotypes of multi-
ple lymphoid and myeloid cell populations, thereby propagating 
the mutations to differentiated blood lineages. In particular, the 
propagation of mutations in oncogenes could promote risk for 
hematological cancers. It should be noted that high doses of 
IR are more likely to induce cell apoptosis, which may produce 
short-term effects, but low-dose radiation can cause significant 
long-term consequences by inducing mutations that will persist 
and differentiate into blood cells with altered function. Therefore, 
exposure to low-dose 56Fe or 1H particle radiation, as experienced 
by astronauts in spaceflight or cancer patients that undergo radia-
tion therapy (specifically, the protracted full-body doses), can 
cause long-term effects in BM cells, thereby increasing their risks 
of developing (secondary) blood cancers.
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