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Initiation of eukaryotic mRNA translation may proceed via several different routes, each 
requiring a different subset of factors and relying on different and specific interactions 
between the mRNA and the ribosome. Two modes predominate: (i) so-called cap-de-
pendent initiation, which requires all canonical initiation factors and is responsible for 
about 95–97% of all initiation events in eukaryotic cells; and (ii) cap-independent internal 
initiation, which requires a reduced subset of initiation factors and accounts for up to 5% 
of the remaining initiation events. Internal initiation relies on the presence of so-called 
internal ribosome entry site (IRES) elements in the 5′ UTRs of some viral and cellular 
mRNAs. These elements (often possessing complex secondary and tertiary structures) 
promote efficient interaction of the mRNA with the 40S ribosome and allow for internal 
ribosome entry. Internal initiation of translation of specific mRNAs may contribute to 
development of severe disease and pathological states, such as hepatitis C and cancer. 
Therefore, this cellular mechanism represents an attractive target for pharmacological 
modulation. The purpose of this review is to provide insight into current strategies used to 
target viral and cellular IRESs and discuss the physiological consequences (and potential 
therapeutic implications) of abrogation/modulation of IRES-mediated translation.
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iNTRODUCTiON

Eukaryotic cells utilize several modes to initiate translation of their messenger RNAs (mRNAs). 
The most commonly used modes are canonical cap-dependent initiation and internal initiation (1, 
2), although several other mechanisms have also been proposed to take place (3, 4). It is generally 
believed that cap-dependent initiation is responsible for about 95–97% of all translation initiation 
events in eukaryotic cells and that internal initiation accounts for about 3–5% of the remainder (5–7).

Canonical cap-dependent initiation involves several major steps (1, 2). It starts with activation of 
the mRNA, which exits the nucleus as an mRNP complex (8), and needs to be mobilized for transla-
tion (1, 2, 5–8), and ends with assembly of the elongation-competent 80S complex at the AUG codon. 
mRNP activation is initiated by binding of eukaryotic initiation factor 4F (eIF4F), which consists of 
three proteins: (i) eIF4E, the cap-binding protein; (ii) eIF4G, the scaffolding protein that serves as 
a bridge between the mRNA and the 40S ribosome via interaction with 40S-bound eIF3; and (iii) 
eIF4A, the ATP-dependent helicase. mRNA activation leads to ATP-dependent removal of second-
ary structures and proteins from the 5′ end of the mRNA (1, 2). This is followed by recruitment of the 
40S ribosomal subunit and associated initiation factors, forming the so-called 43S initiation complex 
[composed of a 40S subunit, the ternary complex eIF2–GTP–Met-tRNAiMet (TC), eIF3, and eIF1/1A] 
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to be bound to the 5′ m7G cap structure of the mRNA (1, 2). 
The 43S complex then scans the mRNA in search of the initiation 
codon, where the 48S pre-initiation complex is formed. Following 
recognition of the start codon and eIF5-induced irreversible 
hydrolysis of eIF2-bound GTP, eIF5B promotes joining of the 60S 
ribosomal subunits with the 40S subunits and formation of the 
elongation-competent 80S complex (1, 2).

Although the vast majority of mRNAs are translated via the 
mechanism described above, several viral and eukaryotic cel-
lular mRNAs were found to be translated via internal initiation, 
a process that involves 5′-cap-independent binding of the 40S 
ribosomal subunits to specific mRNA regions termed internal 
ribosome entry sites (IRESs) (1, 3–5). Although this translation 
initiation mechanism is generally independent of recognition 
of the 5′ mRNA cap structure, it may also involve scanning in 
search of an initiation codon. Thus, two general modes of IRES-
mediated translation have been described/proposed: so-called 
“direct landing” (whereby the 40S ribosome lands directly onto 
the AUG codon) and “land and scan” (whereby the 40S ribosome 
lands in the vicinity of the AUG, but then scans a certain distance 
to find the AUG) (9).

Poliovirus and encephalomyocarditis virus (EMCV) were 
the first biological systems found to utilize internal ribsome 
entry mechanisms to initiate translation of their mRNAs (10, 
11). Soon after the discovery of the polio and EMCV IRESs, 
IRESs were found in families of many other viruses (12, 13). 
Investigation of viral IRESs showed that IRES-driven transla-
tion initiation operates and prevails under conditions when 
cellular cap-dependent initiation is severely compromised, thus 
favoring expression of viral mRNAs (1, 5–7, 9). Inhibition of 
host protein synthesis during viral infection is usually caused 
by cleavage and partial loss of activity of the eIF4G scaffolding 
protein (14–16), 4E-BP dephosphorylation resulting in seques-
tration of eIF4E in the eIF4E-4E-BP complex (17, 18) and/or 
cleavage of poly(A)-binding protein (PABP) (19, 20), which 
binds the poly(A) tail of the mRNA and eIF4G and facilitates 
initiation via circularization of the mRNA (1, 20). Consistent 
with this, it was found that viral IRESs require a reduced number 
of translation initiation factors (especially of the eIF4-“family”) 
with substantial variability depending upon the mRNA, from 
requiring almost all factors, similar to cap-dependent mRNA 
translation, to requiring none (1, 13). For example, the hepatitis 
A virus (HAV) IRES is believed to require almost all canonical 
initiation factors for efficient translation initiation (21, 22), 
while the hepatitis C virus (HCV) IRES does not require any 
of the initiation factors of the eIF4-“family” (1, 23, 24) and the 
cricket paralysis virus (CrPV) IRES-containing mRNA is trans-
lated without the requirement for any of the canonical initiation 
factors (1, 24–26). It was also found that the majority of viral 
IRESs possess defined secondary and tertiary structures, which 
allow for their efficient interaction with the 40S ribosome. 
This interaction may be direct or partially indirect, requiring 
the assistance of both some canonical initiation factors and 
ITAFs (IRES trans-acting factors). ITAFs are known to assist in 
recruitment of the 40S ribosomal subunit to the mRNA through 
specific interactions or stabilization of specific active conforma-
tions of the IRES (1, 13, 24).

Soon after IRES elements were identified in viral 5′ UTRs 
(10, 11), it was suggested that cellular mRNAs might also be 
translated via a cap-independent translation initiation mecha-
nism (27–29) and, indeed, IRESs were identified in a cohort 
of cellular mRNAs (5, 30). Like viral IRES-containing mRNAs, 
cellular mRNAs containing IRES elements were found to be 
preferentially translated under conditions of inhibition of 
cap-dependent initiation, such as endoplasmic reticulum (ER) 
stress, hypoxia, nutrient limitation, mitosis, and cellular differ-
entiation. (5, 6). Nevertheless, cellular IRES elements may differ 
from their viral counterparts in several characteristic features 
in that they appear to be less structured and not able to bind 
the 40S ribosomal subunit directly (5, 6). At least, in contrast 
to viral IRESs, the ability of cellular IRESs to directly bind 40S 
ribosomal subunits and form a correct initiation complex has 
not been yet confirmed by initiation complex reconstitution 
experiments using purified components (4–6). Other charac-
teristic features, such as reduced requirement for canonical 
initiation factors and/or requirement for specific ITAFs (often 
shared between viral and cellular IRESs), appear to be quite 
similar in viruses and eukaryotic cells (5, 6). However, in an 
attempt to provide a different explanation for a mechanism that 
could allow some cellular mRNAs to be translated under condi-
tions of inhibition of cap-dependent initiation, the so-called 
cap- and IRES-independent scanning mechanism of transla-
tion initiation was proposed as an alternative to the concept of 
cellular IRESs (4). Clearly, “cap-independent initiation” does 
not necessarily mean IRES-dependent initiation in its original 
(viral-type) sense.

Nevertheless, regardless of the exact molecular mechanism(s) 
involved, it is clear that initiation of translation of eukaryotic 
mRNAs may proceed via several different (non-cap-dependent) 
routes, each requiring a different subset of factors and relying 
on different specific interactions between the mRNA (harboring 
specific internal ribosome “landing” regions like IRESs) and the 
ribosome (1, 5–7, 30). This suggests that translation driven by 
IRES elements such as viral IRESs that differ in the complex-
ity of their secondary structures or utilize different subsets 
of initiation factors and ITAFs in comparison with cellular 
mRNAs might represent attractive targets for pharmacological 
modulation.

Below, we review current strategies used to target viral and 
cellular IRESs and discuss the physiological consequences (and 
potential therapeutic implications) of abrogation/modulation of 
IRES-mediated expression.

STRATeGieS TO TARGeT iReSs

Soon after the discovery of viral IRESs (especially the HCV IRES 
element), efforts have been made to target them for therapeutic 
gain (31–33). Due to the limited options generally available to 
treat viral infections, the design of antagonists able to target spe-
cific RNA elements that control the expression of viral proteins, 
such as IRESs, is of great interest and importance. Such attempts 
have been primarily focused on the design of antagonists/drugs 
that will disrupt the IRES itself or prevent IRES interactions with 
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the ribosome or with protein factors (such as canonical initia-
tion factors and ITAFs) necessary for IRES function (Figure 1) 
(31–41).

Internal ribosome entry site-targeting approaches that have 
been developed or are currently under development are described 
in Figure 1 and Table 1. These include, but are not limited to, 
the use of antisense oligonucleotides [see Ref. (36) for a review], 
peptide nucleic acids (PNAs) [see Ref. (37) for a review], locked 
nucleic acids (LNAs) [see Ref. (37) for a review], morpholinos 
(42, 43), short hairpin RNAs (shRNAs) (41, 44–47), small inter-
fering RNAs (41, 44–47), RNA aptamers, ribozymes (Rz) [see 
Ref. (48–51) and references therein], DNAzymes (Dz) (52, 53), 
peptides (54, 55), and small-molecule inhibitors (56–62). While 
most of these attempts have been focused on preventing/treating 
viral infections, the overall approach is also believed to repre-
sent a potential strategy for cancer prevention and treatment. 
Rationale for this includes the fact that HCV infection is a major 
cause of development of hepatocellular carcinoma (63) and many 
cellular IRES-containing mRNAs (e.g., c-Myc) are known to be 
implicated in cancer development (64). Therefore, IRES elements 
are also considered attractive anticancer therapeutic targets (65).

TARGeTiNG iReS eLeMeNTS wiTH 
ANTiSeNSe OLiGONUCLeOTiDeS AND 
THeiR DeRivATiveS

Antisense Oligonucleotides
Historically, antisense oligonucleotides were the first agents used 
to target IRES-mediated translation. These initial attempts were 
mostly aimed at inhibition of HCV gene expression (31, 32), 
although EMCV and polio IRESs also served as targets (36). 

FiGURe 1 | Common approaches to target iReS-mediated translation. Several approaches have been developed or are currently under development to 
target IRES-mediated translation. These approaches include, but are not limited to, use of antisense oligonucleotides, peptide nucleic acids (PNAs), locked nucleic 
acids (LNAs), morpholinos, short hairpin RNAs (shRNAs), small interfering RNAs (siRNAs), RNA aptamers, ribozymes, DNAzymes, peptides, and small-molecule 
inhibitors. These agents can cause either destruction of the IRES itself (left) or prevention of IRES interaction with the ribosome and/or protein factors (such as ITAFs) 
necessary for IRES function (right).

Two types of approaches were used. The first utilized antisense 
oligonucleotides that guided destruction of viral IRESs/RNAs 
via an RNAse H-dependent degradation mechanism. This 
mechanism required the use of phosphodiester-linked (natural) 
or phosphorothioate-linked nucleotides, which could serve as 
RNAse H substrates (36). The second approach utilized modified 
antisense oligonucleotides (2′-O-methyl, 2′-O-methoxyethyl, 
2′-fluoro-, 2-O-propyl, etc.) (Table 1) that are not substrates of 
RNAse H (36). These oligonucleotides were specifically designed 
to prevent IRES interactions with the ribosome (36). Antisense 
oligonucleotides of varying lengths (usually 14–28-mers) target-
ing different structural and functional regions of the IRES (e.g., 
the HCV IRES) were tested in cell-free in vitro system(s) (31, 36), 
ex vivo cellular system(s) (32, 36), and in vivo animal models [see 
Ref. (36, 41) for a review]. The possibility of inhibiting HCV IRES 
translation by the use of both RNase H-competent and RNase-H 
incompetent antisense oligonucleotides has been demonstrated 
[see Ref. (36) for a review]. In the case of the HCV IRES, the most 
efficient oligonucleotides were found to be those targeting the so-
called IIId loop of the IRES, responsible for IRES-40S ribosomal 
contacts (36), or the region of the mRNA containing the AUG 
codon (36).

Unfortunately, the approaches described above have several 
common drawbacks (36) related to the efficiency of delivery of 
oligonucleotides, their intracellular stability, and in some cases, 
side effects (such as proinflammatory responses) induced by their 
use (66).

Targeting iReS elements with Peptide 
Nucleic Acids and Locked Nucleic Acids
To increase the stability as well as the affinity of antisense oli-
gonucleotides, PNAs and LNAs have been developed (36, 37). 
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TABLe 1 | Compounds and approaches used to target iReSs.

Compound Mechanism of action Advantages Disadvantages Reference

Guide destruction of IRESs/RNAs via 
an RNAse H-dependent degradation 
mechanism, or prevent IRESs 
interaction with the components 
of the translation machinery (40S 
ribosomal subunits, ITAFs, etc.)

Easy to design, prepare/
obtain

Reduced efficiency of 
delivery, low intracellular 
stability, may cause 
proinflammatory responses

(31, 32, 35, 36, 
41, 66)

Prevent IRESs interaction with 
the components of the translation 
machinery (40S ribosomal subunits, 
ITAFs, etc.)

Enhanced stability (these 
compounds are not 
substrates of RNAse H)

Reduced efficiency of 
delivery may cause 
proinflammatory responses

(31, 32, 35, 36, 
41, 66)

Prevent IRESs interaction with 
the components of the translation 
machinery (40S ribosomal subunits, 
ITAFs, etc.)

Enhanced stability, 
enhanced affinity toward 
target RNA sequences

Reduced efficiency of 
delivery, intracellular 
trafficking. May be toxic

(36, 37, 67–71)

Prevent IRESs interaction with 
the components of the translation 
machinery (40S ribosomal subunits, 
ITAFs, etc.)

Enhanced stability, 
enhanced affinity toward 
target RNA sequences

Reduced efficiency of 
delivery, intracellular 
trafficking. May be toxic

(36, 37, 67–71)

Sterically block target RNAs. 
Prevent IRESs interaction with 
the components of the translation 
machinery (40S ribosomal subunits, 
ITAFs, etc.)

Enhanced stability, 
reduced toxicity

Reduced efficiency of 
delivery, intracellular 
trafficking. Specificity may 
be an issue

(42, 43)

Antisense: siRNA,  
shRNA (RNAi)

Guide destruction of target IRESs/
RNAs or mRNAs coding for ITAFs via 
RISC-dependent mechanism

Easy to design, prepare/
obtain

Reduced stability and 
efficiency of delivery. 
Specificity may be an 
issue. May activate PKR

(41, 44–47, 72–75)

RNA aptamers, ribozymes (Rz), 
DNAzymes (Dz)

Cleave target IRESs/RNAs. High selectivity Design process may be 
complicated

(48–53)

Short peptides, small  
molecules

Prevent IRESs interaction with 
the components of the translation 
machinery (40S ribosomal subunits, 
ITAFs, etc.)

Considered as the 
preferred form of drug 
therapies. Allow lead 
optimization

Sometimes mechanism 
of action is difficult to 
establish and characterize, 
e.g., when small molecules 
have been selected during 
high-throughput screening

(54–62, 76–78)
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PNAs are nucleic acid analogs with a neutral 2-aminoethylgly-
cine backbone (79) (Table 1). LNAs contain a methylene group 
between the 2′-oxygen and 4′-carbon of the ribose ring (79, 80) 
(Table 1). Thus, LNAs are more conformationally restricted while 

PNAs remain relatively flexible (79, 80). Both bind complemen-
tary sequences with high affinity. PNAs and LNAs are stable to 
digestion with nucleases/proteases and thus are believed to offer 
features superior to regular antisense oligonucleotides (79, 80). 
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Results demonstrated that PNAs and LNAs can inhibit IRES-
mediated expression in  vitro and ex vivo in cultured cells (36, 
37). LNA-based oligonucleotides were also shown to affect viral 
propagation in HCV-infected chimpanzees (67). However, in the 
latter case, HCV propagation was affected via an unusual mecha-
nism involving miR-122 molecules that were targeted by LNAs 
(67). miR-122 binds the HCV 5′ UTR and forms a complex that 
promotes viral RNA stability and replication (68, 69). Blocking 
interaction between miR-122 and the HCV mRNA resulted in 
marked suppression of HCV RNA propagation (67). Several 
companies are currently developing LNA-based anti-miR-122-
based therapeutics for advanced clinical trials (70). Despite these 
encouraging results, delivery and intracellular trafficking of such 
modified oligonucleotides remains a limitation of this methodol-
ogy (36, 37). In addition, some (but not all) studies reported toxic 
effects associated with the use of LNAs (71).

Targeting iReS elements with Morpholinos
Morpholinos are third-generation modified antisense oligonu-
cleotides that have favorable toxicity profiles and also possess 
increased nuclease stability (79). Morpholinos carry bases that 
are bound to morpholine (diethylenimide oxide 1,4-oxazinane 
tetrahydro-1,4-oxazine) rings instead of deoxyribose rings and 
that are linked together via phosphorodiamidate groups (79) 
(Table 1). Morpholino–RNA duplexes are more stable than their 
corresponding DNA–RNA duplexes. Morpholinos act by steric 
blocking of the target RNA sequences and are widely used to 
modulate gene expression in several model organisms, such as 
zebrafish and frogs (79). Morpholino antisense oligonucleotides 
(usually 20–25-mers) were found to be potent inhibitors of HCV 
IRES-mediated translation in  vitro and in a preclinical mouse 
model (42). These morpholinos were designed to target the HCV 
IRES region near the AUG codon (42). Inhibition was specific for 
the HCV IRES and not the EMCV IRES (42). A set of peptide-
conjugated phosphorodiamidate morpholino oligomers (PPMO) 
were also developed against conserved IRES sequence found in 
picornoviruses, such as human rhinovirus type 14, coxsackievi-
rus type B2, and poliovirus type 1 (PV1) (43). These PPMOs were 
found to efficiently inhibit virus replication in cultured cells (43). 
Moreover, treatment of poliovirus type 1-infected mice resulted 
in reduced PV1 titers in tissues of the central nervous system and 
protection from a lethal outcome (43).

Difficulty achieving efficient delivery to the target cells and 
intracellular trafficking remains a major obstacle precluding 
wide use of morpholinos as well as the other oligonucleotide-
based approaches discussed above. Moreover, a recent report 
suggests that morpholino off-target effects may be much more 
prevalent than previously thought (81). This reiterates the 
importance of careful validation of any oligonucleotide-induced 
phenotype (81).

The antisense-based technologies described above typically 
target loop regions of IRES elements in order to maximize 
the affinity and binding efficiency between the antisense 
oligonucleotide(s) and the RNA (36–38). Other regions ame-
nable to targeting include unpaired joint sequences, hairpins, 
and bulges (36–38). Surprisingly, only moderate variation in 

targeting efficiency (less than twofold) between loops, hairpins, 
and unpaired joint sequences has been reported (37).

Targeting iReS elements with Short 
Hairpin RNAs and Small interfering RNAs
In recent years, RNA interference (82) has been widely used to 
inhibit gene expression. High conservation of the HCV IRES and 
similar viral IRES elements make them attractive targets for RNA 
interference (41, 44–47). Both small interfering RNAs (siRNAs) 
and shRNAs have been successfully used to suppress HCV IRES 
expression in cultured cells and model animals (e.g., mice with 
humanized liver) (41, 44–47). A similar approach was also used to 
target cellular IRES elements or cellular ITAFs (hnRNP A1, HuR, 
etc.) required for the function of IRESs (including cellular IRESs) 
(72, 73). However, a key challenge associated with RNAi-based 
therapeutics is similar to those associated with oligonucleotide-
based approaches: difficulty in achieving efficient delivery of the 
material to the target cells. In addition to stability issues, efficient 
entry of the RNAi molecules into cells is hampered by their nega-
tive charges. To overcome this obstacle, various lipid-based sys-
tems including, but not limited to liposome- and polymer-based 
nanoparticles, have been developed [see Ref. (74) and references 
therein].

The question of whether RNA interference has significant 
advantages over antisense-based technologies is not easy to 
answer. It seems that at present, oligonucleotide-based approaches 
look more advantageous due to higher intracellular stability of 
DNA-based oligonucleotides and, in many cases, their higher 
affinity toward selected targeted RNA regions. One of the addi-
tional drawbacks of RNAi-based technologies is that siRNAs and 
shRNAs may activate protein kinase R (PKR) (75), thus leading 
to inhibition of host cell translation due to phosphorylation of 
translation initiation factor eIF2-alpha (1, 75).

Targeting iReS elements with RNA 
Aptamers, Ribozymes, and DNAzymes
Ribozymes, DNAzymes, and RNA aptamers (linked to hammer-
head ribozymes) have also been used to target IRES sequences, 
again with the HCV IRES being the main focus (48–53). 
DNAzymes are catalytic DNA molecules that can be designed to 
cleave target RNAs (similar to ribozymes) in a sequence-specific 
manner [see Ref. (83) and references therein]. It is believed, 
however, that synthetic DNAzymes are easier to prepare than 
synthetic ribozymes (83) and, in addition, DNAzymes are more 
stable (83). Unlike siRNAs and shRNAs, DNAzymes are not 
expected to activate PKR (52). Various ribozymes, RNA aptam-
ers fused with ribozymes, and DNAzymes have been tested 
for their ability to reduce expression of IRES-driven reporter 
constructs (mostly HCV IRES-based) and to inhibit viral rep-
lication in cultured cells and mouse models (48–53). Several 
sites in IRESs are usually targeted in order to maximize cleavage 
by catalytic nucleic acids (48–53). Promising results showing 
the selectivity and specificity of inhibition of IRES-mediated 
expression by ribozymes and DNAzymes suggest that they may 
serve as potent therapeutic agents against viral IRES-driven 
translation (48–53).
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Peptide and Small-Molecule inhibitors
Short peptides and small molecules are widely used as drugs 
(84–86). Short peptides are composed of 5–40 amino acids and 
usually mimic selected biological activities of the full-length 
proteins from which they were derived (84, 85). Some drugs in 
clinical use are short peptides (e.g., Fuzeon, which is an inhibitor 
of HIV-1 cell entry) (87).

Several peptides have been developed that target the HCV 
IRES (41, 54, 55). These peptides were mostly derived from the 
La-autoantigen (specifically, from its RNA recognition motif 
RRM) and were shown to abrogate La-HCV IRES binding (54) 
(La is an ITAF of the HCV IRES) (88). The La-derived peptides 
were shown to moderately inhibit IRES-driven translation 
in vitro and in cultured cells (54, 55). However, one issue with 
this strategy is that since La serves as an ITAF for many viral and 
cellular IRESs (5, 6, 88, 89), the effect of these peptides would 
likely not be specific for the HCV IRES.

Small molecules are currently considered the preferred form 
for drug therapies (86). Novel approaches to synthesize collec-
tions of compounds (libraries) have revolutionized our ability to 
generate large numbers of related small molecules rapidly and 
on demand (86). It has recently been found that a number of 
nucleic acid intercalating agents are capable of inhibiting IRES-
mediated initiation of translation to a much greater extent than 
cap-dependent initiation (56). However, screening attempts for 
IRES-binding inhibitors have been hampered by the complex and 
sometimes dynamic architecture of these elements, which makes 
them especially difficult to target using small molecules. On the 
other hand, it is precisely this complex and distinct architecture 
that makes IRES elements attractive for targeting. Numerous 
attempts have been made by a number of companies and research 
centers to address this problem [see Ref. (56–62) and references 
therein]. As a result, a number of potent small-molecule inhibi-
tors able to specifically suppress some viral [e.g., HCV, EMCV, 
and polio (56, 58, 59, 61, 62)] and cellular IRESs (e.g., c-Myc and 
VEGF) have been identified (76). The so-called benzimidazole 
inhibitors (targeting the HCV IRES basal domain IIa) were 
shown to suppress viral replication in cell cultures at micromolar 
concentrations with low toxicity (61). Aminoglycoside-based 
compounds were also found to be effective (62). Several such 
inhibitors have progressed to clinical trials. For example, VGX-
410C (from VGX Pharmaceuticals) appeared to be safe in phase 
2 trials, but was later found not to be effective (77).

Despite such setbacks, the approach is still considered to have 
strong potential and, as mentioned above, was also applied to 
modulate cellular (e.g., c-Myc and VEGF) IRES-driven transla-
tion (76). Small molecule hits shown to modulate c-Myc-IRES 
expression in a reporter construct in vitro were also tested ex vivo 
and shown to decrease c-Myc protein expression and modulate 
the viability of ovarian cancer cells (76). The exact mechanism 
of action of many of these small-molecule drugs on IRES-driven 
translation is, however, not well understood (76). It is believed 
that many of these drugs act by intercalating into IRESs and 
preventing binding of mRNAs to the ribosome (78). However, the 
extent of inhibition varies substantially with different intercalat-
ing drugs, showing dependence on the structural complexity of 
both the IRES and the drug (56, 58, 78). Unfortunately, at present, 

there is limited understanding of why certain intercalating drugs 
preferentially inhibit IRES-mediated translation compared to 
others. Nevertheless, the accumulated data suggest that mRNA 
structural complexity is likely a critical determinant of this pro-
cess (56, 58, 78).

Physiological Consequences and 
importance of Targeting iReS-Mediated 
Translation
While the physiological consequences and benefits of targeting 
viral IRES-mediated translation are quite obvious and should 
generally lead to abrogation of viral infections (34–36, 38, 40, 
41), the outcome of downregulation (or upregulation) of cellular 
IRES-mediated expression is less clear. Downregulation of cel-
lular IRES-mediated expression may lead to severe disease states 
like X-linked dyskeratosis congenita (X-DC) (90), a condition 
characterized by bone marrow failure, skin abnormalities, and 
increased susceptibility to cancer (91). Therefore, selection of 
appropriate targets and understanding of the exact effects of 
regulation of cellular IRES-mediated expression is extremely 
important. Nevertheless, cellular IRES-mediated expression rep-
resents an attractive therapeutic target, particularly for diseases 
(such as some cancers) that are resistant to conventional therapies 
(65). Below, we provide a brief overview of the physiological states 
and consequences associated with regulation of cellular IRES-
mediated translation.

Regulation of IRES-mediated translation of cellular mRNAs 
depends on the intracellular and extracellular environment (5–7). 
As discussed earlier, a general rule is that signaling pathways that 
inactivate cap-dependent translation are expected to promote 
IRES-mediated translation (5–7). IRES activity-promoting 
signaling pathways are usually associated with cellular stress 
conditions, such as hypoxia, inflammation, tumorigenesis, and 
growth factor responses (5–7). Therefore, cap-dependent and 
IRES-mediated translation should be carefully balanced in cells 
(Figure 2).

An example of how signaling is important for physiological 
stress and reprogramming of cellular translation is hypoxia 
associated with increased expression of HIF-1α protein, which 
is known to reprogram metabolism from oxidative to glycolytic 
modes (92), thus limiting reactive oxygen species (ROS) produc-
tion through oxidative phosphorylation (92). In this way, ROS 
levels and oxidative damage of proteins are limited in tissues such 
as the brain. Interestingly, HIF-1α is also associated with a switch 
from cap-dependent to adaptive IRES-mediated translation (93). 
The interesting finding that deletion of PTEN-induced putative 
kinase-1 (PINK1) promotes this translational switch, via mecha-
nisms that involve HIF-1α, suggests that therapeutics can be used 
to promote IRES-mediated translation in tissues like the brain for 
the treatment of neurodegenerative diseases such as Parkinson’s 
disease (94). Generation of ROS in the early onset of Parkinson’s 
disease is believed to contribute to its rapid progression (94).

Another example in support of the importance of the physi-
ological regulation of IRES activity is the finding that homeobox 
(Hox) mRNAs contain IRES elements in their 5′ UTRs and 
these mRNAs have developed a self-sufficient mechanism to 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


FiGURe 2 | iReS-mediated translation and cell fate. Cells respond to extracellular signals and changes in intracellular homeostasis by regulation of mRNA 
translation. Adaptive IRES-mediated translation is usually balanced with cap-dependent mRNA translation and is essential for cellular function. When adaptation 
starts failing, cap-dependent mRNA translation usually decreases and IRES-mediated translation prevails. This switch in translational control is the beginning of 
disease development leading to cellular dysfunction. Dysregulation of cap-dependent translation in cancer states may result in both up- and down-regulation of 
cap-dependent translation and imbalanced IRES-mediated expression.

October 2015 | Volume 5 | Article 2337

Komar and Hatzoglou IRESs as therapeutic targets

Frontiers in Oncology | www.frontiersin.org

suppress cap-dependent translation of their own mRNAs (95). 
This mechanism involves the presence of an RNA regulon in 
their 5′-UTRs that inhibits their cap-dependent translation, 
thus facilitating organismal development (95). This mechanism 
of IRES-mediated translation is likely present in other cellular 
conditions, still awaiting discovery.

Considering that adaptive IRES-mediated translation is pro-
tective (discussed above) and disease-induced IRES-mediated 
translation is undesirable, therapeutics can be developed to target 
specific IRES elements or signaling pathways that enhance the 
activity of these IRES elements. A good example of the latter case 
is the translational reprogramming that occurs in cancer cells that 
have adapted to hypoxic, nutritionally poor and inflammatory 
conditions. Several growth- and survival-promoting proteins 
(89) have been identified as containing IRES elements in the 
5′ UTRs of their mRNAs (96). The IRES-trans-acting factors 
for some of these IRES elements are partially known [recently 
reviewed in Ref. (96)] and, in some cases, the signaling leading 
to their activation has been also described (96). A recent report 
that provides support for the development of therapeutics to 
inhibit IRES-mediated translation involves the regulation of the 
IRES activity of the c-Myc mRNA (97). C-Myc is a protein that 
promotes growth and survival in many cancers. It was shown in 
multiple myeloma (MM) cells that the activity of the c-Myc IRES 

was dependent on the MAP kinase MNK1 (MAPK-interacting 
serine/threonine kinase 1) and the IRES-trans-acting factor 
HnRNPA1 (an RNA binding protein) (97). This protein is known 
to be phosphorylated by MNK1 and to act as an IRES-transacting 
factor for a few mRNAs (98, 99). Interestingly, a small molecule 
that inhibits interaction of HnRNPA1 with the c-Myc IRES 
abolished c-Myc IRES-mediated translation (stimulated by 
stress) and c-Myc protein accumulation (97). These findings are 
encouraging for the development of small-molecule inhibitors 
of the interaction between IRESs and their IRES-trans-acting 
factors as a strategy to inhibit tumor growth.

Another interesting recent report has identified an IRES ele-
ment in the cyp24a1 (1,25-dihydroxyvitamin D3 24-hydroxy-
lase) mRNA, which encodes a protein that inactivates vitamin 
D3-mediated signaling (100). This IRES was induced by 
vitamin D3 and inflammation and involved the PI3K-AKT1 
signaling pathway (100). Cyp24a1 was also found to be induced 
in breast and colon cancer cells and its enhanced expression 
may therefore explain the development of tumor resistance 
to chemotherapies in which D3 is used as an adjuvant agent 
(100). Understanding how inflammation causes translational 
reprogramming in different cancers will be an important step 
toward targeting IRES-mediated translation for treatment of 
these diseases.
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Future studies will bring light to these interesting 
developments and improve our overall understanding of 
the precise mechanisms involved in IRES-mediated transla-
tion. Nevertheless, it is clear that targeting of this mode of 
translational regulation holds strong promise as a therapeutic 
strategy.
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