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The functional importance of p53 as a tumor suppressor gene is evident through its
pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in
human cancer; however, not all genetic alterations are biologically equivalent. The majority
of alterations involve p53 missense mutations that result in the production of mutant p53
proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain
novel functions, often with deleterious effects. Here, we review characterizedmechanisms
of mutant p53 gain of function in various model systems. In addition, we review mutant
p53 addiction as emerging evidence suggests that tumors may depend on sustained
mutant p53 activity for continued growth. We also discuss the role of p53 in stromal
elements and their contribution to tumor initiation and progression. Lastly, current genetic
mouse models of mutant p53 in various organ systems are reviewed and their limitations
discussed.
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MUTANT p53, THE ELEPHANT IN THE ROOM

Cancer is a complex disease that kills millions of people annually. Alterations in genetic and epige-
netic cellular programs derail cellular controls normally responsible for maintaining homeostasis.
Sequencing of human cancer genomes has identified a myriad of genomic alterations found in
human cancers. Alterations in the p53 tumor suppressor gene stand out as the most common
alteration in many cancers: 96% in ovarian serous carcinoma (1), 54% in invasive breast carcinomas
(2), 86% in small cell lung cancer (3), and 75% in pancreas cancer (4), to name a few. Although p53
activitymay be abrogated or lost throughmultiplemechanisms, themajority of these changes involve
p53 missense mutations that result in single amino acid substitutions and expression of mutant
proteins. Commonmutations in the p53 gene, or “hotspots,” are present; for example, approximately
86% of mutations correspond to the DNA-binding sequence of p53 between codons 125 and 300.
The predominance of mutant p53 protein expression in human cancers over the simple loss of p53
activity, in turn, suggests an inherent biologic advantage (5–7).

p53 BIOLOGICAL ACTIVITIES IN TUMOR SUPPRESSION

The p53 gene encodes a transcription factor that contains a potent transcriptional activation domain,
a sequence-specific DNA-binding domain, and a tetramerization domain (8). In normal cells, p53
activity is low, but in response to DNA damage and numerous other stress signals, p53 levels rise
dramatically and result in the activation and transcription of hundreds of genes with important roles
in cell cycle arrest, senescence, apoptosis, metabolism, and differentiation (9). The sum of these
activities is to ensure that an abnormal cell fails to proliferate. Thus, tumors arise upon depletion
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of p53 activity through various mechanisms, including deletion
or mutation of the p53 gene itself, overproduction of the p53
inhibitors, Mdm2 and Mdm4, and viral inactivation (10–12).
Regardless of the mechanism of p53 loss, the downstream con-
sequences are profound and likely due to the vast, fundamental
spectrum of biologic activities in which p53 normally participates.
Moreover, the loss of normal p53 function is likely coupled with
the adoption of new biologic functions exerted by mutant p53
proteins with additional, deleterious effects.

GAIN-OF-FUNCTION ACTIVITIES
OF MUTANT p53

Single amino acid changes in the p53 gene may result in profound
changes to its function. In human cancers, missense mutations
comprise approximately 75% of all p53 alterations (7, 13, 14). This
is in contrast to many other tumor suppressor genes that undergo
deletion through the course of tumor initiation or development,
such as PTEN, BRCA1, and Rb. Five arginine residues in the
p53 gene are considered mutational “hotspots”; resultant mutant
proteins fail to bind to sequence-specific DNA sites and therefore
drastically alter the spectrum of transcriptional activity (15). Such
signature mutations in the p53 gene may arise through environ-
mental exposure to ultraviolet light or chemical carcinogens such
as aflatoxins, smoking, and so on (7, 16).

The fact thatmost p53 alterations in tumors aremissensemuta-
tions suggests that cells expressing mutant p53 have an advantage
over cells lacking p53 (17). Numerous experiments have tested
this hypothesis. For example, various tumor-derived human p53
mutants introduced into p53-null H1299 lung adenocarcinoma
cells conferred upon tumor cells a selective survival advantage
during etoposide or cisplatin treatments (18). In addition, several
p53mutants when overexpressed in Saos-2 cells, an immortalized
tumor cell line that lacks p53, yielded tumors in nude mice, while
the parental Saos-2 cell line did not (19). Cells expressing the
most common p53 mutants, in contrast to cells lacking p53, also
show increased metastatic potential and invasiveness (20, 21).
Mutant p53 proteins also render some cell types more resistant
to killing by therapeutic drugs such as doxorubicin, etoposide,
and cisplatin (22). In Li–Fraumeni syndrome (LFS), individuals
with p53missense mutations show a higher cancer incidence and
an earlier age of tumor onset (9–15 years earlier depending on
the study) than individuals with other kinds of mutations (23).
These novel activities of mutant p53 are referred to as gain of
function (GOF).

The generation of p53 knockin alleles in mice provided direct
in vivo evidence for the GOF activities of mutant p53. Knockin
mouse models that express mutant p53R172H and p53R270H pro-
teins, which mimic hot spot mutations that correspond to amino
acids 175 and 273 in human cancers, respectively, develop tumors
that exhibit a GOF phenotype in vivo, with high metastatic capac-
ity compared to tumors in mice inheriting a p53-null allele (24,
25). Additionally, using autochthonous mouse models of pancre-
atic cancer that incorporate oncogenic K-ras, Morton et al. (26)
found no metastatic burden in mice that had undergone genetic
deletion of a normal p53 allele relative to a high (65%) inci-
dence of metastasis in mice expressing a single, mutant p53 allele

(26). However, other groups that have studied identical mouse
models of pancreatic cancer have found cells of pancreatic origin
in the bloodstream of mice that have undergone monoallelic or
biallelic deletion of p53 in the pancreas, without the presence of
mutant p53 (27–29). These data suggest that mutant p53 GOF
activities may serve to enhance the metastatic potential and/or
promote the survival and productivity of metastatic tumor cells
at distant sites (26). Taken together, these studies suggest that
stable mutant p53 proteins have additional activities that fuel
tumor cell proliferation and metastases that are not yet fully
understood.

Interestingly, the characterization of animal models containing
mutant p53 alleles have demonstrated that tumor-specific events
were required for the stabilization of mutant p53 in addition
to its simple expression. Numerous tissues derived from mouse
models with germline mutant p53 alleles failed to demonstrate
detectable mutant p53 proteins, and, in some cases, tumors failed
to express detectable mutant p53. Investigation into this phe-
nomenon concluded that normal tissues failed to stabilize mutant
p53due to the presence ofMdm2and p16INK4a. Upon loss ofMdm2
or p16INK4a, mutant p53 is stabilized and mice show decreased
survival and increased metastases relative to mice with intact
Mdm2 or p16INK4a alleles (30). A recent analysis of pancreatic
cancer specimens demonstrated a strong correlation between
p53 mutation and its stabilization through positive staining by
immunohistochemistry for p53 protein expression. Such data
again indicate that in patients with pancreatic cancer, mutant p53
proteins are expressed, stabilized, and play an important role in
tumor development and progression (31). The GOF activity of
mutant p53 therefore depends largely on multiple signals for its
stabilization that may vary among normal cells and even among
tumor cells.

MECHANISMS OF MUTANT p53 GOF

Several mechanisms have now been identified that contribute to
mutant p53 GOF activities. The first such mechanism discovered
showed that mutant p53 proteins abrogate the tumor-suppressive
activities of the p53 family members p63 and p73 (24, 25, 32–
34). In addition, TGF-β and EGFR/integrin signaling pathways
stabilizedmutant p53 (p53R175H and p53R273H introduced into p53-
null H1299 cells) and inhibited the function of p63, properties that
were essential for the invasive nature of these cells (35, 36). These
studies strengthened the evidence that mutant p53 proteins bind
and disrupt p63 activities. However, p63 expression is limited to
epithelial cells and its inhibitionmay therefore not explainmutant
p53GOF in tumors ofmesenchymal origin.Moreover,mutant p53
was found to regulate gene expression independently of p63 and
p73 in some tumors (37–40).

Using cell lines derived from these same pancreatic cancer
models with Ras and p53 mutations, mutant p53 was found to
drive metastasis through induction of platelet-derived growth
factor receptor β (PDGFRβ). Mutant p53-dependent sequestra-
tion of p73 from an NF-Y complex permits this transcriptional
complex to function at the platelet-derived growth factor β pro-
moter, resulting in expression of PDGFRβ and a prometastatic
phenotype (41).
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Chromatin ImmunoPrecipitation (ChIP)-on-chip experiments
and expression arrays using SKBR3 breast cancer cells with the
p53R175H mutation identified mutant p53 complexes with the vita-
min D receptor which augmented expression of survival genes
and dampened expression of proapoptotic genes (42). Impor-
tantly, in these experiments, an intact transcriptional activation
domain was required. Using expression arrays of MDA-MB-
468 (p53R273H) breast cancer cells, Freed-Pastor et al. (43) iden-
tified increased expression of genes encoding several enzymes
of the mevalonate pathway. Mutant p53 bound SREBP proteins
and disrupted the acinar architecture of breast epithelial cells
when grown as spheroids. In our studies, we compared primary
osteosarcomas that had metastasized from p53R172H/+ mice to
p53+/− tumors that lacked metastases and identified a unique
set of transcriptional changes (39). In this system, mutant p53
bound the transcription factor Ets2 and enhanced expression of
a phospholipase, Pla2g16, which induced migration and invasion
in culture (39). Lastly, ChIP-seq experiments using LFS fibroblasts
with the p53R248W mutation identified numerous promoters that
contain mutant p53 (42, 44). More recently, Zhu et al. showed
that p53 mutants, not wild-type (WT) p53, bind to and upregu-
late chromatin regulatory genes, including the methyltransferase
MLL1, MLL2, and acetyltransferase MOZ, resulting in genome-
wide increases of histone methylation and acetylation. Further-
more, upregulation of MLL1, MLL2, and MOZ was found in
human tumors with p53 mutants, but not in WT p53 or p53-
null tumors (45). In summary, these data suggest that multiple
pathways contribute to the GOF phenotypes of cells with mutant
p53. The emerging themes by which mutant p53 exhibits its GOF
are (1) through formation of mutant p53 complexes with other
proteins that modify their activities (e.g., p63 and p73) and (2) by

interaction of mutant p53 with other transcription factors (e.g.,
SREBP and Ets2) that bring a potent transcriptional activation
domain to promoters not normally regulated WT p53 (Figure 1).
These mechanisms are not necessarily mutually exclusive in
the genesis of different cancers and may be context dependent
(46, 47).

DISTINCT BIOLOGICAL ACTIVITIES
OF DIFFERENT p53 MUTANTS

In addition to exhibiting GOF phenotypes, mutant p53 proteins
exhibit intrinsic differences. Some are classified as structural
mutants (e.g., p53R172H) as the mutation alters the structure of
the DNA-binding domain while others are classified as DNA-
binding mutants (e.g., p53R245W and p53R270H) because they
alter an arginine that directly interacts with DNA. Other mutants
show partial defects. For example, the p53R172P mutation, albeit
rare, is able to activate the cell cycle arrest but not apoptotic
programs of p53 (48). In vivo, differences in tumor spectrum
were observed between p53R172H and p53R270H mice (24, 25). In
addition, in humanized mutant p53 knockin models, p53R248Q/−
and p53R248Q/Q, but not p53G245S/− and p53G245S/S, mice show an
acceleration of tumor development and shorter survival as com-
pared to p53−/− mice (49). Lastly, different human tumor types
show different spectra of p53 mutations. For example, based on
cBioPortal, mutations at the codon 248 of p53 aremost prevalently
observed in human pancreatic tumors, whereas in breast tumors,
codons 275 and 175 are most frequently mutated, respectively
(5, 6), further suggesting that different p53 mutations impart
unique activities to drive development of different tumor types.

FIGURE 1 | (A) Mutant p53 interacts with transcription factors not normally bound by wildtype p53, such as p63, p73, and Smad. The activity of downstream targets
is disrupted, resulting in GOF properties. (B) Mutant p53 complexes with transcription factors, such as Ets2 and SREBP, not typically bound by wildtype p53. The
results are aberrant activation of genes and downstream effectors that promote GOF properties.
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THE IMPORTANCE OF STROMA IN
TUMOR SUPPRESSION

The discussion has thus far focused on p53 mutations within
tumor cells and has ignored a possible role of surrounding tissue
on tumor evolution. Tumors are complex tissues that consist of
two components: a parenchyma and stroma. The parenchyma
consists of tumor cells while the stroma consists of blood and
lymphatic vessels, fibroblasts, and inflammatory and immune
cells (50). The importance of stromal elements in cancer develop-
ment has been supported by extensive clinical and experimental
evidence (51–55). The injection of human breast tumors into
nude mice and subsequent analyses of copy number variations
indicated that stromal cells evolved additional changes not found
in the original tumor (56). In another study of human breast
cancer, gene expression differences in the stroma were a better
predictor of response to chemotherapy (57). Mouse models have
now clearly implicated the importance of stromal alterations in
tumor development. Deletion of PTEN in stromal fibroblasts
accelerated initiation, progression, and malignant transformation
of ErbB2/neu-driven mammary epithelial tumors, implicating a
tumor-suppressive role of PTEN in stroma (58). Global gene
expression profiling of stroma lacking PTEN revealed changes
in the expression of genes regulating extracellular matrix (ECM)
deposition, wound healing, and chronic inflammation, which
were validated by staining with various markers. Lujambio and
colleagues selectively deleted p53 in hepatic stellate cells, result-
ing in modifications to the tumor microenvironment (TME)
and enhanced malignant transformation of epithelial cells (59).
Mutations in p53 have also been found in the stromal compo-
nent of some primary breast tumors and in carcinoma-associated
fibroblasts (CAFs) (51, 60–63). Additionally, MCF7 breast tumor
cells formed more aggressive tumors with shorter latency after
injection into p53−/− SCID mice as compared to injection into
p53+/+ SCID hosts (64). Hill et al. (65) further showed that
prostate tumor cells can promote the selection and expansion
of p53-deficient stromal fibroblasts through paracrine mecha-
nisms. Highly proliferative, p53-deficient stromal cells were sub-
sequently found to promote epithelial tumor growth and pro-
gression despite retention of WT p53. These data clearly show
that changes in stroma occur and that they directly impact tumor
development.

MUTANT p53 ADDICTION

In addition to the observations that mutant p53 proteins exhibit
GOF activities, a growing body of evidence suggests that tumor
cells may be addicted to mutant p53 expression. Experiments
using siRNAknockdown ofmutant p53 in cancer cell lines showed
a higher apoptotic response to drug treatment in cells with knock-
down of mutant p53 (47, 66). Additional mutant p53 deple-
tion experiments show decreases in cell growth rate, viability,
replication, and clonogenicity. Constitutive inhibition of mutant
p53 reduced tumor growth in nude mice and showed reduced
stromal invasion and angiogenesis (67). In addition, Prives and
colleagues showed that mutant p53 depletion in breast cancer
cells (MDA-MB-231 cells with p53R280K and MDA-MB-468 with
p53R273H) in 3D culture leads to phenotypic reversion to more

normal, differentiated structures with hollow lumens (43). More
recently, using a conditional mutant p53mouse model expressing
a p53R248Q hotspot mutation, Moll and colleagues showed that
mutant p53 ablation restrained growth of allotransplanted and
autochthonous tumors and extended animal survival, indicat-
ing that these tumors depend on sustained mutant p53 expres-
sion (68). In summary, these data suggest that tumor cells with
mutant p53may be addicted to the GOF activities of mutant p53.
Tumor regression and dependence onmutant p53 is likely context
dependent and the extent to which elimination of mutant p53,
genetically or through pharmacologic inhibition of downstream
mediators, as a viable therapy remains to be seen (69).

MOUSE MODELS FOR SPORADIC
p53 MUTATIONS IN CANCER

Knock-in mice with germline mutations in p53 that mimic those
found in LFS have more aggressive, metastatic tumors as com-
pared to mice lacking p53 and provided convincing evidence for
p53GOF activities (24, 25). Yet germlinemutations in p53 are rare
in humans, and the vast majority of human cancers evolve from
somatic alterations of p53. Consequently, current animal models
at our disposal to study the role of p53missense mutations in the
genesis of somatic tumors are inadequate. Some involve expres-
sion ofmutant p53 in breast epithelial cells usingmousemammary
tumor virus (MMTV) or whey acidic protein (WAP) promoters
which are hormonally regulated and therefore do not simulate
expression of mutant p53 from the endogenous locus (70, 71).
Currently, conditional mutant p53 alleles are only active following
cre-mediated removal of a DNA “STOP” cassette flanked by LoxP
sites (LSL= Lox–STOP–Lox) (25). The STOP sequencemaintains
the downstream gene in an unexpressed or null state in all animal
cells until the STOP cassette is selectively removed andmutant p53
is expressed. Importantly, tumors in this model initiate from cells
heterozygous for p53 since animal conception. Moreover, tumors
under these conditions initiate and progress within a tumor
microenvironment (TME) replete with p53-heterozygous stromal
elements. CAFs, macrophages, T cells, neutrophils, endothelial
cells, and so on remain heterozygous for p53 following conception
(due to the presence of the STOP cassette) with undefined effects
on tumor biology. Stroma is a requisite component of tumor
initiation and growth, and as mentioned earlier, prostate tumor
epithelium selects for p53-null stromal fibroblasts in p53± mice,
yielding a highly proliferative stroma that contributes to tumor
progression. Given the powerful roles of p53 in cellular plastic-
ity and embryonic stem cell differentiation, tumors that develop
from and under conditions of p53 heterozygosity may differ in
unappreciated ways from human tumors that initiate from WT
p53 cells. Amodel that more closely mimics the events in sporadic
tumorigenesis is sorely needed.

FUTURE DIRECTIONS

Mouse models of mutant p53 carry the potential to inform us of
essential mechanisms of cancer initiation and metastasis translat-
able to therapeutics in humans. However, many genetic mouse
models used to study mutant p53 in vivo incorporate germline
mutant p53 alleles that may alter normal and cancer biology in
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ways that compromise its relevance to human cancer. Innovation
in genetic mouse models of mutant p53 is mandatory to more
closelymodel human biology and to serve as translational biologic
platforms to better evaluate and develop novel therapeutic agents
in human cancers. Moreover, given the importance of the TME
in cancer development and metastasis, mouse models that pre-
serve the complex regulatory and tumor–stromal interactions are
mandatory to the development of effective, translational biologic
platforms to target the TME toward therapeutic ends.
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