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Cancer cells express surface proteins and display antigens that differ from the “norm.” These differ-
ences can be exploited to promote a therapeutic antitumor immune response. Specifically, compo-
nents within the endoplasmic reticulum (ER) play a critical role in deciding which antigenic peptides 
are presented on the cancer cell surface to immune cells. Furthermore, under stress conditions, 
certain ER-resident proteins can exit the ER and translocate to the surface. The translocation of such 
ER proteins to the outside of the cell (1, 2) can lead to modulation of immune responses in cancer 
(3, 4), autoimmunity (5) and other diseases (6, 7). Normally, proteins undergo a number of ER stress 
checks for correct folding and, e.g., ability to resist inappropriate oxidation and reduction before 
secretion. Failing these quality controls leads to ER stress and triggers a series of unfolded protein 
responses (UPRs) to restore order. In cancer cells, these pathways can be dysregulated opening up the 
possibility of developing potential therapeutics to target cancer cells (8). In this topic, these various 
aspects of the ER in tumor immunity are explored in a series of focused review and research articles.

BEHiNd tHE “ioN” CUrtaiN

Within the Ca2+-ion rich confines of the ER, chaperones, oxidoreductases, aminopeptidases (ERAPs) 
work industriously for the benefit of the cellular state, regulating signaling to the “outside world.” 
The calcium channels linking the ER lumen and cytosol act as ER stress gates and chaperones, such 
as GRP78, act as gate keepers deciding the fate of the cell by their ability to control Ca2+ release (9). 
Alterations in Ca2+ homeostasis in the ER can provoke cell stress and trigger one or more UPR coping 
mechanism pathways, which normally leads to either recovery of a stressed cell or non-inflammatory 
cell death. However, solid tumors typically thrive in a low oxygen and nutrient environment that 
usually triggers ER stress. Dicks and coworkers describe corrective UPR strategies that aid malignant 
cells to survive in this environment, with a focus on GRP78 (10). In brief, GRP78 transcription 
triggered by ER stress facilitates chromatin remodeling and DNA damage repair and in certain types 
of malignancies aids survival.

One of the best known immune-regulatory functions occurring within the ER is the assembly of 
the major histocompatibility complex (MHC)-I/antigen peptide complex. Stratikos and colleagues 
report on the role of the ER aminopeptidases (ERAP1 and 2) in generating mature antigenic epitopes 
for loading onto the MHC class I molecules, prior to their transport to the cell surface (11). The 
authors suggest that both ERAP 1/2 are required for natural killer and T cell-mediated immunity 
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against tumors. These highly polymorphic ERAPs contain many 
single nucleotide polymorphisms (SNPs) associated with diseases, 
including cancer (12). These SNPs can influence aminopeptidase 
expression, enzymatic activity, and antitumor cytokine expres-
sion. Such ERAP mutations may aid tumor cells to avoid immune 
surveillance and eradication (13).

tHE GrEat ESCaPE

Endoplasmic reticulum chaperones and oxidoreductases can 
serve as “eat-me” signals on the surface of tumors cells, while 
promoting tumor growth on others. How ER chaperones escape 
retention from the ER and move to the plasma membrane remains 
contentious (14). Several articles within this e-book describe 
mechanisms to prevent and allow escape of chaperones from 
the ER and how this influences tumor recognition. Gutiérrez 
and Simmen describe the regulatory processes involved in 
retaining or recapturing ER proteins as they attempt to leave 
the ER (15). Gutiérrez and Simmen describe the conditions by 
which ER chaperones and oxidoreductases (calreticulin, ERp57, 
PDI, and GRP94) escape retention and enhance tumor elimi-
nation by the immune system. Conversely, other ER proteins 
(BiP/GRP78) are expressed on many cancer cell surfaces and 
enhance proliferation, angiogenesis, and therapeutic resistance 
(16). Undoubtedly, if the “escape” and retention of ER proteins 
to and from the cell surface can be controlled, the process could 
be exploited for specific cancer therapies. However, methods 
to trigger escape of potentially immunogenic regulatory 
proteins from the ER will have to be strictly regulated, given 
their ability to modulate tumor growth and induce unwanted 
adaptive immunity in other diseases. Wiersma and coworkers 
(5) highlight the fact that in autoimmune diseases, cell stress 
provokes extracellular release of some ER proteins, which can 
affect innate and adaptive immune systems and trigger inflam-
mation (17–19).

The idiom “That which hath been is now; and that which is 
to be hath already been” (King James Bible, Ecclesiastes 3:15) is 
no better illustrated by the fact that parasites have been secret-
ing chaperones for thousands of years as a defense mechanism 
against the human immune system (20, 21). Ramirez-Toloza et al. 
(22) describe how surface calreticulin on the Chagas disease caus-
ing parasite Trypanosoma cruzi blocks activation of complement 
and aids immune escape of the parasite. Moreover, people with 
Chagas disease appear less susceptible to certain malignancies 
(23), and Ramirez-Toloza et al. identify segments of calreticulin 
that can inhibit tumor angiogenesis.

War aNd PEaCE

Several papers in this e-book describe immune properties of ER 
proteins capable of raging “war” against tumors. Wang and col-
leagues describe the adjuvant properties of the stress inducible 
glucose-regulated protein 170 (GRP170). Previously, they showed 
an isoform of GRP170 was secreted in melanoma, prostate, and 

colorectal cancer cells (24–26). GRP170 associates with tumor 
antigens both intracellularly and extracellularly, acting like a 
double agent, inducing potent anticancer immunity when outside 
the cells, but aiding the survival of cancer cells when within the 
ER. The authors have exploited GRP170 to develop an immune 
adjuvant for cancer vaccines to trigger a number of adaptive 
immune processes. An alternative means of delivering antitumor 
chaperones to the cell surface is by inducing cell stress using 
photodynamic therapy (PDT) to generate localized production of 
reactive oxygen species by transfer of light energy from the pho-
tosensitizer chlorin C6. This strategy induces surface exposure of 
calreticulin within minutes of treatment in squamous carcinoma 
cells (27). Tumoricidal activity is enhanced when PDT treated 
cells are supplemented with additional recombinant calreticulin. 
In a similar manner, de Bruyn and coworkers describe that 
tumor necrosis factor (TNF)-related apoptosis-inducing ligand 
(TRAIL) recruits CRT to its TRAIL-receptor 2 DISC complex 
and dissociate CRT from CD47 on the cell surface of cancer cells 
(28), whereby it may or may not facilitate phagocytic uptake by 
dendritic cells.

A major aspect of ER protein stimulation of anticancer 
immunity is to activate specific cytotoxic T cells to provide 
long lasting immunity against developing tumors. Løset et  al. 
illustrate how tumor-specific T cells armed with specific T-cell 
receptors (TCRs) could eradicate tumors by interacting with 
MHC class I containing tumor and/or chaperone peptides 
(29). Løset and coworkers highlight an alternative therapeutic 
approach that exploits soluble TCRs that engage peptide/MHC 
(pMHC) complexes, some of which are now in clinical trials. 
As an alternative to the stealth-like cancer eradication by TCR-
transduced T cells, Graner and colleagues have proposed a more 
“blanket-bombing” approach. They describe the development of 
a vaccination rationale comprising of chaperone-rich cell lysates 
(CRCL) purified from solid tumors designed to induce a plethora 
of immune responses (30).

SUMMarY

The ER and its specialized proteins do play a major role in tumor 
immunity both indirectly and directly. Clearly, there is much 
more to understand but the potential role and therapeutic options 
of ER proteins, as described herein, will aid further research into 
this fascinating topic.
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