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introduction: “Radiomics” extracts and mines a large number of medical imaging fea-
tures in a non-invasive and cost-effective way. The underlying assumption of radiomics 
is that these imaging features quantify phenotypic characteristics of an entire tumor. 
In order to enhance applicability of radiomics in clinical oncology, highly accurate and 
reliable machine-learning approaches are required. In this radiomic study, 13 feature 
selection methods and 11 machine-learning classification methods were evaluated in 
terms of their performance and stability for predicting overall survival in head and neck 
cancer patients.

Methods: Two independent head and neck cancer cohorts were investigated. Training 
cohort HN1 consisted of 101 head and neck cancer patients. Cohort HN2 (n = 95) was 
used for validation. A total of 440 radiomic features were extracted from the segmented 
tumor regions in CT images. Feature selection and classification methods were com-
pared using an unbiased evaluation framework.

results: We observed that the three feature selection methods minimum redundancy 
maximum relevance (AUC = 0.69, Stability = 0.66), mutual information feature selection 
(AUC = 0.66, Stability = 0.69), and conditional infomax feature extraction (AUC = 0.68, 
Stability = 0.7) had high prognostic performance and stability. The three classifiers BY 
(AUC = 0.67, RSD = 11.28), RF (AUC = 0.61, RSD = 7.36), and NN (AUC = 0.62, 
RSD = 10.52) also showed high prognostic performance and stability. Analysis inves-
tigating performance variability indicated that the choice of classification method is the 
major factor driving the performance variation (29.02% of total variance).

conclusion: Our study identified prognostic and reliable machine-learning methods 
for the prediction of overall survival of head and neck cancer patients. Identification 
of optimal machine-learning methods for radiomics-based prognostic analyses could 
broaden the scope of radiomics in precision oncology and cancer care.
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inTrODUcTiOn

The emergence of “radiomics” (1) has expanded the scope of medi-
cal imaging in clinical oncology. Radiomics focuses on extracting 
and mining a large number of medical imaging features. It is 
hypothesized that these imaging features are enriched with cru-
cial information regarding tumor phenotype (1, 2). These features 
provide a comprehensive characterization of entire tumors, and 
hence are likely to capture the intra-tumor heterogeneity. It has 
been stated that intra-tumor heterogeneity could have profound 
implications in clinical predictions (e.g., treatment response, 
survival outcomes, disease progression, etc.), and therefore it is 
considered as a crucial factor for precision oncology and related 
research (3–6). Several studies have assessed various radiomic 
features in different cancer types and with respect to different 
imaging modalities (2, 7–11). Some studies have investigated the 
reproducibility/variability of radiomic features across different 
clinical settings (2, 12–14). Moreover, several other studies have 
reported significant predictive/prognostic power of radiomic 
features. It has been shown that radiomic features are associated 
with tumor histology (15–17), tumor grades or stages (16), patient 
survival (2, 7, 18–20), metabolism (21), and various other clini-
cal outcomes (7, 16, 22, 23). Furthermore, some radio-genomic 
studies have reported associations between radiomic features 
and underlying gene expression patterns (2, 9, 11, 24, 25). These 
reports indicate that radiomics could improve individualized 
treatment selection and monitoring. Furthermore, unlike most 
of the genomic-based approaches, radiomics is non-invasive and 
relatively cost-effective (2, 26). Therefore, radiomics is a novel 
and promising step forward toward the realization of precision 
oncology.

Predictive and prognostic models are an important part of 
radiomics (27). Highly accurate and reliable models are desired 
to improve decision support in clinical oncology. Machine learn-
ing could help in this regard. Machine learning can be broadly 
defined as computational methods/models using data to improve 
performance or make accurate predictions (28). These program-
mable methods can “learn” from the data, and hence automate 
and improve the prediction process. Therefore, it is essential to 
compare different machine-learning models for precision oncol-
ogy, and hence also for radiomics-based clinical biomarkers. 
Recent advances in medical image acquisition technologies allow 
higher resolution tumor imaging and facilitate detailed quantifi-
cation of tumor phenotype. The feature dimensions of radiomics 
are increasing rapidly. One of the issues with high dimensional 
feature space is the “curse of dimensionality” (29). A large number 
of features with limited sample size could hinder the predictive/
prognostic power of a model. Feature/variable selection is one of 
the ways to tackle the curse of dimensionality. Therefore, different 
feature selection methods (29) should be thoroughly investigated 
for radiomics-based prognostic analyses. However, as radiomics 
is an emerging field of research, not sufficient effort could be 
made toward assessing the impact of different machine-learning 
methods. The majority of the radiomics-based studies have only 
assessed the discriminating power of radiomic features without 
evaluating alternative prediction/prognostic models.

Only few recent studies have compared different feature selec-
tion and classification methods on radiomics-based clinical pre-
dictions (15, 20), but with limited sample sizes and also without 
independent validation. In a recently published radiomic study 
(30), a large panel of feature selection and machine-learning clas-
sification methods was evaluated in two independent cohorts of 
patients with non-small cell lung cancer (NSCLC). They proposed 
an unbiased framework for comparing different feature selection 
and classification methods using publicly available implementa-
tions (31, 32) and reported parameter configurations (33).

In this study, we assessed a large panel of machine-learning 
methods for overall survival prediction of head and neck cancer 
(HNSCC) patients. Two independent HNSCC cohorts totaling 
196 patients were used in the analysis. Feature selection and clas-
sification training was done using training cohort HN1 and the 
prediction performance was evaluated in the validation cohort 
HN2. All the feature selection and classification methods were 
evaluated in terms of their prognostic ability and stability against 
data perturbation. Machine-learning methods having high prog-
nostic/predictive power and stability are desired for radiomics-
based analyses. Such methods could enhance the applications of 
non-invasive and cost-effective radiomics in cancer care.

MaTerials anD MeThODs

radiomic Features
We used 440 radiomic features describing the first order intensity 
statistics, texture (34, 35), and shape of the three-dimensional 
tumor region on CT images. Intensity and textural features 
were also recomputed after different wavelet decomposition 
of the original image. Mathematical definitions of all radiomic 
features as well as the extraction methods were previously 
described (2, 30).

Datasets
In this study, we analyzed two HNSCC cohorts from the two 
different institutes of Netherlands:

 (1)  HN1: 136 HNSCC patients treated at MAASTRO Clinic, 
Maastricht. All patients received a treatment planning 
18FFDG-PET-CT scan (Biograph, SOMATOM Sensation-16 
with an ECAT ACCEL PET scanner; Siemens, Erlangen, 
Germany) made with the patient immobilized using a ther-
moplastic mask. Patients fasted at least 6 hours before the start 
of the acquisition. A total dose dependent on the weight of the 
patient (weight  ×4 + 20 MBq) of [18F] fluoro-2-deoxy-d-glu-
cose (FDG) 30 (MDS Nordion, Liège, Belgium), was injected 
intravenously, followed by physiological saline (10 mL). Free-
breathing PET and CT images were acquired after an uptake 
period of 45  min. A spiral CT (3  mm slice thickness) was 
performed covering the complete thoracic region. Based on 
the radiological examinations and clinical findings, the gross 
tumor volume (GTV) was delineated on the fused PET-CT 
scan by a radiation oncologist in a radiotherapy treatment 
planning system (XiO, CMS, St Louis, MO, USA).
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TaBle 1 | Table defining the acronyms related to the used feature 
selection and classification methods.

classification 
method 
acronym

classification  
method name

Feature 
selection 
method 
acronym

Feature selection 
method name

Nnet Neural network RELF Relief

DT Decision tree FSCR Fisher score

BST Boosting GINI Gini index

BY Bayesian JMI Joint mutual 
information

BAG Bagging CIFE Conditional infomax 
feature extraction

RF Random forset DISR Double input 
symmetric relevance

MARS Multi adaptive 
regression splines

MIM Mutual information 
maximization

SVM Support vector 
machines

CMIM Conditional 
mutual information 
maximization

NN Neirest neighbor ICAP Interaction capping

GLM Generalized linear 
models

TSCR T-test score

PLSR Partial least squares 
and prinicipal 
component regression

MRMR Minimum redundancy 
maximum relevance

– – MIFS Mutual information 
feature selection

– – WLCX Wilcoxon
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 (2)  HN2: 95 HNSCC patients treated at VU University Medical 
Center (VUMC), Amsterdam. All patients received a treat-
ment planning CT scan of the head and neck (Varian Medical 
Systems VISION 3253). CT scans were acquired in helical 
mode with slice thickness of 2.5 mm. The GTV was delineated 
by an experienced radiation oncologist on the CT scans.

This analysis was carried out in accordance with Dutch law. 
The Institutional Review Boards of both the participating centers 
approved the studies: HN1 (MAASTRO Clinic Maastricht, The 
Netherlands) and HN2 (VUMC, Amsterdam, The Netherlands). 
Further details related to patient population and treatments can 
be obtained from the previous study (2). We dichotomized the 
censored continuous survival data using a cutoff time of 3 years. 
Patients who survived beyond the cutoff time were labeled as 1, 
whereas the deceased ones were labeled as 0. The objective of 
the study was to stratify patients into these two labeled survival 
classes using different machine-learning classifiers. We used 
3  years survival cut-off because it resulted in reasonable event 
ratios (37% for HN1, 34% for HN2) in the cohorts. We excluded 
patients that were followed up for <3 years. This resulted in 101 
patients in the training cohort (HN1) and 95 patients in the 
validation cohort (HN2). All features were standardized using 
Z-score standardization.

Feature selection Methods
As described in a previously published study (30), 14 FS methods 
based on filter approaches were used in the analysis: Fisher score 
(FSCR), relief (RELF), T-score (TSCR), Chi-square (CHSQ), 
Wilcoxon (WLCX), Gini index (GINI), mutual information 
maximization (MIM), mutual information feature selection 
(MIFS), minimum redundancy maximum relevance (MRMR), 
conditional infomax feature extraction (CIFE), joint mutual 
information (JMI), conditional mutual information maximiza-
tion (CMIM), interaction capping (ICAP), and double input 
symmetric relevance (DISR). However, the method CHSQ did 
not run according to our experimental design. CHSQ was not 
able to select the required number of features due to the smaller 
size of training cohort. We thus removed it from further analysis. 
The acronyms related to the feature selection methods are defined 
in Table 1. Publicly available implementations were used for these 
methods (31, 32). Detailed description regarding these methods 
can be obtained from Parmar et al. (30).

classifiers
As described earlier (30), we investigated 12 machine-learning 
classifiers belonging to the 12 classifier families: bagging (BAG), 
Bayesian (BY), boosting (BST), decision trees (DT), discriminant 
analysis (DA), generalized linear models (GLM), multiple adap-
tive regression splines (MARS), nearest neighbors (NN), neural 
networks (Nnet), partial least square and principle component 
regression (PLSR), random forests (RF), and support vector 
machines (SVM). In our experimental settings, classifier DA 
generated computation error in the majority of cases. This could 
be due to the smaller training cohort. Therefore, we removed 
DA from further analysis and used the remaining 11 classifiers. 
The acronyms related to the classifiers are defined in Table 1. All 

classifiers were implemented using the R package caret (version 
6.0-47) (36), which provides a nice interface to access many 
machine-learning algorithms in R. Classifiers were trained using 
the repeated (three repeat iterations) 10-fold cross validation in 
the training cohort (HN1), and their prognostic performance was 
evaluated in the validation cohort (HN2) using the area under 
receiver operator characteristic (ROC) curve (AUC). We used 
the classifier parameters as defined by earlier studies (30, 33). All 
the classifiers, the corresponding parameters and R packages are 
listed in Ref. (30).

analysis
Prognostic Performance
We compared different feature selection and classification meth-
ods using the experimental design defined by an earlier study 
of NSCLC radiomic cohorts (30). We incrementally selected 
features ranging from 5 up to 50, with an increment of 5 features 
(n = 5, 10, 15, 20, … , 50), using each of the 13 feature selection 
methods. These subsets of selected features were then used as an 
input to each of the 11 machine-learning classifiers. The prog-
nostic performance was assessed using the area under receiver 
operator characteristic curve (AUC).

Stability
Stability of feature selection and classification methods was assessed 
using previously defined stability measures (stability and RSD) (30). 
Stability measures were computed using the training cohort (HN1), 
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TaBle 3 | Table describing the representative aUc and stability of 
classification methods.

classification 
method

aUc  
(hnscc)

aUc  
(nsclc)

rsD% 
(hnscc)

rsD% 
(nsclc)

Nnet 0.59 ± 0.07 
(Low)

0.57 ± 0.04 
(Low)

11.54 (Low) 6.41 (Low)

DT 0.56 ± 0.05 
(Low)

0.54 ± 0.04 
(Low)

11.4 (High) 7.89 (Low)

BST 0.56 ± 0.07 
(Low)

0.58 ± 0.04 
(Low)

11.28 (High) 8.23 (Low)

BY 0.67 ± 0.06 
(High)

0.64 ± 0.05 
(High)

11.28 (High) 0.86 (High)

BAG 0.55 ± 0.06 
(Low)

0.64 ± 0.03 
(High)

9.27 (High) 5.56 (High)

RF 0.61 ± 0.06 
(High)

0.66 ± 0.03 
(High)

7.36 (High) 3.52 (High)

MARS 0.58 ± 0.05 
(Low)

0.61 ± 0.03 
(High)

12.47 (Low) 6.98 (Low)

SVM 0.64 ± 0.09 
(High)

0.61 ± 0.03 
(High)

12.69 (Low) 6.39 (Low)

NN 0.62 ± 0.05 
(High)

0.61 ± 0.02 
(High)

10.52 (High) 4.08 (High)

GLM 0.72 ± 0.08 
(High)

0.63 ± 0.02 
(High)

11.78 (Low) 2.19 (High)

PLSR 0.73 ± 0.07 
(High)

0.63 ± 0.02 
(High)

12.75 (Low) 2.24 (High)

HNSCC thresholds: AUC = 0.61, RSD% = 11.4; NSCLC thresholds: AUC = 0.61, 
RSD% = 5.56.

TaBle 2 | Table describing the representative aUc and stability of 
feature selection methods.

Feature 
selection 
method

aUc  
(hnscc)

aUc 
(nsclc)

stability 
(hnscc)

stability 
(nsclc)

RELF 0.62 ± 0.09 
(High)

0.61 ± 0.04 
(High)

0.63 ± 0.12 
(Low)

0.91 ± 0.05 
(High)

FSCR 0.63 ± 0.08 
(High)

0.62 ± 0.04 
(High)

0.51 ± 0.13 
(Low)

0.78 ± 0.08 
(High)

GINI 0.58 ± 0.07 
(Low)

0.62 ± 0.04 
(High)

0.66 ± 0.11 
(High)

0.68 ± 0.10 
(Low)

JMI 0.59 ± 0.07 
(Low)

0.61 ± 0.04 
(High)

0.67 ± 0.05 
(High)

0.68 ± 0.05 
(Low)

CIFE 0.68 ± 0.08 
(High)

0.60 ± 0.03 
(Low)

0.7 ± 0.04 
(High)

0.69 ± 0.05 
(Low)

DISR 0.56 ± 0.06 
(Low)

0.62 ± 0.05 
(High)

0.65 ± 0.08 
(Low)

0.69 ± 0.05 
(Low)

MIM 0.61 ± 0.08 
(High)

0.61 ± 0.04 
(High)

0.64 ± 0.1 
(Low)

0.94 ± 0.02 
(High)

CMIM 0.6 ± 0.07 
(Low)

0.62 ± 0.04 
(High)

0.71 ± 0.04 
(High)

0.73 ± 0.04 
(Low)

ICAP 0.59 ± 0.07 
(Low)

0.61 ± 0.03 
(High)

0.71 ± 0.03 
(High)

0.72 ± 0.04 
(Low)

TSCR 0.62 ± 0.07 
(High)

0.61 ± 0.02 
(High)

0.54 ± 0.01 
(Low)

0.78 ± 0.12 
(High)

MRMR 0.69 ± 0.07 
(High)

0.63 ± 0.06 
(High)

0.66 ± 0.03 
(High)

0.74 ± 0.03 
(High)

MIFS 0.66 ± 0.07 
(High)

0.63 ± 0.06 
(High)

0.69 ± 0.04 
(High)

0.8 ± 0.03 
(High)

WLCX 0.55 ± 0.06 
(Low)

0.65 ± 0.02 
(High)

0.71 ± 0.06 
(High)

0.84 ± 0.05 
(High)

HNSCC thresholds: AUC = 0.61, stability = 0.66; NSCLC thresholds: AUC = 0.61, 
stability = 0.74.
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and results were reported as median ± SD of 100 bootstrap iterations. 
It should be noted that in order to compute classifier stability, we 
first selected 30 representative features using MRMR. These selected 
features were then used as classifier input while computing classi-
fier stability (RSD). We used MRMR because it showed the highest 
prognostic performance among all feature selection methods.

Prognostic Performance and Stability
As similar to Ref. (30), we used the median values of AUC and 
stability as thresholds to categorize the feature selection and clas-
sification methods into low or high performance (stability) groups. 
We created two rank lists based on AUC and stability and cited the 
methods as highly accurate and reliable, which ranked in the top 
half (greater than or equal to median value) in both ranked lists. 
Feature selection methods with stability ≥0.66 (median stability of 
all feature selection methods) and AUC ≥ 0.61 (median AUC of 
all feature selection methods) are considered as highly reliable and 
accurate methods. Similarly, classification methods with RSD ≤ 11.4 
(median RSD of all classifiers) and AUC ≥ 0.61 (median AUC of all 
classifiers) are considered as highly reliable and accurate ones.

Experimental Factors Affecting Radiomics-Based 
Survival Prediction
Multifactor analysis of variance (ANOVA) was used to assess the 
variability in survival prediction. Three experimental factors were 
considered for the variability analysis: feature selection method, 
classification method, and the number of selected features. In 
order to compare the variability contributed by each factor and 
their interactions, the estimated variance components were 
divided by the total variance.

comparison with the nsclc cohort study
The results of this study were relatively compared with the previ-
ously published study of NSCLC radiomic cohorts (30). For both 
NSCLC and HNSCC studies, all methods were categorized into two 
groups: low (less than threshold) or high (greater than threshold). 
This grouping was carried out using the corresponding threshold 
values (median AUC and median stability). A method was consid-
ered consistent, if it belonged to the same group (high or low) in 
both studies. It should be noted that one feature selection method 
and one classification method was removed from the analysis for 
the HNSCC study, and therefore they were also not considered 
while deciding thresholds for NSCLC study. All values of AUC and 
stability along with the group information are reported in Table 2 
(feature selection methods) and Table 3 (classification methods).

All analysis was done using R software (R Core Team, Vienna, 
Austria) version 3.1.2 and Matlab R2012b (The Mathworks, 
Natick, MA, USA) with Windows 7.

resUlTs

To assess different machine-learning methods for radiomic 
survival models of head and neck cancer patients, we extracted 
440 radiomic features from the segmented tumor regions of two 
independent HNSCC cohorts. Cohort HN1 (n =  101 patients) 
was used for feature selection and classification training, whereas 
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FigUre 1 | in total, 196 hnscc patients were considered. Four 
hundred forty radiomic features were extracted from the segmented tumor 
regions of the CT images. Feature selection and classification training were 
done using the training cohort HN1 (n = 101), whereas HN2 (n = 95) cohort 
was used as a validation cohort.
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the prediction performance was assessed using the validation 
cohort HN2 (n = 95 patients) (see Figure 1).

Prognostic Performance
We used area under receiver operating characteristics curve 
(AUC) to quantify the prognostic performance of different 
feature selection and classification methods. Figure  2 depicts 
the performance of feature selection (in rows) and classifica-
tion methods (in columns) using the 30 top ranked features 
after applying feature selection. A median AUC of all 13 feature 
selection AUC values was used as the representative AUC of a 
classifier. Similarly, for each feature selection method, a median 
of 11 classification AUCs was used as the representative AUC. 
These representative AUC values for the feature selection and 
classification methods are given in Tables 2 and 3, respectively.

Feature selection methods, MRMR (AUC: 0.69  ±  0.07) and 
MIFS (AUC: 0.66 ± 0.07) showed high prognostic performance, 
whereas methods WLCX (AUC: 0.55  ±  0.06) and DISR (AUC: 
0.56 ± 0.06) had lowest median AUCs.

In the case of classification methods, GLM (AUC: 0.72 ± 0.08) 
(median ± SD) and PLSR (AUC: 0.73 ± 0.07) had highest prog-
nostic performance, whereas BAG (AUC: 0.55 ± 0.06), DT (AUC: 
0.56 ±  0.05), and BST (AUC: 0.56 ±  0.07) showed lower AUC 
values. We repeated the above experiment by varying the number 
of selected features (range 5–50). Results with respect to 10, 20, 40, 
and 50 representative (top ranked) features are reported in sup-
plement Figures S1–S4 in Supplementary Material. In addition, 

median AUC values over each of the experimental factors (fea-
ture selection methods, classification methods, and number of 
selected features) are depicted by the heatmaps in supplement 
Figures  S5–S7 in Supplementary Material. Here as well, GLM 
and PLSR (classifiers) and MRMR and MIFS (feature selection 
methods) showed highest median AUCs in majority of cases.

stability
To assess the stability of feature selection methods against data 
perturbation, we used the hard data perturbation setting (37). We 
observed that WLCX (stability = 0.71 ± 0.06) (median ± SD), 
ICAP (stability = 0.71 ± 0.03), and CMIM (stability = 0.71 ± 0.04) 
showed high stability against data perturbation, whereas FSCR 
(stability = 0.51 ± 0.13) and TSCR (stability = 0.54 ± 0.10) had 
lower stability (Table 2).

In order to assess the stability of a classifier, we used the 
relative standard deviation (RSD) and a bootstrap approach. We 
observed that RF (RSD = 7.36%) and BAG (9.27%) were relatively 
more stable classification methods. PLSR (RSD =  12.75%) and 
SVM (RSD = 12.69%) showed higher RSD, which indicated lower 
stability of these methods. RSD (%) values corresponding to all 11 
classifiers are reported in Table 3.

Prognostic Performance and stability
Scatterplots in Figure  3 display the stability and prognostic 
performance of different feature selection and classifica-
tion methods. It can be observed that the feature selection 
methods MRMR (AUC = 0.69 ± 0.07, stability = 0.66 ± 0.03), 
MIFS (AUC =  0.66 ±  0.07, stability =  0.69 ±  0.04), and CIFE 
(AUC  =  0.68  ±  0.08, stability  =  0.7  ±  0.04) showed higher 
prognostic performance and stability than the corresponding 
median values across all feature selection methods (AUC = 0.61, 
stability = 0.66). Similarly for classification methods, the stabil-
ity and prognostic performance of RF (AUC  =  0.61  ±  0.06, 
RSD = 7.36%), NN (AUC = 0.62 ± 0.05, RSD = 10.52%), and 
BY (AUC =  0.67 ±  0.06, RSD =  11.28%) were better than the 
corresponding median values (RSD = 11.4%, AUC = 0.61).

experimental Factors affecting 
radiomics-Based survival Prediction
To quantify the effects of the three experimental factors (feature 
selection methods, classification methods, and the number of 
selected features), we performed multifactor ANOVA on AUC 
scores. We observed that all three experimental parameters are 
the significant factors affecting the prognostic performance 
(Figure 4). Classification method was the most dominant source 
of variability as it explained 29.02% of the total variance in AUC 
scores. Feature selection methods accounted for the 14.02%, 
whereas interaction of classifier and feature selection explained 
16.59% of the total variance. Size of the selected (representative) 
feature subset only shared 1.22% of the total variance (Figure 4).

comparison with the nsclc cohorts
We compared the obtained results related to feature selection 
and classification methods to the previously published study of 
NSCLC cohorts (30) (see Tables 2 and 3).
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Two feature selection methods MRMR and MIFS displayed 
high prognostic performance and stability across both the cancer 
types. Methods RELF and MIM showed high prognostic power 
in both the cancer types. However, they had marginally low 
stability for HNSCC cohorts. Interestingly, WLCX had highest 
prognostic performance for NSCLC cohorts, whereas it showed 
lowest prognostic performance for HNSCC cohorts. However, in 
both the cancer types WLCX displayed high stability against data 
perturbation (see Table 2).

Three classification methods BY, RF, and NN showed high 
prognostic performance and stability across both cancer types. 
PLSR and GLM had high prognostic performance in both cancer 
types, but these two methods showed low stability for HNSCC 
cohorts. Classifier BAG displayed lowest prognostic power in 
HNSCC radiomic cohorts, whereas it had the second highest per-
formance in NSCLC cohorts. It should be noted that the stability 
of BAG was high in both cancer types (see Table 3).

DiscUssiOn

The applications of medical imaging in cancer diagnostics 
and treatment planning have expanded greatly over the 
time. Moreover, developments in imaging technologies and 

computational approaches have led the emergence of “radiom-
ics,” which is a high-throughput medical image data mining 
field (1). Radiomics is a non-invasive and cost-effective medical 
informatics approach, which provides unprecedented opportuni-
ties for improvising clinical decision support (2). Hence, in the 
context of radiomics, medical imaging is expected to have a more 
central role in cancer care (1, 2, 26). With increasing cohort sizes 
and expanding feature dimensions, radiomics targets a large pool 
of medical imaging data (“Big data”). Automated, reliable, and 
efficient methods are desired to extract and mine the most rel-
evant information from these large radiomic cohorts. A recently 
published study (30) has articulated the scope and applicability 
of different machine-learning methods in two independent 
radiomic cohorts of patients with NSCLC. They proposed an 
unbiased framework to compare the prognostic performance 
and stability of different machine-learning methods. It was 
recommended that these different machine-learning methods 
should be further evaluated in different cancer types and with 
respect to different radiomic cohorts (30). Furthermore, it has 
been previously shown that the grouping and prognostic charac-
teristics of radiomic features are cancer specific (16). Therefore, 
the primary objective of our study was to assess the state of the art 
machine-learning methods in two independent HNSCC cohorts.
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Our analysis quantifies the prognostic power and stability of 
different machine-learning methods for the survival prediction of 
head and neck cancer patients. Depending on the requirement, 
one may prefer higher prognostic power or stability and choose 
the methods accordingly. Considering the stability and prognostic 
performance together, three feature selection methods MRMR, 

MIFS, and CIFE and three classification methods BY, RF, and NN 
should be preferred for head and neck radiomic analyses as they 
displayed relatively higher prognostic power and stability than 
other methods.

Assessing the variability in prediction performance by mul-
tifactor ANOVA, we found that the classification method is the 
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most dominant source of variation in prediction performance, 
and hence it should be chosen carefully. Size of the selected 
feature subset contributed the least in the AUC variation.

Comparing the results of this study with the previously pub-
lished study of NSCLC, we observed that except BAG and MARS, 
all classifiers showed consistency in their prognostic performance 
across the two cancer types. However, it should be noted that the 
AUC values for MARS were quite close to the threshold (median 
AUC). In the case of feature selection methods, WLCX showed 
no prediction consistency across the two cancer types. Besides 
that, methods CIFE, DISR, GINI, CMIM, and ICAP also showed 
no consistency in the grouping based on prognostic performance. 
However, it should be noted that for methods CMIM and ICAP, 
the AUC values did not differ much from the threshold (median 
AUC). As far as stability is concerned, except for classifiers PLSR, 
GLM, DT, and BST, all classifiers showed consistency in their 
stability-based grouping. For feature selection methods, only 
MRMR, MIFS, WLCX, and DISR showed consistent stability-
based grouping across both the studies. It should be noted that for 
HNSCC cohorts, stability values for all the methods (classifica-
tion and feature selection) were lower than the ones obtained in 
NSCLC cohorts. The intuitive explanation for this could be the 
smaller cohort size. The training cohort in NSCLC study (30) had 
almost three times more samples than the training cohort of our 
HNSCC study.

Considering the stability and prognostic performance 
together and comparing the results between the two cancer types 
(HNSCC and NSCLC), we observed that the three classifiers BY, 
RF, and NN had high stability and high prognostic performance 
in both HNSCC and NSCLC studies. Similarly, two feature 
selection methods MRMR and MIFS showed consistently high 
values of AUC and stability in both cancer types. These results 
indicate that such methods should be first preferences for 
radiomics-based prognostic analyses due to their consistency. A 
note of caution: different methods are categorized into high/low 
(prediction performance and stability) group based on simple 
thresholds (median AUC and median stability). These thresh-
olds are no gold standard and they are only used for comparing 
the performances of different machine-learning methods in a 
relative manner. It can be observed from the results [Figure 3; 
Figure 3 in Ref. (30)] that some of the so-called “not consistent” 
methods are quite close to the thresholds, and they should not 
be neglected completely. Further validation of these methods 
with different clinical outcomes, different imaging modalities, 
and also different radiomic cohorts could provide better insights 
about their applicability.

Results related to the variability of AUC scores were compa-
rable in both the cancer types as in both studies, classification 
method contributed highest and size contributed the least in the 
performance variance. Interestingly, for HNSCC cohorts, feature 
selection method contributed almost two times more in the AUC 
variation than in the case of NSCLC study (30).

As mentioned previously (30), the machine-learning meth-
ods used in this analysis were chosen because of their simplicity, 
efficiency, and popularity in the literature. Furthermore, an inter-
esting discussion about the publicly available implementation 

tools and the used parameter configurations were presented 
before (30).

It has been shown that statistical models based on patient’s 
tumor and treatment characteristics provide significantly better 
predictions/prognosis than human expert (38). Therefore, radi-
omics-based machine-learning models could be vital for clinical 
decision support. However, there are few inherent challenges 
with radiomics. Several studies have investigated the variability of 
radiomic features with respect to different imaging scanners (39, 
40), tumor delineation methods (13, 41), reconstruction methods 
(42), discretization (43), etc. These different sources of variability 
need to be considered for radiomics-based analyses. For example, 
normalizing or standardizing the features could help in reducing 
batch effects. Furthermore, the performance of prediction models 
should be tested in independent validation cohorts. As far as our 
study is concerned, we standardized all features using Z-score 
standardization. Moreover, we used an independent validation 
cohort to assess the prediction performance of different machine-
learning methods.

The potential clinical utility of radiomics-based prognostic 
models has been highlighted before (2). With the expanding 
radiomic cohorts and feature dimensions, as well as by integrat-
ing different biological and clinical information together with 
radiomics, higher prognostic performance could be achieved. 
In this regard, our studies could be an important reference as 
we compared a large panel of machine-learning methods across 
two different cancer types. The prognostic power and stability of 
different machine-learning methods were compared using four 
independent radiomic cohorts. Such a comparative investigation 
could help in identifying the optimal and reliable machine-
learning methods for radiomics-based prognostic analyses, which 
overall could broaden the scope of radiomics in cancer care.
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