
December 2015 | Volume 5 | Article 2831

Mini Review
published: 23 December 2015
doi: 10.3389/fonc.2015.00283

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Ignacio Perez De Castro,  

Spanish National Cancer Research 
Centre (CNIO), Spain

Reviewed by: 
Wytse Bruinsma,  

Memorial Sloan Kettering Cancer 
Center, USA  

David Reboutier,  
Université de Rennes 1, France

*Correspondence:
Giulia Guarguaglini  

giulia.guarguaglini@uniroma1.it

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 30 September 2015
Accepted: 30 November 2015
Published: 23 December 2015

Citation: 
Asteriti IA, De Mattia F and 

Guarguaglini G (2015) Cross-Talk 
between AURKA and Plk1 in Mitotic 

Entry and Spindle Assembly.  
Front. Oncol. 5:283.  

doi: 10.3389/fonc.2015.00283

Cross-Talk between AURKA and Plk1 
in Mitotic entry and Spindle 
Assembly
Italia Anna Asteriti , Fabiola De Mattia and Giulia Guarguaglini*

Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Department of Biology and 
Biotechnology, Sapienza University of Rome, Rome, Italy

The Aurora kinase A (AURKA) is involved in different aspects of mitotic control, from 
mitotic entry to cytokinesis. Consistent with its pleiotropic roles, several AURKA interac-
tors are able to modulate its activity, the best characterized being the microtubule-binding 
protein TPX2, the centrosomal protein Cep192, and Bora. Bora has been described as 
an essential cofactor of AURKA for phosphorylation-mediated activation of the mitotic 
kinase polo-like kinase 1 (Plk1) at the G2/M transition. A complex AURKA/Plk1 signaling 
axis is emerging, with multiple involved actors; recent data suggest that this control 
network is not restricted to mitotic entry only, but operates throughout mitosis. Here, 
we integrate available data from the literature to depict the complex interplay between 
AURKA and Plk1 in G2 and mitosis and how it contributes to their mitotic functions. 
We will particularly focus on how the activity of specifically localized AURKA/Plk1 pools 
is modulated in time and space by their reciprocal regulation to ensure the timely and 
coordinated unfolding of downstream mitotic events.
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inTRODUCTiOn

About 20 years ago, two loci encoding for serine–threonine kinases required for correct spindle 
pole assembly were described in Drosophila and named “polo” and “aurora” (1–3); these were the 
forefathers of the corresponding kinase families, now well characterized as key regulators of the 
cell cycle and mitotic division. Aurora and polo kinases are evolutionary highly conserved, from 
yeast to mammals (4, 5), and homologs of the originally identified Drosophila genes were described 
in humans as Aurora2 (now AURKA) and polo-like kinase 1 (Plk1), respectively (6–9). Besides 
the spindle pole phenotypes, several common features led to association of the two kinases, since 
their discovery. Both display cell cycle-regulated expression (6, 9), with upregulation of mRNAs in 
the late S and G2 phases ensured by shared transcriptional mechanisms, such as activation by E2F 
factors (10, 11) and G1-specific repression through CDE/CHR elements (12, 13). Protein levels peak 
at G2 and mitosis, paralleled by the activation of kinase enzymatic function (9, 14), and drop in a 
highly coordinated manner at mitotic exit by proteasome-dependent degradation (15). Both kinases 
localize at centrosomes and spindle poles, although they also display nonoverlapping localization 
sites, with AURKA associated to spindle pole microtubules, and Plk1 residing at kinetochores; both 
are also found at the spindle midzone and midbody at ana–telophase (16, 17). Functionally, both 
AURKA and Plk1 are involved in control of mitotic entry, with an essential role during recovery 
from DNA damage checkpoint-mediated G2 arrest, and in several aspects of mitotic progression 
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(18–21). Finally, ever since their discovery it has been evident 
that cancer cells frequently display altered levels of AURKA and 
Plk1 (7–9, 22) and that downregulating their expression yields 
antiproliferative effects (23–25); indeed, both kinases are actively 
studied as potential anticancer targets (26, 27). All these simi-
larities suggested direct links between AURKA and Plk1, which 
started to come out only in the last 10  years. Here, we review 
data about the interplay of AURKA and Plk1, focusing on the 
emerging view of how this can contribute to AURKA activation at 
distinct subcellular sites and in different cell cycle windows, thus 
finely coordinating downstream mitotic events.

ACTivATiOn MeCHAniSMS FOR AURKA 
AnD Plk1

Phosphorylation of a threonine residue within the activation loop 
of AURKA and Plk1 kinases, Thr-288 and Thr-210, respectively, 
is crucial for their enzymatic activity (28, 29). Phosphorylation 
of Plk1Thr-210 occurs upon release of an inhibitory intramolecular 
interaction between the N-terminal catalytic domain and the 
C-terminal “polo-box” domain (PBD). The latter is a phos-
phoserine/threonine recognition domain; its binding to target 
phosphopeptides, mainly generated by the cdk1 kinase, impairs 
the interaction with the catalytic domain, thus triggering Plk1 acti-
vation (30, 31). Plk1 activation mechanism, thus, relies on making 
the region where Thr-210 lies accessible; Thr-210 can then be 
phosphorylated by an upstream kinase (see the following sections).

Data collected so far indicate a more complex mechanism for 
AURKA activation. AURKAThr-288 lies within an AURKA consen-
sus motif and is therefore regarded as an autophosphorylation 
site. It is still debated whether autophosphorylation is achieved by 
an intra- or intermolecular reaction, and conformational shifts as 
well as dimerization appear to underlie different activation states 
(32–34). Indeed, data in the literature indicate multiple binding 
partners (see the following sections) that are able to stimulate 
AURKA activity without a direct enzymatic action but rather by 
inducing specific conformational transitions. These observations 
suggest that cells need to manage distinct pools of AURKA, act-
ing at distinct subcellular sites and displaying different extents 
of activity.

Interestingly, although activation mechanisms for AURKA 
and Plk1 are distinct, coupling intracellular localization with 
function appears to be a conserved feature: for Plk1, the PBD is 
also required for correct targeting of the kinase to centrosomes, 
kinetochores, and spindle midzone (35, 36), and the major 
AURKA activators, namely Cep192 and TPX2, mediate AURKA 
binding to centrosomes and microtubules, respectively (37–39).

THe AURKA/Plk1/BORA AXiS AnD 
MiTOTiC enTRY

The direct link between AURKA and Plk1 came with the 
identification of AURKA as the upstream kinase responsible of 
phosphorylation of Thr-210 in the Plk1 activation loop, an event 
requiring the presence of the coactivating protein Bora (19, 40) 
(Figure 1, upper box). Distinctly from other AURKA activators, 

Bora does not modify AURKA activity per  se but rather inter-
feres with the intramolecular interaction between the catalytic 
domain of Plk1 and the PBD, so to render Thr-210 accessible 
(40). Consistently, Bora does not significantly increase AURKA 
activity toward substrates other than Plk1 (19, 40), and the extent 
of activation of AURKA coimmunoprecipitated with Bora, as 
assessed by p-Thr-288, is by far lower than that associated with 
the fractions immunoprecipitated with TPX2 or Cep192 (41, 42). 
Although low, this activity may suffice to trigger what was defined 
as the “outer feedback loop” through which AURKA, Plk1, and 
cdk1 activate each other (43). Phosphorylation of Bora at Ser-
252 (human) by cdk1 creates a PBD-docking site and promotes 
Bora/Plk1 interaction (Figure 1); consistently, phosphorylation 
of Bora by cdk1 enhances its ability to stimulate AURKA-
mediated Plk1 activation (41, 44). A second residue on human 
Bora, i.e., Thr-52, is responsive to cdk1: GST-tagged human 
Bora carrying Thr-52 substitution to alanine is destabilized in 
CSF-arrested Xenopus oocytes extracts (45), thus suggesting that 
cdk1 phosphorylation plays also a role in protecting Bora from 
degradation. An opposite effect is mediated by Plk1 in that Plk1 
phosphorylation of Bora in the 496-DSGYNT-501 degron trig-
gers Bora degradation through the SCF-β-TrCP pathway (41, 46) 
about 2 h before mitotic entry (45, 47). Consistently, a decreased 
interaction between Plk1 and Bora, by mutating the previously 
mentioned BoraSer-252 to Alanine, influences Bora stability: (i) it 
prevents GST-Bora degradation in CSF extracts (45) and (ii) in 
human cells, it impairs the interaction between Bora and β-TrCP 
(41). In addition, it prevents Bora accumulation induced  –  as 
a result of a dominant-negative effect  –  by kinase-dead Plk1 
(41). The opposite effects of cdk1-mediated phosphorylation of 
Bora on Thr-52 and Ser-252 suggest that timely degradation of 
Bora constitutes a strictly controlled event; the balance between 
phosphorylation of Thr-52 by cdk1 and on the degron sequence 
by Plk1 may determine when the switch toward SCF-β-TrCP-
mediated degradation of Bora occurs (Figure 1).

The Spatiotemporal Level of Bora/AURKA/
Plk1 Regulation
The bulk of cycB1/cdk1 complexes is cytoplasmic until prophase, 
when it promotes its own translocation to the nucleus (48, 49). 
On the other hand, although Thr-210-phosphorylated Plk1 is 
first detected at centrosomes, results obtained using a FRET 
biosensor suggest that Plk1 kinase activity first increases in the 
nucleus and raises in the cytoplasm only 2 h before mitotic entry 
(19, 45, 47), at a time that coincides with the onset of Bora degra-
dation (45, 47). Together with the recent observation that Bora is 
prevalently cytoplasmic in mammalian cells (47), these data sug-
gest that cdk1 and Plk1 activities antagonistically modulate Bora 
levels, with cdk1-mediated Thr-52 phosphorylation protecting 
Bora from degradation until cytoplasmic Plk1 activity raises. A 
potential player in this regulatory mechanism is the peptydylpro-
lyl isomerase Pin1, a modulator of the G2/M transition, which 
promotes Bora degradation (50) and whose activity and stability 
are controlled by AURKA and Plk1, respectively (50, 51); further 
studies are needed to understand how these molecular events 
interplay in regulating mitotic entry. Phosphatases acting both 
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FiGURe 1 | AURKA and Plk1 in mitotic entry and spindle formation. The best characterized links between AURKA and Plk1 are schematized. In mitotic entry 
(upper box), the combined action of AURKA and Bora activates Plk1, while antagonistic phosphorylation events by Plk1 and cdk1 control Bora stability. The dashed 
circle on the right indicates the ongoing feedback loop leading to the activation of Plk1, AURKA, and cdk1. Lowered Bora levels enable the interaction of AURKA 
with Cep192 (central box) and TPX2 (lower box), at centrosomes (centrioles, green; PCM, orange) and microtubules (red), respectively. The enlargement in the 
central box depicts the scaffolding function of Cep192, leading to recruitment of AURKA and Plk1, activation of the latter and generation by activated Plk1 of 
γ-TURC-docking sites, with consequent centrosome maturation. Note that Cep192-bound AURKA is activated in a dimeric form, although not represented here to 
simplify the scheme. Cep192/Plk1/AURKA also contributes to centrosome separation via Eg5 recruitment, and Plk1 independently participates to this process by 
triggering centrosome linker (light blue lines) dissolution. Separated centrosomes nucleate spindle microtubules that are organized, among others, by AURKA/TPX2 
complexes, possibly bound to astrin (lower box). cdk1 phosphorylation of TPX2, possibly influenced by Plk1 activity, yields decreased binding to microtubules. 
Centrosomal proteins in the lower panel are schematized as in the upper ones, although for space reasons their names are not indicated. The yellow symbols 
identify PBD-docking sites. Green arrows indicate positive regulatory events, while red arrows represent negative ones. Phosphorylated residues or domains are 
indicated on the arrows. The different intensities of colors for Plk1 and AURKA denote a different extent of activity.
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on kinases themselves and on their substrates, with time- and 
space-dependent selectivities (52), are also expected to play a role 
in this fine-tuned regulation. The key serine–threonine phos-
phatases that counteract mitotic kinase activity are PP1 subunits 
and PP2A complexes (53, 54). Potentially relevant to Bora degra-
dation, PP2A activity, which is able to counteract Plk1 and cdk1 
substrate phosphorylation, is inhibited in the cytoplasm by the 
Mastl/Greatwall kinase before mitotic entry (52). Translocation 
of nuclear Greatwall to the cytoplasm is promoted by both 
cdk1 and Plk1 (55, 56): this mechanism may ensure that phos-
phorylation of Plk1 cytoplasmic substrates, such as Bora, only 
accumulates subsequent to Plk1 activation in the nucleus and to 
cdk1 nuclear import. Whether a differential specificity of action 
of phosphatases on the different Bora residues phosphorylated by 
cdk1 and Plk1 exists is an open question that may provide further 
hints on the time-dependent regulation of Bora stability. As also 
recently proposed by Bruinsma and colleagues (47), differen-
tially localized phosphatase activity may generally contribute 
to time-dependent compartmentalization of Plk1 activity, thus 
explaining why the latter is first observed in the nucleus, although 
Bora is reported to be strictly cytoplasmic and the extent and 
timing of AURKA nuclear entry is poorly characterized. We also 
noticed that the NLS sequences described for Plk1 fall within 
the catalytic and polo-box domains (57, 58) (Figure  2), rais-
ing the possibility that formation of import complexes in the 
cytoplasm impairs Plk1 kinase function, which would be only 
released in the nucleus. Modulated interaction between Plk1 and 
importins may therefore contribute to the switch to cytoplasmic 
Plk1 activity 2 h before mitotic entry: indeed Ser-137 within one 
of the NLS sequences (Figure 2) is phosphorylated in vivo and 
this is described as an activating event for Plk1, although so far 
described only in late mitosis (29, 59). Alternatively, over time, 
increased cdk1-generated PBD-docking sites on Plk1 cytoplas-
mic substrates could retain Plk1 in the cytoplasm by competing 
with importins for Plk1 binding.

Changing interactors for Progressing 
Through Mitosis
What is the functional significance of Bora degradation before 
mitotic entry by the same protein (Plk1) that it activates? A 
possible explanation is that the cdk1/AURKA/Plk1 signaling 
cascade generating the mitotic entry signal (43) must timely 
switch toward other pathways to sustain spindle assembly and 
mitotic progression. Evidence summarized below supports the 
notion that lowering Bora levels is necessary to make AURKA 
available to other partners. Immunoprecipitation experiments 
indicate that AURKA complexes containing Bora or TPX2 are 
distinct and that artificially increasing Bora levels  –  through 
Plk1  inactivation – changes the stoichiometry and decreases the 
amount of TPX2 bound to AURKA (41). In addition, AURKA 
localization to spindle poles, mediated by Cep192 and TPX2 (see 
below), is altered when Bora levels are increased by overexpres-
sion or by Plk1 inactivation (41). This is likely accounting for the 
proposed role of Plk1 in AURKA centrosomal localization (38, 
60) and further indicates that the Bora/Plk1 complex is able to 
compete with other AURKA activating/localizing partners.

Together, these observations suggest that AURKA activity 
initially needs to be focused toward the Plk1 kinase; this activates 
the AURKA–Plk1–cdk1 loop, until a threshold is reached and the 
cell is committed toward mitosis (43, 61). Now AURKA and Plk1 
kinases must be properly redirected toward their mitotic activa-
tors and substrates to coordinate mitotic entry with centrosomal 
and spindle processes (Figure 1). How does Plk1 remain active 
in mitosis when Bora is degraded? On the one hand, the acces-
sibility of Thr-210 may not represent a limiting factor in mitosis, 
when high cdk1 activity creates abundant PBD-docking sites. On 
the other hand, recent data indicate that although Bora levels are 
strongly reduced in mitosis, a residual fraction exists (45), and it 
is responsible of Plk1 activation throughout the division process 
(62). An independent protein, Furry, has been described to acti-
vate Plk1 through AURKA, with a mechanism comparable to Bora 
(63). It will be interesting to investigate whether this redundancy 
underlies subcellular, temporal, or cell-type specificity. Most 
importantly, Cep192 emerging scaffolding functions may bypass 
the requirement for Bora in the AURKA/Plk1 axis at centrosomes.

THe AURKA/Plk1/Cep192 AXiS 
COnTROLS CenTROSOMe MATURATiOn 
AnD SePARATiOn

The drop in Bora levels following Plk1 activation may ensure that 
centrosomal processes leading to spindle assembly, depending on 
other AURKA containing complexes, start only when the mitotic 
entry signaling cascade is fully active. The centrosomal protein 
Cep192, involved in both centrosome maturation and separation 
(39, 64), appears as a key coordinator of AURKA and Plk1 activity 
at this stage. Cep192 was first shown to trigger dimerization-driven 
AURKA activation at centrosomes in Xenopus egg extracts (65) 
and was later confirmed as a key AURKA centrosomal activator in 
mammalian cells (42, 66). Cep192-bound AURKA is highly active 
compared to the Bora- or TPX2-bound pools (42, 65). In human 
cells, the interaction between AURKA and Cep192 is reported 
from S phase (42); the strong increase in centrosomal Cep192 at 
mitotic entry, just before centrosome separation (39, 64), suggests 
that more Cep192–AURKA centrosomal complexes exist at this 
stage, in agreement with the proposed requirement of freeing 
AURKA from Bora-containing complexes. Importantly, Plk1 has 
recently been shown to be a part of the AURKA/Cep192 axis driv-
ing centrosome maturation (Figure 1, central box): Cep192 acts 
as a scaffold for both Plk1 and AURKA and is the key recruiting 
factor for the kinases at centrosomes, with Plk1 binding following 
that of AURKA (39, 42, 66). Cep192 brings AURKA and Plk1 in 
close proximity thereby enabling Plk1Thr-210 phosphorylation (42, 
66). AURKA-activated Plk1 creates its own PBD-docking site on 
Cep192 by phosphorylating Cep192Thr-44 (42, 66); a subsequent 
AURKA-independent PBD-docking site centered on Cep192Ser-995 
has been reported (42), although the separation of the functional 
roles of Thr-44 and Ser-995 needs further investigation.

It could be speculated that preceding activation by Bora/
AURKA generates the low Plk1 activity required for initial phos-
phorylation of Thr-44, while ensuing stabilization of Cep192/
Plk1/AURKA complexes (42), where AURKA activity is higher, 
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FiGURe 2 | The multiple AURKA and Plk1 activating networks. (A) A schematic representation of Plk1 and AURKA kinases is shown with activating 
phosphorylation sites indicated by red asterisks. Yellow boxes represent nuclear localization sequences (N); orange ones are polo boxes (PB1 and 2); and violet 
ones are degradation motifs (D, destruction box; K, KEN box; A, A box). Catalytic domains are in green. (B) Networks involving NPM, AIBp, PAK1, HEF1/NEDD9, 
and calmodulin (CaM) as activators and/or substrates of AURKA and Plk1 are represented. Green arrows indicate direct and clarified activating events; 
phosphorylated residues are indicated; and (A) denotes induction of an autophosphorylation event. Downstream substrates and proposed regulated processes are 
included.
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boosts the signaling cascade leading to centrosome maturation. 
Plk1 is required for Cep192 centrosomal localization, partly 
through phosphorylation of pericentrin (67, 68), supporting the 
hypothesis that an initial Cep192-independent Plk1 activation 
triggers a subsequent and more sustained Cep192-mediated one. 
Cep192/AURKA-activated Plk1 in turn phosphorylates Cep192 
to generate γ-TURC-docking sites and induce the sudden 
increase in pericentriolar material (PCM) characterizing centro-
some maturation (42, 66) (Figure 1, central box).

Centrosome separation requires linker dissolution and Eg5-
mediated centrosome movement, both involving Plk1 (69–71). 
While linker dissolution does not require Cep192, the observa-
tion that loss of Cep192 impairs Eg5 centrosomal localization and 
centrosome separation (39, 66) suggests that the role of Plk1 in 
centrosome movement passes through the Cep192/AURKA axis, 
with a key upstream involvement of centrosomal cyclin B2/cdk1 
(72) (Figure 1, central box).

Cep192 complexes identify an AURKA pool clearly distinct 
from the microtubule- and TPX2-bound one: (i) the AURKA/
Cep192 interaction occurs also in the absence of microtubules 
(42); (ii) Cep192 and TPX2 bind to the same region of AURKA 
and are detected in independent AURKA complexes (65); (iii) 
Cep192-loaded beads recapitulate in CSF-arrested Xenopus 
oocytes extracts the functions as microtubule-organizing 
center (MTOC) of AURKA-loaded beads but not their ability 
of RanGTP-induced spindle organization (66, 73). TPX2 is a 
RanGTP-regulated factor (74); these observations together sug-
gest that the pools of AURKA bound to Cep192 and TPX2 are 
functionally separated and involved in centrosome maturation 
and spindle assembly, respectively. The observation that both 
Cep192/AURKA and TPX2 regulate Eg5 activity (66, 75) may 
reflect independent functions in centrosome separation or an 
interplay of the two pools of AURKA in this process yet to be 
unveiled.
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MiCROTUBULe-ASSOCiATeD AURKA 
POOLS AnD SPinDLe ORGAniZATiOn

Microtubule-organizing functions of AURKA are less obviously 
linked to Plk1 activity. AURKA localization to microtubules 
is mediated by the microtubule-binding protein TPX2 (37, 
38), which also activates AURKA by stabilizing the active 
conformation and making AURKAThr-288 inaccessible to the PP1 
phosphatase (76). In addition, TPX2 protects AURKA from 
APC/CCdh1 proteasome-dependent degradation in G2 and early 
mitosis, with TPX2 depletion impairing accumulation of high 
levels of AURKA in prometaphase (77). Xenopus Plx1 has been 
shown to phosphorylate TPX2 on Ser-204, with a positive effect 
on TPX2-mediated AURKA activation (78). A corresponding 
mechanism has not been explored in mammalian cells given 
the poor conservation of the phosphorylated site. Yet, phospho-
proteomic screenings identified TPX2 in vivo phosphosites that 
are likely to be phosphorylated by Plk1 (79, 80). Furthermore, 
TPX2 abnormally accumulates at spindle poles in Plk1-interfered 
mitoses (38), and recent data show that cdk1-mediated phospho-
rylation of TPX2Thr-72 negatively modulates TPX2 association to 
the mitotic spindle (81). It is, therefore, conceivable that Plk1 
activity at mitotic centrosomes, through its effects on cdk1, influ-
ences TPX2 mobility at spindle poles (Figure 1, lower box).

Astrin is an independent regulator of AURKA localization 
at microtubules, with no effect on the kinase activity (82); RNA 
interference-mediated depletion of astrin induces spindle defects 
reminiscent of those observed following AURKA inactivation (82, 
83). Astrin localization to the spindle is in turn mediated by TPX2 
(82). Interestingly, Plk1 has also been detected in astrin–kinastrin 
complexes in mitotic cell extracts (84).

Together these observations suggest that exploring the inter-
play between AURKA, TPX2, Plk1, and astrin deserves further 
investigation and may improve our understanding of AURKA 
spindle-organizing functions.

THe GROwinG neTwORK OF AURKA 
ACTivATORS

Additional activators of AURKA at centrosomes and spindle 
poles have been described, many being also functionally linked 
to Plk1 (Figure 2).

Nucleophosmin (NPM) activates AURKA by stimulating 
a newly identified autophosphorylation event, on Ser-89 (85). 
Phosphorylation of NPM by Plk1 is required for its mitotic 
functions (86), while NPM depletion does not affect Plk1Thr-210 
phosphorylation (85). These observations suggest that NPM-
activated AURKA is generated when Plk1 activation has become 
prevalently AURKA independent; alternatively, since the only 
AURKA substrate affected by NPM depletion is so far CDC25B, 
NPM may provide AURKA specificity of action toward a limited 
set of substrates.

The AIBp protein, colocalizing with AURKA at centrosomes 
and spindle poles, has recently been reported as an AURKA 
regulator, relevant for Plk1 activation and in turn a substrate of 
it; the observation that localization of the downstream AURKA 
targets TACC3 and ch-TOG is affected by AIBp depletion, while 

PCM recruitment is not, together with the associated spindle 
pole phenotypes, suggest an involvement of AIBp in the spindle-
organizing functions of AURKA (87).

AURKA activators also include proteins that localize both at 
focal adhesions and centrosomes, in particular the PAK1 kinase 
and the HEF1/NEDD9 scaffolding protein (88, 89). PAK1 pro-
motes AURKA activation by directly phosphorylating Thr-288 
and Ser-342 (89) and also phosphorylates Plk1Ser-49, an event 
that contributes to its activation (90). HEF1/NEDD9 promotes 
the catalytic activity of AURKA (88) and also stabilizes it (91); 
the interaction between AURKA and HEF1/NEDD9 is favored 
by CaM (92), while it is inhibited by AURKA phosphorylation 
of HEF1/NEDD9 (88), indicating the presence of a negative 
feedback loop. Plk1 in turn indirectly regulates HEF1/NEDD9 
stability, with deriving increased AURKA activity signaling back 
on Plk1 activation (93). The focal adhesion localization of PAK1 
and HEF1/NEDD9 suggests that they define a pool of AURKA 
responsible of a signaling path that links loss of cell adhe-
sion – typical of the cell division process – with mitotic centroso-
mal events and mitotic entry (94, 95). This pool appears also to be 
involved in the non-mitotic role of AURKA in cilia disassembly 
at cell cycle reentry from G0 (92, 96), a process that also requires 
Plk1 activity (93). An additional interactor of AURKA involved 
in both cell–cell adhesion and cell proliferation and survival 
(97) is Ajuba. The interaction between AURKA and Ajuba was 
first described in human cells (98), where it was shown as a key 
AURKA-activating step at G2 centrosomes (98). Recent data sug-
gest that the activation mechanism relies on the ability of Ajuba, 
upon binding to AURKA N-terminus, to prevent an inhibitory 
intramolecular interaction between the N- and C-termini of the 
kinase (99); in addition, the subsequent binding of a distinct 
Ajuba domain to the C-terminus of AURKA directly stimulates 
kinase activity (99). A role of Ajuba in AURKA regulation has 
been confirmed in Drosophila neuroblasts, although data indicate 
an effect on localization, rather than activation, of the kinase 
(100). Organism and/or cell-type specificity may account for 
the observed differences, although cell cycle- (G2 vs. mitosis) or 
reporter- (phospho-AURKA/phospho-H3 vs. phospho-TACC3) 
dependent effects may also be envisaged.

COnCLUSiOn

Several AURKA activators have been described at centrosomes 
and microtubules, and evidence exist that they create independ-
ent complexes with the kinase. The scaffolding functions of some 
of them and the finding of specific phospho-AURKA fractions 
depending on the bound activator suggest that distinct interac-
tors define specific AURKA pools with differential kinase activity 
and/or substrate specificity. More interconnected analyses of the 
different AURKA pools and a better spatiotemporal resolution of 
their formation during the cell cycle are expected to uncover in 
the next years how they ensure tight coordination of downstream 
events. Plk1 is a key substrate of AURKA and at the same time 
a major regulator of the multiple AURKA activators: besides 
contributing to generate an activation feedback loop that rein-
forces AURKA and Plk1 activities at mitotic entry, this is also 
emerging as a mechanism to impart time-dependent regulation 
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to the unfolding of AURKA-regulated events. Exploring the con-
tribution of the AURKA/Plk1 axis in mitotic control, including 
in newly identified mitotic functions of AURKA (101–104), is a 
promising field of investigation for the future.
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