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Tocols are vitamin E compounds that include tocopherols (TPs) and tocotrienols (TTs). 
These lipophilic compounds are phenolic antioxidants and are reportedly able to modulate 
estrogen receptor β (ERβ). We investigated the molecular determinants that control their 
estrogenicity and effects on the proliferation of breast cancer cells. Docking experiments 
highlighted the importance of the tocol phenolic groups for their interaction with the ERs. 
Binding experiments confirmed that they directly interact with both ERα and ERβ with 
their isoforms showing potencies in the following order: δ-tocols > γ-tocols > α-tocols. 
We also found that tocols activated the transcription of an estrogen-responsive reporter 
gene that had been stably transfected into cells expressing either ERα or ERβ. The role 
of the phenolic group in tocol–ER interaction was further established using δ-tocoph-
erylquinone, the oxidized form of δ-TP, which had no ER affinity and did not induce 
ER-dependent transcriptional modulation. Tocol activity also required the AF1 transac-
tivation domain of ER. We found that both δ-TP and δ-TT stimulated the expression of 
endogenous ER-dependent genes. However, whereas δ-TP induced the proliferation of 
ER-positive breast cancer cells but not ER-negative breast cancer cells, δ-TT inhibited 
the proliferation of both ER-positive and ER-negative breast cancer cells. These effects 
of δ-TT were found to act through the down regulation of HMG-CoA reductase (HMGR) 
activity, establishing that ERs are not involved in this effect. Altogether, these data show 
that the reduced form of δ-TP has estrogenic properties which are lost when it is oxi-
dized, highlighting the importance of the redox status in its estrogenicity. Moreover, we 
have shown that δ-TT has antiproliferative effects on breast cancer cells independently 
of their ER status through the inhibition of HMGR. These data clearly show that TPs can 
be discriminated from TTs according to their structure.

Keywords: estrogen receptor alpha, estrogen receptor beta, vitamin e, molecular modeling, gene transcription, 
hMg-coa reductase, breast cancer, proliferation
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FigUre 1 | chemical structures of α-, γ-, and δ-tocopherol; α-, γ-, and δ-tocotrienol; 17β-estradiol; ici 164,384; sah 58-035; probucol; and butylated 
hydroxytoluene (BhT). Boldface type indicates the part of the molecules that are superimposable.
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inTrODUcTiOn

Vitamin E was first characterized in wheat germ oil and lettuce 
in 1922 (1). Vitamin E compounds are also known as tocols and 
include eight structurally related forms separated into two groups: 
tocopherols (TPs), in which the isoprenoid side chain is saturated, 
and tocotrienols (TTs), in which the side chain is unsaturated. 
The α-, β-, γ-, and δ-TP and -TT isomers are named according 
to the number of methyl groups on the chromanol ring at the 3, 
5, and 7 positions (Figure 1). Vitamin E compounds have been 
extensively used in pharmacological studies due to their anti-
oxidant properties; however, a major difference exists between 
TPs and TTs. TTs are potent down regulators of both HMG-CoA 
reductase (HMGR) and the isoprenoid-cholesterol biosynthesis 
pathway, and reduced cancer cell proliferation (2). In addition, 
TTs have been reported to induce cell cycle arrest and inhibit 
NFκB pathways and angiogenesis (3–6). Compared to TTs, much 
more is known about the effects of TPs. α-TP is quantitatively 
the major form of vitamin E found in humans and animals (7), 
whereas other TPs are present in various fat oils, such as palm oil 
(8) and argan oil (9). Many studies have focused their attention 
on vitamin E succinate (VES), a synthetic derivative of α-TP in 
which the hydroxyl phenol is esterified through succinylation. 

In contrast to α-TP, VES displays antiproliferative properties 
through an as-yet undefined mechanism in vitro and in vivo (10) 
but does not have antioxidant properties due to the esterification 
of the phenolic group. Vitamin E are fat-soluble antioxidants, and 
numerous studies have proposed that they can help in prevent-
ing or modulating diseases associated with oxidative stress, such 
as cardiovascular diseases (11, 12), neurodegenerative diseases 
(13), and cancers (14). Despite this, clinical trials have failed to 
establish any preventive effects of α-Toco on cardiovascular dis-
eases and cancer (15–17). Recently, however, it was reported that 
dietary administration of δ- and γ-TP inhibited tumorigenesis 
in an animal model of estrogen receptor (ER)-positive but not 
human epidermal growth factor receptor (HER-2)-positive breast 
cancer (18). Parallel to this observation, a number of studies have 
shown that vitamin E, as an antioxidant, may interfere with the 
pharmacological action of some anticancer drugs, which rely on 
reactive oxygen species production as part of their mechanism 
of action (19). This is the case for the anticancer drug tamoxifen 
and other selective antiestrogen-binding site (AEBS) ligands such 
as tesmilifene, developed for the treatment of breast, lung, and 
prostate cancers (20–22), all of which have their antiproliferative 
and proapototic activities blocked by α-TP (23–27). α-TP has 
also been shown to inhibit the lipoperoxydation of cholesterol, 
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blocking the production of the prodifferentiation and proapototic 
cholesterol-5,6-epoxides that have been identified as mediators of 
tamoxifen activity in breast cancer cells (21, 26, 28, 29). These data 
suggest that the intake of α-TP during prophylactic or curative 
treatment could impair the clinical outcome of patients treated 
with tamoxifen. In fact, many patients undergoing breast cancer 
treatment are known to take antioxidant dietary supplements, 
which may have a negative impact on their clinical outcome (30).

Tocopherol and TT contain structural determinants such as a 
phenol group, a cyclic structure, and long hydrophobic side chains 
that make them possible ligands for ERs (31). One study reported 
them to be weak modulators of ERβ but curiously found that they 
did not affect ERα activity (32). ERs are nuclear receptors (NRs) 
that mediate the biological effects of estrogens. They influence many 
physiological processes, including not only reproductive functions 
but also hormone-dependent cancers, cardiovascular health, bone 
integrity, immunity, cognition, and behavior (33, 34). The present 
study aimed to reevaluate the impact of TP and TT on ER-dependent 
transcriptional activity and breast cancer cell proliferation.

MaTerials anD MeThODs

chemicals
[3H]-17β-estradiol and [14C]-HMG-CoA were purchased from 
GE Healthcare (UK). ICI 182,780 was from Tocris (UK). TPs and 
TTs were from Merk-Millipore (USA) or were kindly provided 
by Dr. Abdul Gapor (Kuala Lumpur, Malaysia); other compounds 
and chemicals were from Sigma-Aldrich (USA). All solvents were 
from Prolabo (France).

synthesis of δ-Tocopherylquinone
A solution of gold III chloride (0.28 g; 0.92 mmol) dissolved in 
water (1 ml) was added dropwise to a solution of δ-Toco (0.36 g; 
0.89 mmol) dissolved in ethanol (9 ml). The mixture was stirred 
in the absence of light for 2 h at room temperature. The solution 
was then evaporated and the solid residue was resuspended in 
dichloromethane and filtered. The organic layer was washed 
three times with water, dried over magnesium sulfate, filtered, 
and evaporated to dryness. The orange oil was purified by reverse 
phase HPLC (Ultrasep ES 100 RP 18, 250 × 8 mm, 6.0 μm, using 
acetonitrile for 10  min, linear gradient of 100% acetonitrile to 
100% MeOH for 60 min; flow rate = 1 ml/min) and yielded a pure 
colorless oil product. MS: DCI (NH3), MH+ = 419; TLC Silica: Rf 
(CHCl3): 0.18; HPLC, Rt = 30 min; UV: λmax = 260 nm.

Molecular structure analysis
Computational chemical calculations were performed on a 
Silicon Graphics Indigo workstation using Insight II version 2000 
(Accelrys, San Diego, CA, USA). Minimal energy conformations 
were calculated using the Discover module (2.9.7/95.0/3.0.0) 
with the CVFF force field. Van der Waals volumes and van der 
Waals volume intersections were determined using the Search-
Compare module version 95.0 (Accelrys). We first compared 
the structure of α-tocopherol (δ-TP) with that of ICI 164,384. 
Superimposition was carried out between the energy minimized 
structure of α-TP and ICI 164,384 in the conformations adopted 

in the crystallographic structure of ERβ-ICI 164,384 (35) (Protein 
Data Bank 1HJ1). Superimposition was conducted using the 
diphenylethane part of α-TP that was superimposed carbon to 
carbon onto the steroidal backbone of ICI 164,384. The van der 
Waals volumes of α-TP and ICI 164,384 were also compared and 
the percentage of superimposition was calculated by measuring 
the ratio of the intersection of the van der Waals volume of ICI 
164,384 with the van der Waals volume of α-TP.

estrogen receptor-Binding assay
Estrogen receptor-binding experiments with [3H]17β-estradiol 
were conducted exactly as reported in a previously published 
paper using extracts from Cos-7 cells transfected with expression 
vectors encoding human ERα and ERβ (36).

Molecular Modeling with estrogen 
receptors
δ-tocotrienol (δ-TT), generated as described above, was prepo-
sitioned in the 4-hydroxytamoxifen (OHT)-ERα ligand-binding 
domain (LBD) crystal structure (Protein Data Bank 3ERT) (37) 
using the Search-Compare module of Insight II (Accelrys). The 
superimposition of OHT and δ-TT was carried out as described 
previously (38). Once prepositioned, OHT was unmerged from 
the OHT-ERα complex and deleted, and δ-TT was then merged 
to the receptor. The resulting complex was submitted to energy 
minimization using 250 steps of the steepest descent followed by 
a conjugated gradient until the root mean square gradient was 
<0.001 kcal/mol/Å. A distant-dependent dielectric term (ϵ = r) 
and a 20-Å non-bonded cutoff distance were chosen, whereas the 
hydrogen bond involved in the conformation of the α helices was 
preserved by applying a generic distance constraint between the 
backbone oxygen atoms of residue i and the backbone nitrogen 
atoms of residue i + 4, excluding prolines. This was performed 
using the Discover calculation engine with the CVFF force field 
(Insight II version 2000.1; Accelrys). The minimized coordinates 
of the receptor were then used as the starting point for 100 ps 
at 300 k using the Verlet algorithm whereas the constraint used 
during minimization was maintained. The resulting conforma-
tion was then further minimized using 250 steps of the steepest 
descent followed by a conjugated gradient until the root mean 
square gradient was <0.001 kcal/mol/Å.

reporter cell lines and luciferase assay
MELN cells were established by transfecting ER(+) MCF-7 cells 
with the ERE-β-globin-tk-Luc-SV-Neo plasmid (36). HELN cells 
were generated by transfection of ER(−) HeLa cells with this 
plasmid. The HELN-ERα, HELN-ERβ, HELN-ΔAB-ERα, and 
HELN-ΔAB-ERβ cell lines then underwent a second transfection 
with the corresponding pSG5-puro plasmids (pSG5-ERα-puro, 
pSG5-ERβ-puro, pSG5-ΔAB-ERα-puro, and pSG5-ΔAB-ERβ-
puro, respectively) and expressed wild-type or mutated ERα or 
ERβ (39, 40). Mutated ERα or ERβ have been deleted for the 
AB domain which possesses a ligand-independent activation 
function (AF1). Comparison of the activities toward hERα and 
hERβ with the truncated ΔAB-ERα and ΔAB-ERβ provides 
a powerful model to identify partial ER agonists (requiring 
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ligand-independent AF-1 to induce maximal ER activation). 
MELN and HELN cells expressed luciferase in an estrogen-
dependent manner. Cells were grown routinely in DMEM 
growth medium supplemented with 5% FBS (Gibco BRL, Life 
Technologies, Cergy pontoise, France). Cells were incubated at 
37°C in a humidified 5% CO2 incubator. For experiments, cells 
were grown for 5 days in phenol red-free medium, containing 6% 
dextran-coated charcoal-treated FCS (DCC-FCS) with penicil-
lin–streptomycin. Medium was changed after 2 days. On day 5, 
cells were treated or not with the compounds, which were dis-
solved in ethanol. For each condition, 15 × 103 cells were seeded 
per well in 12-well plates and treated, as described above, for 
8 h in a final volume of 0.5 ml. At the end of the treatment, cells 
were washed with PBS and lysed in 150 μl lysis buffer (Promega, 
Charbonnières, France). Luciferase activity was measured using 
the luciferase assay reagent (Promega), according to the manu-
facturer’s instructions. Protein concentrations were measured 
using the Bradford technique (41) to normalize the luciferase 
activity data. For each condition, average luciferase activity was 
calculated from the data of three independent wells.

cell extracts and Western Blots
MCF-7 cells were grown in 12-well plates and treated as indicated, 
then washed with PBS, and collected by centrifugation. Total cell 
lysates were prepared by resuspending the cells from each well 
in 100 μl lysis buffer (50 mM Tris pH 6.8, 2% SDS, 5% glycerol, 
2 mM EDTA, 1.25% β-mercaptoethanol, 0.004% Bromophenol 
blue). Samples were boiled for 20  min at 95°C and cleared by 
centrifugation at 12,000 ×  g for 10  min. Protein concentration 
was determined by the Amido schwartz assay when samples 
contained SDS. Samples were subjected to PAGE on a 10% 
SDS-polyacrylamide gel in 25 mM Tris–HCl, 200 mM glycine, 
pH 8.3, 0.1% SDS, and proteins were then transferred onto a 
nitrocellulose membrane. Western blot analysis was performed as 
previously described (42) using rabbit polyclonal ERα antibodies 
diluted to 1 μg/ml (HC20 or H-184 Santa Cruz Biotechnology, 
Inc.) and the mouse antihuman glyceraldehyde 3-phosphate 
dehydrogenase (1:1,000). Visualization was achieved with an 
Enhanced Chemiluminescence Plus kit (Perkin Elmer) and 
luminescence was measured by either autoradiography or using 
a PhosphorImager (Storm 840; GE Healthcare).

cell Proliferation assay
MCF-7 (ER(+)), T47D (ER(+)), and MDA-MB-231 (ER(−)) cell 
lines were from ATCC. Cell lines were maintained at 37°C in a 
humidified incubator in a 5% CO2-enriched atmosphere in T-75 
flasks. MCF-7, T47D, and MDA-MB-231 cells were grown rou-
tinely in phenol red RPMI 1640 medium supplemented with 5% 
FBS (Gibco BRL, Life Technologies, Cergy Pontoise, France) and 
with penicillin–streptomycin. Cells were grown for 24 h before 
treatment in phenol red-free medium containing 5% DCC-FCS. 
Cells were seeded into 96-well plates at 2000 cells/well. Treatment 
media (150 μl/well) was added on the following day and replaced 
at 48-h intervals until the end of the experiment. Cell density 
was measured via the sulforhodamine B method (43) after 0, 2, 
4, 6, and 8 days. The absorbance of SRB was measured directly at 

490 nm in the 96-well plates using a multiskan® multisoft reader 
from Labsystem.

Determination of hMg-coa reductase 
activity in cell extracts
The microsomal fraction of MCF-7, T47D, and MDA-MB-231 
cells was prepared as previously described (44). HMGR activity 
was determined using the procedure first described by Brown 
et  al. (45): 100  μg of microsomal protein was suspended in 
0.1M potassium phosphate buffer pH 7.5 containing 20  mM 
glucose-6-phosphate, 2.5  mM NADP+, 1 unit of glucose-
6-phosphate dehydrogenase, 5  mM dithiothreitol and 0.2  μCi 
[14C]-HMG-CoA. The reaction was stopped after 3  h by the 
addition of 25 μl 6 N HCl. Mevalonate was converted to lactone 
by standing at 37°C for 30 min, then extracted into 5 ml ethyl 
acetate, and brought to dryness by evaporative centrifugation. 
The sample was dissolved in 50 μl ethyl acetate and fractionated 
by silica thin-layer chromatography with toluene:acetone (1/1). 
Mevalonolactone was identified by comigration with authentic 
mevalonolactone visualized by iodine vapor staining and quanti-
fied storm analysis.

statistical analysis
Values are the mean ± SEM of three independent experiments, 
each carried out in duplicate. Statistical analysis was made by two-
way ANOVA, where appropriate (Prism 6, GraphPad Software, 
Inc., San Diego, CA, USA). ***P < 0.001; **P < 0.05; *P < 0.01; 
ns: not significant.

resUlTs

TP and TT share structural similarities 
with estrogen receptor ligands
In previous studies, we used a pharmacophore approach to 
identify new targets for known drugs to explain some of their 
pharmacological properties (36, 38, 42, 46–48). We applied this 
approach to vitamin E compounds. The secondary structures 
of TPs, TTs, 17β-estradiol, ICI-164,384, Sah 58-035, probucol, 
and butylated hydroxytoluene (BHT) are shown in Figure  1. 
Tocols are phenolic compounds with a long hydrophobic side 
chain that are similar to ER ligands, such as ICI 164,384 or Sah 
58-035, when drawn in a two-dimensional representation (36) 
(Figure 2A). This similarity was confirmed by comparison of the 
active structure of ICI 164,384 cocrystallized with ER-β with a 
minimal energy conformation of α-TP in a three-dimensional 
representation (Figure  2A). The van der Waals volumes of 
α-TP and ICI 164,384 were 406.57  Å and 469  Å, respectively 
(Figure  2A). Superimposition of the compounds is shown 
in Figure  2A and reveals that ICI 164,384 and α-TP share a 
common volume of 254.07 Å, which represents 63% of the van 
der Waals volume of α-TP. The hydrophobic side chain of both 
compounds gives a perfect superimposition, with the exception 
of the ultimate ethyl group of the side chain of ICI 164,384. This 
shows that the molecular volume defined by α-TP lies within the 
ligand-accessible volume of the ER and that the orientation of 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


ICI α-TPICI + α-TP

Pro535
Val533

Leu536 Cys530

Lys529

Leu525

Thr347

Leu346
Met343

Met421
Ile424

Phe404Leu428

Leu391

Arg394

Leu349

Glu353

Trp383

Leu384

Ala350

Met388

Leu536 Val533

H12

Val533

Cys530

Leu536

Arg394

Glu353

H5

H8

H3

A

B C
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taken in the crystallographic structure of rat ERβ-ICI 164,384, and the calculated minimal energy conformation of α-tocopherol (α-TP) (right). The calculated minimal 
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the hydrophobic side chain of tocols corresponds to that of the 
aliphatic site chain of ICI 164,384 and Sah 58-035. Altogether, 
these data are consistent with a direct interaction of α-TP with 
the ER.

Tocols are ligands for erα and erβ
We next investigated whether α-, γ-, and δ-TPs and -TTs interact 
with the two human ER subtypes (ERα and ERβ) by conducting 

competition experiments with tritiated 17β-estradiol [3H]-E2 
(Table 1). The tocols bound to ERα and ERβ with the following 
order of affinity (highest to lowest): δ-tocols > γ-tocols > α-tocols. 
Thus, increasing the hindrance of the phenol group by increasing 
the number of methyl groups led to a decrease in affinity for 
both ERs. The oxidized product of δ-TP, δ-tocopherylquinone 
(δ-TPQuin), did not bind to the ERs, highlighting the importance 
of the phenol group in ER interaction (Table  1). The phenolic 
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TaBle 1 | er binding experiments.

erα (ic50) erβ (ic50)

α-TP 453 ± 30 μM 431 ± 21 μM

γ-TP 227 ± 28 μM 215 ± 16 μM

δ-TP 118 ± 15 μM 98 ± 12 μM

α-TT 412 ± 22 μM 388 ± 32 μM

γ-TT 203 ± 25 μM 205 ± 18 μM

δ-TT 96 ± 6 μM 91 ± 7 μM

Probucol N.M. N.M.

BHT N.M. N.M.

δ-TPQuin N.M. N.M.

Extracts from cos-7 cells transfected with expression vectors encoding human ERα 
and ERβ were incubated with 2 nM [3H]-E2 and different concentration of tocols 
ranging from 1 μM to 1 mM. IC50 values were determined using the iterative curve-
fitting program GraphPad prism version 5 (GraphPad Software). N.M., not measurable.
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antioxidants, BHT, and probucol, had no detectable affinity, prob-
ably because of the presence of two bulky tertiobutyl substituents 
adjacent to the hydroxyphenol group and because of the absence 
of a hydrophobic side chain. Interestingly, the IC50 values obtained 
for the TP corresponded to the concentrations they were tested 
on cell lines in vitro (100–500 μM) (23, 24, 26, 27, 49–53). These 
data show that tocols are ligands for both ERα and ERβ.

Molecular Modeling of the δ-TP-erα 
complex
The ability of tocols to interact with ERs raised the question of 
the molecular consequences of this interaction. In the absence 
of a crystal structure of the tocol–ER complex, we investigated 
this issue through molecular modeling. Figures 2B,C show the 
chemical interactions between δ-TP and ERα. Interestingly, the 
phenol group of δ-TP inhabited the LBD in a similar fashion as 
E2: the hydroxyl group interacted with Glu-353 and Arg-394. 
The phenyl part of the chromanol group produced a T-shaped 
interaction with the phenyl side chain of Phe-404 and had van 
der Waals contacts with the methyl groups of Leu-391 and Leu-
384. These data show that the chromanol backbone of δ-TP can 
occupy the same cavity as E2 or diethylstilbestrol (37, 54). The 
side chain of δ-TP protruded into the 11β cavity of the LBD of 
ERα and produced multiple van der Waals interactions with 
hydrophobic amino acids, such as Ala-350, Leu-525, and Trp-
383. The upper part of the side chain interacted with Val-533, 
Leu-536, Leu-539, Leu-540, and Met-543. These latter amino 
acids belong to helix H12, thus showing an interaction between 
the upper part of the side chain of δ-TP and helix H12 in this 
model, as was observed for Sah 58-035 (36). δ-TP established 
a van der Waals interaction with Met-421 but no interactions 
were detected with Leu-384, suggesting that they might not 
discriminate between the two ER subtypes, which are consistent 
with binding experiments. The docking of the more hindered 
α-tocols showed a loss of the interaction of the hydroxy phenolic 
group with Glu-353 and Arg-394, explaining their weaker affin-
ity compared to δ-tocols. These data illustrate that tocols are 
accommodated well within the ER binding site in a similar way 
as that previously established with Sah 58-035 and auraptene 

(36, 42). This suggests that tocols can act as modulators of ERs 
rather than pure agonists.

Tocols are Partial agonists for  
er-Mediated Transcription
The next set of experiments were designed to investigate whether 
tocols can modulate ER-dependent transcription, using MCF-7 
cells stably transfected with a plasmid encoding an estrogen-
responsive promoter fused to the luciferase gene (MELN cells) 
(36). Figure  3A shows that all the tocols tested stimulated 
luciferase transcription, with the best response obtained using 
500  μM δ-TP and δ-TT, which resulted in 76.5 and 86.6% of 
the maximal ER-dependent response (taken as that obtained 
from treatment with 10  nM E2), respectively. Tocol-induced 
ER-dependent transcriptional activity was blocked in the pres-
ence of the ER antagonist ICI 164,384 (Figure 3B). As expected, 
compounds that were previously determined as non-ER ligands, 
such as δ-tocopherylquinone (δ-TPQuin), BHT, and probucol, 
did not stimulate the expression of luciferase (Figure  3B). 
We next established that δ-TP- and δ-TT-bound ERα was not 
degraded as was observed for ERα bound to E2 (Figure  3C). 
Thus, the effect of δ-TP and δ-TT on ER protein stability is 
similar to that of selective ER modulators, suggesting that tocols 
are not pure estrogens. δ-TP and δ-TT were also shown to 
activate ER-dependent luciferase activity through both ERα and 
ERβ, using HELN cells (HeLa cells transfected with the same 
plasmid as MELN cells, which encodes an estrogen-responsive 
promoter fused to the luciferase gene) (Figure  3D). In order 
to further characterize the agonistic properties of the δ-tocols, 
the HELN-ERα and -ERβ cell lines were used alongside the 
HELN-ΔAB-ERα and HELN-ΔAB-ERβ cell lines in which the 
N-terminal AF1 domain of the ERs (responsible for the majority 
of ER transactivation activity) is deleted (40). We observed that 
ERα-mediated transcriptional activation induced by the δ-tocols 
was strongly altered in the absence of the AF1 domain, whereas 
the loss of this domain did not significantly affect ERβ-mediated 
transcriptional activation induced by the δ-tocols (Figure 3D). 
To determine whether δ-TP and δ-TT can modulate the expres-
sion of endogenous E2-regulated genes as well as reporter genes, 
the expression of the progesterone receptor gene (PR), trefoil 
factor-1 (TFF1, Ps2), and transforming growth factor alpha 
(TGFα) was measured by quantitative RT-PCR in MCF-7 cells. 
Treatment of MCF-7 cells with δ-TP stimulated the transcription 
of TGFα (1.4-fold increase), PR (1.8-fold), and Ps2 (1.9-fold) 
(Figure 3E). The treatment of MCF-7 cells with δ-TT stimulated 
the transcription of TGFα (1.1-fold), PR (1.6-fold), and Ps2 
(twofold). These results confirm that δ-TP and δ-TT can acti-
vate the transcription of endogenous genes that are known to be 
under the control of ERα.

The effect of δ-Tocols on the Proliferation 
of er(+) and er(−) Breast cancer cells
To investigate the effects of δ-TP and δ-TT on cell growth, ER(+) 
human BC cell lines (MCF-7 and T47D) and an ER(−) BC cell 
line (MDA-MB-231) were used. As shown in Figure 4A, δ-TP 
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or 500 μM δ-TT for 3 h. MCF-7 extracts were analyzed for the presence of ERα by western blotting using GAPDH as a control. Visualization was achieved with an 
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(500 μM) induced a significant stimulation of MCF-7 and T47D 
cell proliferation over a 6-day period, albeit to a lesser extent 
than E2 (10 nM), and had no impact on ER(−) MDA-MB-231 
cells. Both δ-TP- and E2-induced stimulation of proliferation 
was blocked by the ER antagonist ICI 164,384, consistent with an 
ER-mediated event (Figure 4A). In contrast, δ-TT inhibited the 
proliferation of cells, and these effects were amplified in the pres-
ence of E2 or ICI 164,384. Only cotreatment of cells with meva-
lonolactone (M) protected all three cell lines from the inhibitory 
effects of δ-TT (Figure 4A). Mevalonolactone is known to reverse 
the mevalonate-isoprenoide pathway when HMGR is inhibited 

suggesting that δ-TT inhibited HMGR in BC cells as observed 
in other cell lines (2, 55–58). We found a similar effect using 
when cells where treated with lovastatin, a prototypical inhibitor 
of HMGR, and as expected, the inhibition of cell proliferation 
was reversed by mevalonolactone (Figure 4A). These differential 
actions of δ-TP and δ-TT are consistent with an inhibition of 
HMGR activity that was observed downstream of δ-TT but not 
δ-TP in these cell lines (Figure 4B). Altogether, these data show 
that δ-TP stimulates cell proliferation in a similar way to that of 
ER agonists while δ-TT inhibits cell growth, consistent with its 
capacity to down regulate HMGR.
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DiscUssiOn

In this paper, we report the identification of a new molecu-
lar target of vitamin E compounds that sheds light on their 
pharmacological potency and the potential risks related to 
their specific substructures. Using a ligand-structure based 
approach, we found that TPs and TTs are ER ligands and behave 
like partial agonists in ER-mediated transcriptional regula-
tion of synthetic and endogenous genes. Therefore, they are 
phytoestrogens. Consistent with this data, vitamin E has been 
previously reported to increase the expression of estrogenic 
markers in breast biopsies of patients (53). We found that both 
the effects of the tocol derivatives on transcription and their 
affinity for ERα decreased with the number of methyl groups 
present on the phenol ring of the compounds, the most potent 
phytoestrogens being δ-TP and δ-TT. These data emphasize 
the importance of the accessibility of the OH phenolic group 
in establishing a productive interaction with the Glu353 and 
Arg394 residues in ERα. Molecular modeling studies suggested 
that the aliphatic side chain of tocols can occupy the 11β-cavity 
of the LBD, as observed for the side chains of steroidal and 
non-steroidal ER ligands (59, 60). The tocol side chain enables 
their interaction with helix H12 on the NR box-binding site 
(Figure  2B), consistent with an agonistic activity. The use of 
AF1 deletion mutants also demonstrated the requirement 
of the AF1 transactivation domain for δ-tocol activity and 
revealed that they act differently than E2 on ERα since they 
do not induce receptor degradation upon binding. Other phe-
nolic antioxidants, such as BHT or probucol, did not display 
any estrogenic effects, which supports the observation that 
the estrogenic action of δ-TP was peculiar in its ER-binding 

activity. The presence of a bulky tertiobutyl group in the ortho 
position from the hydroxyl of the phenols in these compounds 
may explain this effect. Furthermore, the oxidated form of δ-
TP had no estrogenic activity as a consequence of its loss of 
affinity for binding to the ER. This established that ER binding 
and ER-dependent transcriptional stimulation of tocols are 
dependent upon their reduced form status.

It is noteworthy that δ-tocols were found to stimulate TGFα 
expression in vitro in human breast cancer cells. TGFα can activate 
mitogenic pathways; so, this finding highlights the potential risk 
that these compounds could promote tumor growth. However, 
dietary administration of δ-TP was shown to protect against 
N-methyl-N-nitrosourea hormone-dependent tumorigenesis in 
Sprague-Dawley rats (18); therefore, based on the present data, it 
is now important to determine whether this effect is observable in 
different rodent species because potential selective ER modulator 
activity has been shown to induce responses in animal models 
that are not seen in humans (61).

In this paper, we report that TPs and TTs are agonists for both 
ER subtypes. We show that δ-TP stimulated the proliferation of 
ER-expressing cells, whereas TTs were potent inhibitors of cell 
proliferation irrespective of the cell’s ER status. This difference 
in activity could have resulted from the capacity of TTs to 
downregulate HMGR activity since it was reversed through 
addition of mevalonolactone, demonstrating the importance 
of the inhibition of the isoprenoide-cholesterol pathway in this 
effect (Figure  4A). Based on these data, we established that it 
is possible to distinguish between the action of TPs and TTs 
since although both TPs and TTs displayed antioxidant and ER 
stimulatory activity, and only TTs displayed an antiproliferative 
activity.
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Altogether, these data have established that tocols are 
phytoestrogens and that their transcriptional modulation 
of ER must be taken into account to better understand their 
properties.
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