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Hematological malignancies are a heterogeneous group of diseases deriving from blood 
cells progenitors. Although many genes involved in blood cancers contain internal 
ribosome entry sites (IRESes), there has been only few studies focusing on the role of 
cap-independent translation in leukemia and lymphomas. Expression of IRES trans-act-
ing factors can also be altered, and interestingly, BCL-ABL1 fusion protein expressed 
from “Philadelphia” chromosome, found in some types of leukemia, regulates several 
of them. A mechanism involving c-Myc IRES and cap-independent translation and 
leading to resistance to chemotherapy in multiple myeloma emphasize the contribution 
of cap-independent translation in blood cancers and the need for more work to be done 
to clarify the roles of known IRESes in pathology and response to chemotherapeutics.
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inTRODUCTiOn

Hematopoietic malignancies, here referred to as blood cancers, are the fourth most diagnosed cancer 
type in the world. In 2012, they had an estimated incidence of almost one million per year (6.5% of 
all cancers diagnosed) and an estimated mortality of over half a million, thus being responsible for 
~6.9% of all cancer deaths (1). Hematopoietic malignancies can be classed as three broad groups: 
lymphomas which form tumors in the lymph nodes; leukemia cells that accumulate in the blood; 
and myelomas which are cancers of plasmocytes. Blood cancers result from genetic alterations in the 
hematopoietic lineage, leading to uncontrolled proliferation and/or resistance to apoptosis.

Hematopoiesis is a complex and tightly regulated process. In response to various signals, 
hematopoietic stem cells mature into either lymphoid or myeloid progenitors. Myeloid progenitors 
ultimately differentiate into erythrocytes, platelets, monocytes, and granulocytes (2). The lymphoid 
progenitor undergoes several subsequent maturation steps in the bone marrow and secondary 
lymphoid organs to produce B-cells, T-cells, and natural killer cells (NK). Malignancies can derive 
from any of these lineages and from cells at various differentiation stages; hence, the types of blood 
cancers are completely different diseases. Most hematopoietic malignancies occur in the elderly, 
but Hodgkin lymphoma (HL) affects young adults, and leukemias are the most common pediatric 
cancers. While some of these malignancies are very aggressive like acute lymphoblastic leukemia 
(ALL), acute myeloid leukemia (AML), and diffuse large B-cell lymphoma (DLBCL), others such as 
follicular lymphoma (FL), chronic myeloid leukemia (CML), or chronic lymphocytic leukemia (CLL) 
are relatively indolent and take several years to develop. They also have very different prognosis, e.g., 
80% of HL can be cured while CLL remains incurable [for reviews, see Ref. (3–6)].

Despite the heterogeneity, many blood cancers share a common oncogenic mechanism. BCR 
and TCR genes undergo somatic recombinations to generate a broad range of receptors that would 
recognize various antigens. Off-target effects of these mechanisms can translocate proto-oncogenes 
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to the highly transcribed BCR locus or lead to the expression of 
fusion proteins (7). While other mutations are found, the trans-
locations are specific for each type of blood cancer and used for 
diagnosis and prognosis.

Differentiation and proliferation of blood cells is tightly con-
trolled by an array of different extracellular signaling molecules, 
growth factors, and cytokines delivered by osteoblasts, osteoclasts, 
endothelial cells, stromal cells, mesenchymal progenitor cells, 
and adipocytes that populate the microenvironment of maturing 
hematopoietic cells: these components, together with the extra-
cellular matrix, constitute the hematopoietic niche (8). While 
all hematopoietic malignancies interact with the hematopoietic 
niche, diseases in which no specific translocation is found (CLL 
and HL) are particularly dependent on their microenvironment 
and associated signaling pathways.

Various mechanisms deregulate cap-dependent translation in 
blood cancer, with the mTOR pathway being probably the most 
studied. mTOR is usually activated in aggressive diseases (ALL, 
AML, and DLBCL) resulting in an upregulation of translation. 
mTOR inhibitors, which should curtail translation, have been tri-
aled in lymphomas, AML and CLL with mixed results (9). Protein 
synthesis can also be affected by deregulation of translation 
machinery components [e.g., eIF4E in leukemia (10) or eIF4B 
in DLBCL (11)], causing both global and gene specific effects. 
Finer gene-specific regulation of translation can be achieved 
with microRNAs, which can have either tumor-suppressor or 
pro-oncogenic effects. For example, miR146a expression is lost 
in lymphoma (12) and deletion of miR15/16 locus is common 
in CLL (13), while the miR17-92 cluster is a target of c-Myc and 
mediates its oncogenic effects [for review, see Ref. (14)].

When cap-dependent translation pathways have been down-
regulated, for example, through a change in microenvironment 
or presence of chemotherapeutics, cancer cells may still drive 
selective oncogene translation via “cap-independent” mecha-
nisms. In such cases, an internal ribosome entry site (IRES) in 
the 5′ UTR of an mRNA interacts with a selection of canonical 
initiation factors and specific IRES trans-acting factors (ITAFs) 
to recruit ribosomes and translate protein independently of the 5′ 
cap. ITAFs are RNA-binding proteins that can either activate or 
inhibit IRES activity (15). Cap-independent translation could be 
of interest in hematopoietic malignancies since many drugs used 
for treatment, such as DNA-damaging agents or more recently 
mTOR inhibitors, shut down cap-dependent translation. By act-
ing to maintain key survival pathways in the face of global transla-
tion shutdown, cap-independent translation has the potential to 
impede many chemotherapeutics’ action.

This review flags some instances in which IRESes are found 
in genes relevant to blood cancers, but in which their context is 
not understood. In many cases, these IRESes may be incidental 
to disease progression and response to treatment, since cap-
dependent translation may be the only relevant mechanism. In 
other cases, particularly where upregulation of both ITAF and its 
cognate IRES are seen, both may be playing a critical role. Their 
potential to help or hinder treatment of hematological malignan-
cies should not be overlooked. To underscore this point, we end 
this review by elaborating on the rare examples where the roles of 
cap-independent translation are better understood.

iReSes ARe PReSenT in MAnY GeneS 
ReLevAnT TO BLOOD CAnCeRS

Many genes of relevance to blood cancers contain an IRES ele-
ment, including many involved in the characteristic transloca-
tions (see Table 1). Crucially, the contributions of these IRESes to 
transformation and progression, if any, are not yet known.

Many other genetic rearrangements in hematological malig-
nancies (e.g., less common translocations, deletions, duplications, 
and a wide range of mutations) involve IRES-containing genes. 
These include VEGF or b-FGF, which both are mutated in several 
cancers including CLL (27–30). p53 whose 5′ UTR contains two 
IRESes (31), is mutated in 5–50% of blood cancers [for review, 
see Ref. (32)], and mutations or deletions of p53 are particularly 
common in CLL (33).

iTAFs MAY ALSO Be ABeRRAnTLY 
eXPReSSeD in BLOOD CAnCeRS

As discussed above, the ITAF proteins which can interact with 
specific IRESes are critical for cap-independent translation. 
Several ITAFs show expression changes in blood cancers. One 
such example is nucleolin which is overexpressed, and its subcel-
lular localization altered, in CLL and myeloid leukemias (34, 35). 
SP1, whose IRES is targeted by nucleolin (36), is overexpressed 
and associated with bad prognosis in many cancers, including 
acute leukemia (37, 38), and it can drive drug resistance in 
leukemia stem cells (38, 39). In another example, HuR is over-
expressed in subtypes of AML, CML, and ALL [reviewed in Ref. 
(40)]. HuR is an IRES-binding protein and has been reported to 
inhibit p27KIP1 IRES-mediated translation (41). Low expression of 
p27KIP1 is a bad prognosis factor in AML (42). To date, however, 
the relationship between the oncogenic properties of these two 
proteins and their cognate IRESes has not been explored.

Fusion proteins generated by translocations can also influence 
cap-independent translation regulation, e.g., signaling through 
the tyrosine kinase BCR-ABL1. BCR-ABL1 is a fusion gene that 
originates from a reciprocal translocation [t(9;22)(q34;q11)] 
between chromosomes 9 and 22, to generate an aberrant 
“Philadelphia” chromosome 22 (Table 1). It is present in >95% 
of CML cases and ~30% of cases of ALL, and sometimes also 
in AML. Studies suggest that BCR-ABL1 alone can be sufficient 
to cause CML [for a review, see Ref. (22)]. Because of this, the 
development of tyrosine kinase inhibitors, such as imatinib, has 
improved CML prognosis, although resistance can develop.

The BCR-ABL1 protein controls the transcription of several 
IRES-containing transcripts, including lymphoid enhancer 
factor-1 (LEF-1) (43). LEF-1 expression increases with CML 
progression (44, 45). Translation of full-length LEF-1 is partly 
controlled by an IRES in its 5′ UTR (43). Several LEF-1 ITAFs have 
been identified, including eIF4A1 (46), which is itself stimulated 
by BCR-ABL1 via the mTOR pathway. When both mTOR and 
eIF4A were inhibited, a reduction in the IRES-driven translation 
of LEF-1 was observed which correlated with a reduced prolifera-
tion in hematopoietic cell lines (46). Direct targeting of eIF4A1 
activity, in combination with other chemotherapeutics, may 
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TABLe 1 | Genes with the most common translocations observed in blood cancer.

Translocation Oncogenic mechanism Disease (frequency of 
translocation)

Gene(s) involved Presence of an iReS in 
involved genes

iReS retained after 
translocation

t(8 14)(q24 q32) Transcriptional activation BL (80–90%) (16) c-Myc Yes (18) Yes
DLBCL (7–10%) (17)

t(11 14)(q13 q32) Transcriptional activation MCL (80–90%) (17) Cyclin D1 Yes (20) Yes
MM (15%) (19)

t(14 18)(q32 q21) Transcriptional activation FL (80–90%) (17) BCL2 Yes (21) Yes
DLBCL (12–23%) (17)

t(3 14)(q27 q32) Transcriptional activation DLBCL (20–31%) (17) BCL6 No NA

t(9 22)(q34 q11) Fusion protein CML (100%) (22) BCR/ABL1 No No
Adult ALL (30%) (23)

t(15,17)(q22 q21) Fusion protein APL (95%) (24) PML/RARα No NA

t(12 21)(p12 q22) Fusion protein Pediatric ALL (25%) (25) TEL/AML1 Yes (AML1) (26) No

The presence or absence of IRES elements are indicated in the table.
BL, Burkitt lymphoma; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; MM, multiple myeloma; FL, follicular lymphoma; CML, chronic myeloid leukemia; ALL, 
acute lymphoid leukemia; APL, acute promyelocytic leukemia; NA, not applicable.
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therefore be of use in future treatments of CML in individuals 
who are resistant to tyrosine kinase inhibitors.

BCR-ABL1 also directly regulates transcription of several 
ITAFs including La/SSB (47), hnRNPA1 (48), hnRNPE2 (49), 
and hnRNPK (50). La/SSB has been shown to bind to the IRES of 
mRNA coding for the chaperone protein BIP (51). This protein is 
increased in cells expressing BRC/ABL1 fusion protein (52), and 
a cytosolic isoform of BIP has been described to activate PERK 
signaling and drive survival in leukemia cells (53). hnRNPA1, 
hnRNPE2, and hnRNPK have been shown to be important for 
BCR-ABL1-driven oncogenesis (54). Notari and colleagues also 
showed that, upon induction by BCR-ABL1, hnRNPK induced 
c-Myc IRES-dependant translation (50). Interestingly, hnRNPA1 
has also been shown to associate with c-Myc IRES (55, 56). 
However, the role of the ITAF activity of these proteins in the 
context of CML has not been studied.

Overexpressed La/SSB, when induced by BCR/ABL1 or by 
JAK2 mutations, was also shown to bind to a 27 nucleotides 
sequence in the MDM2 5′ UTR and activate translation. 
Interestingly, MDM2 5′ UTR shares 70% identity with the 5′ 
UTR of BIP (47, 57). Regulation of MDM2 expression by La/
SSB operates following DNA damage and consequent inhibition 
of cap-dependent translation, and altogether this would suggest 
that MDM2 5′ UTR does contain an IRES regulated by La/SSB. 
MDM2 is an ubiquitin ligase that targets p53, leading to its degra-
dation and is overexpressed through various mechanisms in most 
blood cancer types (58). The potential impact on p53 means that 
further studies to explore cap-independent translation of MDM2 
in hematological malignancies may be of value.

MULTiPLe MYeLOMA AS A PARADiGM 
FOR THe iMPORTAnCe OF CAP-
inDePenDenT TRAnSLATiOn in BLOOD 
CAnCeRS

The blood cancer for which we have the clearest evidence for the 
importance of cap-independent translation is multiple myeloma 

(MM). MM is a disease caused by clonal expansion of plasmo-
cytes. Normal, mature plasmocytes differentiate from activated 
B cells and produce large quantities (up to 2000 molecules/s) of 
antibody, such that immunoglobulins normally occupy ~20% 
of total plasma protein. This massive protein production means 
that plasma cells must adapt to great ER stress during their 
development, sustaining unfolded protein response (UPR) and 
autophagy without inducing apoptosis (59–61).

The normal lifespan of plasmocytes can vary from a few days 
to several years. Differentiated plasma cells appear to live longest 
in specialized niches in the bone marrow (62). It is thought that 
such niches are limited, generating competition between plasma 
cells arising at different times (63–65). Overall, the nature of 
normal plasma cells predisposes them to longevity, resistance to 
apoptotic effects of ER stress, chemotactic movement to migrate 
and establish in competition-intense niches, and traits which also 
aid malignant cell survival. MM usually initiates from a B cell 
with somatic hypermutation (often of c-Myc) and translocations 
in the immunoglobulin genes (66, 67). While the disease is tra-
ditionally described as arising from a transformed differentiated 
plasma cell, the malignant population may instead derive from a 
small population of relatively chemoresistant, stem cell-like B cell 
precursors (68).

Broad spectrum chemotherapeutics, such as Melphalan, are 
used to treat MM, often in combinations that vary with stage and 
chemoresistance. Due to the generally greater protein load of MM 
cells, drugs which target the proteasome (such as bortezomib) 
are often effective (69). Unusually, thalidomide, a drug with 
immunomodulatory properties whose mechanism of action is 
not completely understood, is also increasingly used. This, and 
similar drugs such as Lenalidomide, appears to have diverse 
antitumor effects (70, 71). IRESes have the potential to impact 
upon MM drug response. For example, thalidomide may reduce 
the proliferative effects of MM cells in part by targeting the IRES 
of the b-FGF growth factor (72).

The greatest focus of research, however, has been upon c-Myc 
(summarized in Figure  1). MM cells are thought often to be 
addicted to c-Myc overexpression and c-Myc levels correlate with 
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FiGURe 1 | Schematic summarizing some of the genes and pathways known to influence c-Myc cap-independent translation in multiple myeloma 
(MM). Cytokine activation of key signaling pathways, or pathway dysregulation, may affect the levels or activity of IRES trans-activating factors (ITAFs), including YB1 
(conditions of low Akt activity). MNK1-mediated phosphorylation of hnRNPA1 and/or RPS25 increases interaction between them and might improve ribosome 
loading on the c-Myc IRES (77). Conventional treatments for MM usually inhibit CAP-dependent translation but their impact on CAP-independent translation is 
unknown. BMSC, bone marrow stromal cell.
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disease progression (73–75). c-Myc overexpression is known to 
have impact on translation in many ways, for example, by acting 
as a transcriptional activator of ribosomal proteins and transla-
tion initiation factors, such as eIF4E [for a review, see Ref. (76)]. 
Intriguingly, it is also able to modulate mTORC1 activity to 
enhance 4EBP1 phosphorylation (76).

c-Myc contains an IRES in its 5′ UTR (18, 78). A C-T muta-
tion at position 2796 of the IRES affects the secondary structure 
and correlates with increased c-Myc translation (79). The IRES 
mutation was found to be overrepresented in the bone marrow 
of patients with MM (80). Multiple proteins have been identified 
as Myc family ITAFs (55, 56, 81, 82). Of these, ITAFs PTB1 and 
YB1 showed a higher affinity for RNA containing the mutated 
IRES in vitro, compared to wild type, and acted synergistically to 
drive higher expression of a downstream luciferase in a reporter 
construct. A correlation was also observed between expression 
of ITAFs PTB1 and YB1 and c-Myc in two MM-derived cell lines 
carrying the mutation (83).

It should be stressed that elevated YB1 protein levels in 
MM are likely to have impact widely on its establishment and 
progression, via both transcriptional and translational effects 
(84). YB1 effects may also vary with activity of the Ras-ERK and 
Ras-AKT pathways. High levels of AKT activity are observed 
in MM (85, 86), and other cancer studies have shown that YB1 
is phosphorylated by AKT, rendering it less likely to enhance 
cap-independent translation (87). In support of this model in 
MM lines, when mTOR is inhibited by Rapamycin, and AKT 

activation is maintained, levels of c-Myc and Cyclin D proteins 
are not maintained by IRES-mediated translation and decline 
(88). This may be relevant to MM cells in the bone marrow, where 
malignant cells stimulate the bone marrow stromal cells (BMSCs) 
to produce the cytokines IL-6 and IGF1, which stimulates the IL6 
and IGF1R receptors respectively, leading to activation of AKT 
(and ERK) signaling (89–91).

In contrast, low AKT activity allows cap-independent trans-
lation of c-Myc and Cyclin D to take place (20). It is possible 
that niche-responsive variation in AKT activity and expression 
of YB1 (and therefore also c-Myc) allows cells from the same 
clone, but in different environments, to plastically adopt a 
quiescent or proliferative phenotype that would result in differ-
ential sensitivity to chemotherapeutics (92, 93). A study of the 
phosphorylation status and relative levels and activity of nuclear 
and cytoplasmic YB1 and its proteolytically cleaved product 
within MM samples from different niches would be interesting 
to explore.

There also appears to be an important role for MNK1 in the 
activation of the c-Myc IRES under chemotherapeutic conditions. 
MNK1 is best known as a key player in cap-dependent transla-
tion; both p38 and ERK1/2 signaling pathways can catalyze its 
phosphorylation. This activated form can interact with scaffold 
protein eIF4G and subsequently activate eIF4E phosphorylation 
(94).

MNK1 can also phosphorylate eIF4B to activate translation [for 
a review, see Ref. (95)]. Activation of MNK1 via phosphorylation 
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has also been implicated in cap-independent c-Myc translation 
to facilitate survival during treatment with Rapamycin (and 
also with common MM chemotherapeutics expected to inhibit 
cap-dependent translation, such as bortezomib) (77, 88). MNK1 
is likely to be phosphorylated within the bone marrow micro-
environment, since IL6 stimulates the activity of the p38 MAPK 
pathway (96).

MNK1 was found to be necessary for the interaction of 
the hnRNPA1 ITAF and RPS25 with the c-Myc IRES (77, 82). 
Both proteins have previously been established as having roles 
in cap-independent translation (which for RPS25 appears to 
outweigh any role in cap-dependent translation) (97). Recent 
work has identified a compound able to prevent hnRNPA1 bind-
ing to the c-Myc IRES; the compound was observed to reduce 
c-Myc expression only following induction of ER stress, when 
only IRES-dependent mechanisms would be expected to act 
(77). There is thus an exciting possibility that cap-independent 
translation inhibitors may be combined with chemotherapeutics 
that inhibit cap-dependent translation to block a possible survival 
route for cancer cells.

In a note of caution, the existence of multiple c-Myc ITAFs 
renders it possible that the c-Myc IRES could be stimulated in vivo 
even in the presence of an hnRNPA1 inhibitor, since it is currently 
unknown whether this particular ITAF is essential to c-Myc IRES 
function under all conditions. Other ITAFs, such as YB1, may 
be able to act independently of hnRNPA1 as c-Myc ITAFs (98). 
Detailed characterization of the key signaling pathways permit-
ting survival in MM cells across different niches, and after dif-
ferent treatment regimens, would provide clarity on this subject.

COnCLUSiOn

Existing data illustrate that IRES function is relevant to several 
hematological malignancies and that specific IRESes or ITAFs 
may present druggable targets in the future. However, much 
work still needs to be done to clarify the roles of known IRESes 
in pathology and response to chemotherapeutics, in addition to 
finding further relevant examples of cap-independent translation. 
While acknowledging unusual examples such as LEF-1, one would 
expect that, in the majority of cases, IRES function is likely to be of 
most relevance when cap-dependent translation is compromised, 
e.g., following exposure to chemotherapeutic agents and in a 
hypoxic tumor cell environment. How IRESes mediate survival 
in such circumstances is likely to lead to a better understanding 
of which combinations of chemotherapeutics can be used to treat 
this very disparate and difficult to treat group of diseases. One 
way to address this question would be to ask if clones enriched 
for IRES-containing oncogenes arise, and persist, even as a small 
niche-specific subpopulation, following chemotherapy.
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