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The increasing application of charged particles in radiotherapy requires a deeper under-
standing of early and late side effects occurring in skin, which is exposed in all radiation 
treatments. We measured cellular and molecular changes related to the early inflamma-
tory response of human skin irradiated with carbon ions, in particular cell death induction 
and changes in differentiation and proliferation of epidermal cells during the first days 
after exposure. Model systems for human skin from healthy donors of different com-
plexity, i.e., keratinocytes, coculture of skin cells, 3D skin equivalents, and skin explants, 
were used to investigate the alterations induced by carbon ions (spread-out Bragg peak, 
dose-averaged LET 100  keV/μm) in comparison to X-ray and UV-B exposure. After 
exposure to ionizing radiation, in none of the model systems, apoptosis/necrosis was 
observed. Carbon ions triggered inflammatory signaling and accelerated differentiation 
of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon 
ions were more effective than X-rays in reducing proliferation and inducing abnormal dif-
ferentiation. In contrast, changes identified following low-dose exposure (≤0.5 Gy) were 
induced more effectively after X-ray exposure, i.e., enhanced proliferation and change in 
the polarity of basal cells.

Keywords: human skin equivalent, keratinocytes, differentiation, apoptosis, inflammation, proliferation, ionizing 
irradiation, carbon ions

Abbreviations: cl, cleaved; D, dermis; fl, full length; HSE, human skin equivalent; M, marker; PC, positive control; SB, stratum 
basale; SC, stratum corneum; SG, stratum granulosum; SS, stratum spinosum.
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inTrODUcTiOn

The increasing application of charged particles in radiotherapy 
motivates our assessment of inflammatory reactions and 
homeostasis of tissue exposed to carbon ions and to compare the 
response to X-rays. In the current study, we focus on the analysis 
of cell death, proliferation, differentiation, and reorganization of 
different layers of the epidermis.

Charged particles display particular physical characteristics, 
such as high mass and electrical charge, resulting in an inverted 
depth dose profile compared to photons with a high relative dose 
deposition at the end of their trajectory. This enables a volume 
conform treatment of deep-seated tumors (1) as well as sparing 
of critical organs. In addition, when using ions heavier than 
protons, the exposure of cells or tissue in the “Bragg Peak” region 
at the end of the trajectory leads to a higher local intensity of 
ionizing events, and thereby clusters of DNA damage (2). As a 
consequence, an enhanced biological efficiency compared to 
photons is observed (3, 4).

New treatment approaches with carbon ions make use of 
these advantages by increasing the dose to the tumor to enhance 
the tumor control probability (1, 2). However, this also implies 
the delivery of a higher dose to the surrounding normal tissue, 
including skin (5). Skin reactions associated with carbon ion 
therapy for deep-seated tumors are reported to be moderate and 
comparable to classical photon exposure (6). However, dose esca-
lation trials in particle therapy applying a higher dose via only 
1–2 entrance channels may cause skin toxicity (5). A typical case 
is breast cancer proton therapy, where the target (lumpectomy 
cavity) is shallow, and therefore skin toxicity is the limiting factor 
for beam arrangement and prescription doses (7, 8).

Skin is of interest because a considerable part of the side effects 
occurring after radiotherapy are observed in this organ due to its 
sensitivity (9) and its involvement in all radiation exposures (10). 
Radiation effects observed in the epidermis of the skin are ery-
thema, desquamation and, for very high doses, late necrosis. In 
the dermis late effects occur, i.e., persisting vascular damage and 
fibrosis (11–13). In addition, anti-inflammatory effects induced 
by low-dose radiation (14) exposure can be anticipated as they are 
already shown for UV exposure (15, 16).

In the work presented here, we aimed to investigate the cel-
lular and molecular changes related to the early inflammatory 
response of irradiated skin, in particular the occurrence of cell 
death and changes in differentiation and proliferation of the 
epidermal cells. In this context, a comparison between X-rays 
and carbon ions was intended. The first experiments were per-
formed in monolayer- and cocultures of skin cells (keratinocytes, 
cocultured with fibroblasts); the respective results are reported in 
the supplement.

Based on these results obtained in cell cultures, we used a 
3D human skin equivalent (HSE) and human skin explants to 
approach the physiological conditions in tissue and tested the 
following working hypotheses:

 (1) Cell death of keratinocytes does not play a major role in the 
inflammatory response to ionizing radiation within the first 
days postexposure.

 (2) An early release of inflammatory cytokines in irradiated skin 
tissue may be elicited by other typical changes (proliferation, 
differentiation, and tissue organization) than cell death.

 (3) Taking into account previous knowledge about irradiation-
induced changes in tissue, we hypothesize that activation of 
proliferation, differentiation, and tissue organization may be 
affected.

 (4) Carbon ions, delivered to normal skin under therapy condi-
tions, induce similar effects related to inflammation, prolif-
eration, differentiation, and tissue organization compared to 
the same physical doses of photons.

Throughout the assessment of cell death, cytokine release, 
homeostasis, and tissue organization, the effects of carbon ions, 
using an extended Bragg Peak as a therapy-like configuration, 
were compared to X-rays. As the efficiency of carbon ions in 
inducing the respective effects has not been reported for skin cells 
and tissue before, we have chosen the same low and moderate 
doses to compare the radiation qualities and, in addition, a high 
X-ray dose to take into account a potential higher but not yet 
determined efficiency of carbon ions. A considerable number of 
data sets on non-ionizing UV-B exposure are available, and there-
fore UV-B irradiation served as a reference, and the respective 
results for all model systems used are reported in the supplement.

MaTerials anD MeThODs

Tissue culture
Human full-thickness skin equivalent constructs (EpiDermFT™), 
referred to as HSE herein, were purchased from MatTek 
Corporation (Ashland, MA, USA) and cultured according to the 
manufacturer’s protocol. The HSE consists of an epidermal layer 
composed of normal human epidermal keratinocytes, which is 
not submerged in culture medium and a dermal layer built up 
of fibroblasts and extracellular matrix (collagen1). All HSE con-
structs were equilibrated for at least 16 h before the experiments 
were started. During irradiation, the samples were maintained in 
PBS (Biochrom; Berlin, Germany) and fresh medium was added 
after irradiation. Media exchange was repeated on a daily basis 
until the experiment was terminated.

Human skin tissue explants were obtained from surgical 
discard (Dermatology Clinic, Darmstadt, Germany). The study 
was approved by the Local Ethics Committee (FF136/2014). The 
skin was washed in PBS, cut into small pieces (5 mm × 5 mm) 
and explanted in cell culture inserts (BD Falcon, Heidelberg 
Germany). The membrane of the inserts was in contact with 
medium (RPMI 1640, with 10% FCS and 2% Pen/Strep; all 
Biochrom, Berlin, Germany). The skin explants were cultured 
under standard conditions.

irradiation
X-ray irradiation (X-RAD 320 R X, 250 kV, 16 mA) of HSE was 
performed with a dose rate of 1 Gy/min (0.5–10 Gy).

Carbon ion irradiation (0.5–2  Gy) was performed using a 
pencil beam in a spread-out Bragg peak (SOBP) with 20.0 mm 
width equivalent to a depth of 5 cm in water (110–145 MeV/μm; 
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LET 100  keV/μm), at the heavy-ion synchrotron (SIS) at GSI 
Helmholtzzentrum für Schwerionenforschung (Darmstadt, 
Germany). A subset of carbon ion irradiations has been per-
formed with the same parameters of exposure at the heavy-ion 
synchrotron of the Heidelberg Ion-Beam Therapy Center HIT 
(Heidelberg, Germany).

For carbon ion irradiation, the HSE were positioned vertically. 
In order to protect the samples from drying out, a sterile gaze 
soaked with prewarmed PBS was put in the wells under the mem-
brane, and the wells were closed with Parafilm during exposure, 
which typically took 10 min.

histochemistry, immunohistochemistry, 
imaging, and Quantitative analysis
For histological analyses, HSE was fixed in a 4% PFA-solution, 
processed for paraffin embedding, and cut into 5  μm sections 
using a microtome (RM2235; Leica Microsystems, Wetzlar, 
Germany). For hematoxylin and eosin (H&E) staining, slides 
were deparaffinized, rehydrated, and stained according to com-
monly used procedures (17).

For immunostaining, the sections were deparaffinized, 
rehydrated, treated with 10  mM citrate acid buffer (pH 6.0), 
and heated in a microwave to unmask the antigens. After 
rinsing in deionized water, the slides were incubated in 0.3% 
H2O2 for 30 min to block the endogenous peroxidase activity. 
After washing in PBS (three times), non-specific binding sites 
were blocked by incubating the sections with blocking solution 
(1.5% normal goat serum in PBS with 0.1% (v/v) Triton X-100). 
Finally, the slides were incubated with the primary antibody 
at 4°C overnight. Used antibodies and dilutions were: rabbit 
anti-active caspase-3 (Ab-2; Calbiochem, San Diego, CA, USA; 
1:100), rabbit anti-Ki67 (SP6, ab16667; Abcam, Cambridge, UK; 
1:100), and rabbit anti-E-Cadherin (EP700Y; ab40772; Abcam, 
Cambrigde, UK; 1:500). The detection of the binding of the 
primary antibody was performed with the Ultra-Sensitive ABC 
Peroxidase rabbit IgG staining kit (Thermo Scientific, Waltham, 
MA, USA) and the ImmPACT VIP-Peroxidase substrate kit 
(Vector, Burlingame, CA, USA) or SigmaFast-DAB-Tablets 
(Sigma, St. Louis, MO, USA) according to the manufacturer’s 
protocol. The nuclei were counterstained with hematoxylin and 
the slides were dehydrated, cleared in xylene, and mounted. 
HSE, submerged entirely with medium, was used as positive 
control for apoptosis.

Tissue sections were imaged using an Olympus BX61 micro-
scope with an E-330 camera (Olympus, Hamburg, Germany). 
For the quantitative or semiquantitative analysis, 20 pictures per 
sample were taken with a 40-fold magnification. Pyknotic cells 
in the stratum corneum (parakeratosis) and in the viable epi-
dermis were counted by eye and the mean per field of view was 
calculated. Ki67-positive cells (proliferation) were also counted 
by eye and normalized on the total number of basal cells. The 
thickness of the stratum corneum and the viable epidermis 
were measured using the software Image J. The thickness of the 
stratum corneum was normalized on the thickness of the viable 
epidermis. For the semiquantitative analysis of the structure of 
the basal layer, for each picture, it was evaluated if the cells in the 

basal layer were palisadic, in part or completely cobblestoned; 
the fraction of pictures displaying the respective characteristic 
is given. Each analysis was performed from two independent 
experiments, in total for four samples (n = 4, N = 2); values are 
given as SEM.

Western Blot
The HSE epidermis was separated mechanically from dermis 
and lysed separately in RIPA buffer as previously described 
(18). In addition, tissue was homogenized with a pestle and 
with ultrasound treatment. Proteins were loaded (10  μg) and 
separated on 12% SDS-polyacrylamide gels, and then transferred 
to polyvinylidenfluoride membranes (Immobilon-P; Merck 
Millipore, Billerica, MA, USA). After blotting, the membranes 
were washed and incubated overnight at 4°C in 5% dry milk 
(Carl Roth GmbH, Karlsruhe, Germany) in Tris-buffered saline 
to reduce non-specific binding. Membranes were incubated with 
the primary antibodies for 2 h at room temperature.

Primary antibodies used were rabbit anti-caspase-3 (Cell 
Signaling, Danvers, MA, USA; 1:1000) and rabbit anti-PARP 
(46D11; Cell Signaling, Danvers, MA, USA; 1:1000). GAPDH 
(rabbit anti-GAPDH, Cell Signaling, Danvers, MA, USA; 1:1000) 
and α-Tubulin (mouse anti-α-Tubulin; Sigma, Steinheim, 
Germany; 1:4000) were used as a loading control. HaCaT cells, 
irradiated with 10  Gy X-rays and lysed 5  days after exposure, 
were used as a positive control. After washing, the membrane 
was incubated with a horseradish peroxidase-conjugated second-
ary antibody for 1  h at room temperature (anti-mouse IgG or 
anti-rabbit IgG HRP linked antibody; GE Healthcare, München, 
Germany; 1:10,000). Protein expression was visualized using 
enhanced chemiluminescence (Pierce ECL Plus Western; Thermo 
Scientific, Waltham, MA, USA) according to the manufacturer’s 
instructions and detected on a X-ray film.

enzyme-linked immunosorbent assay
To quantify the levels of released cytokines in the medium of 
HSE, ELISA kits for the detection of TNF-α, IL-2, IL-6, IL-8, 
IL-10, TGF-β (all ELISA Ready-SET-go!; eBioscience, San Diego, 
CA, USA), and IL-1α (Platinum ELISA, eBioscience, San Diego, 
CA, USA) were used according to the manufacturer’s protocol. 
The measured values for each sample were normalized on the 
controls. In the first step, we checked the cytokine release from 
each sample before irradiation separately, but as the values were 
very similar to each other, this additional normalization step 
according to Varnum et al. (19) was not pursued. The concentra-
tion of HMGB1 in the medium of HSE was measured using an 
ELISA kit (human HMGB1; Cloud-Clone-Corp., Houston, TX, 
USA), according to the manufacturer’s instructions and normal-
ized on the controls.

statistical analysis
Unless stated otherwise, the error bars represent the mean ± SEM. 
Statistical significance was tested using a Student’s t-test. The 
number of independent irradiation experiments (N) and the total 
number of samples (n) are mentioned in the figure legends. At 
least two irradiation experiments and four samples were analyzed.
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resUlTs

The results obtained in keratinocytes (normal human epidermal 
keratinocytes; NHEK), either in monolayers or cocultured 
with fibroblasts (normal human epidermal fibroblasts; NHDF), 
are presented in the supplement. The results obtained in a 3D 
HSE and in human skin explants are presented in the following 
paragraphs for X-ray and carbon irradiation, for UVB exposure 
in the supplement.

induction of apoptosis
We first assessed clonogenic cell survival after radiation expo-
sure (Figure S1 in Supplementary Material). As expected, the 
dose–response curve shows a typical shoulder for X-ray, whereas 
the curve is linear for carbon ions, indicating a higher efficiency 
of carbon ions compared to X-ray in terms of cell inactivation. 
Please note that for cell inactivation, monoenergetic carbon ions 
(170 keV/μm) were used, whereas all the following experiments 
have been performed with SOBP carbon ions (100  keV/μm), 
which corresponds to the conditions used in radiotherapy.

Then, we investigated if this cell inactivation is due to the 
induction of cell death during 144 h after exposure to ionizing 
radiation (X-rays and SOBP carbon ions) in a monolayer culture 
of keratinocytes. In addition, we repeated this experiment in 
cocultures of keratinocytes and fibroblasts. The results are shown 
in Figures S1, S2, and S4 in Supplementary Material. In spite of 
clearly detectable cytogenetic damage in terms of micronuclei 
formation for both radiation qualities, the results did not indicate 
an occurrence of apoptosis (no detection of annexin V positive 
cells, pyknotic nuclei, apoptotic bodies, activated caspase-3, and 
cleaved PARP), not even at high doses, and showed only low 
levels of necrosis (release of HMGB, High Mobility Group Box 1 
protein, an established marker for necrosis (20, 21), Figure S5 in 
Supplementary Material).

From these results, we hypothesized that cell death of 
keratinocytes does not play a major role in the inflammatory 
response to ionizing radiation, at least not within the first days 
after exposure. To test this in tissue, we moved on using a model 
system of higher complexity, i.e., a commercially available, three-
dimensional HSE, and for selected experiments also human skin 
explants. We used the same physical doses of photons and carbon 
ions (0.5 and 2 Gy), and in addition a higher dose (10 Gy) of 
photon irradiation.

The occurrence of apoptosis was assessed in irradiated HSE 
and human skin up to 72  h after exposure. Figure  1A shows 
representative pictures of the immunodetection of active cas-
pase-3 in HSE tissue sections, 24 h after exposure to moderate/
high doses. In the positive control, apoptotic cells were identified 
in the basal layer by positive caspase-3 staining and condensed 
pyknotic nuclei. In contrast, no pyknotic nuclei or cells positive 
for active caspase-3 could be detected after irradiation, regardless 
of radiation quality and dose. This also applies for 72 h after irra-
diation (Figure S6A in Supplementary Material). Consistently, no 
cleaved caspase-3 and PARP (only assessed for X-ray exposure) 
were detected in lysates of irradiated HSE (western blot analysis 
for 24 h after exposure, Figure 1B, additional time points shown 
in Figure S6B in Supplementary Material). For X-ray exposure, 

these observations were confirmed in sections of ex vivo irradi-
ated human skin explants where no active caspase-3 and no 
pyknotic nuclei were observed (Figure 1C). The use of TUNEL 
assay turned out to be inappropriate to detect apoptotic cells 
because differentiating keratinocytes showed intensive staining, 
irrespective of radiation exposure, and can therefore not be 
distinguished from apoptotic cells (not shown), which is in line 
with independent observations (22).

In addition, signs of necrosis were not observed morphologi-
cally and release of HMGB1 was not detectable after irradiation 
neither in the medium of HSE nor in the medium of human skin 
explants (not shown).

All in all, our results indicate no major role for early apoptosis 
and necrosis neither for photon nor for carbon ion exposure 
within 72 h after irradiation. This we conclude from the absence 
of caspase-3-dependent apoptosis, HMGB1 release, and typical 
morphological alterations, observed in a 3D HSE, and confirmed 
in human skin explants, irradiated ex vivo.

release of cytokines related to 
inflammation
By analyzing cytokine release after irradiation of NHEK, an 
upregulation of proinflammatory cytokines on the level of gene and 
protein expression has been shown (12). In good agreement with 
published data, our own results have shown an enhanced release 
of IL-1α, IL-2, and TGF-β (Figure S7A in Supplementary Material, 
only assessed for X-rays). For IL-6 and IL-8, the measured cytokine 
concentration in the supernatant of the controls was below the 
detection limit. Thus, the relative radiation-induced increase could 
not be calculated reliably. The induction of IL-6 was induced by 
moderate doses of X-ray and UV-B irradiation, whereas IL-8 was 
only inducible by a high UV-B intensity (40 mJ/cm2, not shown).

Of note, when the keratinocytes have been cocultured with 
normal dermal fibroblasts, a significant influence on the pat-
tern of release, i.e. an inhibitory feedback loop between release 
of IL-1α and TGF-β, has been observed in the non-irradiated 
cells, which is in agreement with published data (Figure S7B in 
Supplementary Material) (23–26). Despite this modulating effect, 
a radiation-induced moderate increase in the release of IL-1α, and 
a clear increment of IL-6 and IL-8 release, has been detected 24 h 
after photon irradiation, whereas no significant change of TGF-β 
has been measured (Figure S7C in Supplementary Material, only 
assessed for X-ray).

Based on these findings, we assessed the cytokine release for 
relevant candidates after exposure to X-rays and carbon ions in the 
HSE. The results are summarized in Figure 2. As the kinetics of 
cytokine release turned out to be different for low versus high doses 
and for X-ray versus carbon ion exposure, the intended comparison 
of the respective impact of both radiation qualities was difficult. 
Furthermore, the release of TNF-α und IL-2 was very low, below the 
detection limit in all HSE experiments, except in positive controls of 
human skin, which were generated by submerging the skin explant 
with liquid. When these human skin explants were irradiated 
additionally, an increase of TNF-α could be measured (not shown).

For X-ray exposure (Figure 2A), we observed a trend for an 
enhancement of IL-1α release 24 h after 2 and 10 Gy, whereas after 
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FigUre 1 | Detection of apoptosis in situ and in western blot in hse and human skin explants 24 h after irradiation with high doses of X-ray and 
carbon ions. (a) Immunodetection of active caspase-3 (brown) in HSE; cleaved caspase-3 was not detected in the epidermis after irradiation, but in the PCs 
(arrows in a);  N = 3, n = 5. (B) Western blot analysis of caspase-3 and PARP in HSE; apoptosis is detected by the presence of caspase-3 and PARP cleavage 
fragments (17 and 19 kDa; 89 kDa) in PCs; active/cleaved caspase-3 and cleaved PARP were not detected in the epidermis of HSE after irradiation; N = 2, n = 4. 
(c) Immunodetection of cleaved caspase-3 (pink) in human skin explants; cleaved caspase-3 was not found after low or high doses of X-rays; *: melanocytes in the 
basal layer (brown); N = 3, n = 5.
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48 h, the increment was around threefold compared to the level 
of controls, although not significant. For the highest X-ray dose 
(10 Gy), the increase was the same as for 2 Gy, and for 0.5 Gy, the 
release was unchanged at both time points. However, this was the 
only change observed after exposure to 10 Gy X-rays. The release 
of IL-6 after X-ray irradiation was only slightly, albeit significantly 
enhanced for 2 Gy at both time points (1.5-fold).

The level of the chemoattractant IL-8 protein showed a more 
than twofold enhancement after exposure to 0.5 Gy as early as 
24  h after irradiation, and the increment for 2 Gy was significant 
at 24 h and also at 48 h postirradiation. As in the case of IL-6, no 
change in IL-8 release was observed for 10 Gy at none of the time 
points assessed.

Notably, for carbon ions (Figure 2B), after 24 h, no increment 
in the release of any of the measured cytokines was observed. 
At 48 h after exposure, there was a trend for an enhancement of 
IL-1α, but not for IL-6 release. The release of IL-8 was significantly 
increased about a factor of two.

The cytokines that are considered to have an anti- inflammatory 
effect at early times after irradiation, TGF-β and IL-10 (12, 27, 
28), were not enhanced up to 48 h after exposure, regardless of the 
radiation quality. Although for IL-10, a significant enhancement 
was measured 48 h after carbon ion exposure (Figure 2B), the 
increment was around 1.5-fold compared to controls, raising the 
question about the biological significance of this modification.

Taken together, for the inflammatory cytokines IL-6 and IL-8, 
an enhancement within 48 h was detected after X-ray irradiation 
(Figure  2A). However, the observed changes were not strictly 
dose-dependent, and after carbon ion exposure (Figure  2B), 
only small changes were measured compared to the same physical 
doses of X-rays (0.5 and 2 Gy).

abnormal and accelerated Differentiation
Epidermal homeostasis is maintained by a balance between 
proliferating and differentiating keratinocytes. For epithelial 
and other tissues (29, 30), early radiation-induced changes in 
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FigUre 2 | Detection of cytokine release from hse after irradiation with X-ray and carbon ions. (a) Enhancement of IL-6 and IL-8 release 24 and 48 h 
after exposure to moderate doses of X-rays. (B) No changes 24 h after carbon ion irradiation, enhanced release of IL-10 and IL-8 was detected 48 h after irradiation 
with carbon ions; SEM; *p ≤ 0.05, **p ≤ 0.01; N = 2–3, n = 3–10; IL-2 and TNF-α were not detectable.
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proliferation, differentiation of keratinocytes, and reorganiza-
tion of the epidermal layer are discussed to play a crucial role in 
early inflammation of the skin (31). Keratinocytes are organized 
in stratified layers. The basal layer (stratum basale) contains 
proliferating keratinocytes, which migrate into the upper layers 
(stratum spinosum and stratum granulosum) during their dif-
ferentiation process by disconnecting from the basal membrane. 
During this process, morphology and protein expression profiles 
change. When keratinocytes finally reach the outer layer of the 
epidermis (stratum corneum), they have lost their nuclei and are 
terminally differentiated to cornified cells, which constitute the 
mechanical barrier of the skin, protecting the organisms against 
any type of external stress (10).

An abnormal pattern of morphology and differentiation is 
the occurrence of keratinocytes with pyknotic nuclei. If they 
are observed in the stratum corneum, which in healthy tissue 
consists of denucleated keratinocytes, this phenomenon is called 
parakeratosis and is associated with skin diseases (32, 33). These 
cells are also found in the viable part of the epidermis and in this 
case they are termed “sunburn cells”, as they were first described 
after UV exposure (34, 35).

We assessed parakeratosis and “sunburn cells” in irradiated 
HSE at 24 and 72 h after exposure (Figure 3). In Figure 3A, a 
representative picture of parakeratosis is shown. Quantification 
was achieved by counting the number of pyknotic cells in the 
stratum corneum per field of view. As can be seen in Figure 3B, 
we observed parakeratosis at a low level in non-irradiated HSE 
(0.1–0.6 pyknotic nuclei in the stratum corneum per field of view) 
and an indication for an increase, albeit not statistically signifi-
cant in HSE after carbon ion exposure. In Figure 3C, so-called 
“sunburn cells” are shown, which are not only characterized 
by pyknotic nuclei but also by an eosinophilic cytoplasm and 
the occurrence in the viable epidermis (34, 35). Quantification 
(Figure  3D) of these cells in the viable epidermis revealed a 
comparable increase 24 h after exposure to a moderate dose of 
X-ray and carbon ions (2 Gy), which was still persisting 72 h after 
irradiation. Notably, the increment was not observed for a low 
(0.5 Gy) and a high X-ray dose (10 Gy).

In some studies, sunburn cells are reported to be apoptotic, 
because the morphological alteration overlaps for part of the cells 
with positive staining for activated, cleaved caspase-3 (36). This 
was clearly not the case for the HSE in our study; in none of the 
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FigUre 3 | abnormal and accelerated differentiation in hse after irradiation with X-ray and carbon ions. (a) Pyknotic keratinocytes are observed in the 
stratum corneum (parakeratosis). (B) Quantification of parakeratosis shows a slight increase after X-ray and a more pronounced increase after carbon ion exposure. 
(c) Morphology of typical “sunburn cells“ characterized by pyknotic nuclei and an eosinophilic cytoplasm. (D) Quantification of “sunburn cells” shows a clear increase 
after 2 Gy of X-ray and carbon ions exposure. (e) Cytokeratin 10 expression (only in differentiating layers) in HSE 72 h after irradiation with carbon ions shows an 
enhanced thickness of the stratum corneum, where Cytokeratin 10 is not expressed. (F) Thickening of the stratum corneum (hyperkeratosis). (g) Quantification of 
hyperkeratosis shows an increase of the thickness of the stratum corneum 72 h after X-ray and carbon ion irradiation; SEM; *p ≤ 0.05, **p ≤ 0.01; N = 2, n = 4.
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experimental conditions, a colocalization of sunburn cells and 
caspase-3 positive staining was detected (see Figure 1; Figure S6 
in Supplementary Material).

Another physiological change reported after UV-B exposure 
(37) is the thickening of the stratum corneum. The stratum cor-
neum is the epidermal layer where the differentiation is terminal 
and Cytokeratin 10 is not expressed (38) (example shown in 
Figure 3E). The thickening of the stratum corneum corresponds 
to an accelerated differentiation leading to an accumulation of 
cornified cells and is considered as a protective mechanism (39). 
In Figure  3F, a thickened stratum corneum (so-called “hyper-
keratosis”) of an irradiated HSE is depicted. For quantification, 
we measured the thickness of the stratum corneum and normal-
ized this value to the thickness of the viable epidermis. As shown 
in Figure 3G, an increase of the stratum corneum was observed 
72 h after exposure. The enhancement was significant for 2 and 
10 Gy X-rays and 2 Gy carbon ions, whereas irradiation with a 
low dose (0.5 Gy) did not yield an effect.

The results show that abnormal differentiation patterns 
occur for moderate doses and were more pronounced for 
carbon ion than for X-ray exposure, whereas accelerated dif-
ferentiation is significantly enhanced for X-ray exposure, also 
for a high dose, and for carbon ions, only a trend is observed. 
Both abnormal and accelerated differentiation is not detectable 
for low doses.

Proliferation
Enhanced proliferation due to a chronically activated state of 
keratinocytes has been reported for human skin, where skin 
biopsies have been taken from patients who had undergone 
radiotherapy and investigated months later (31). As we have 
observed accelerated differentiation for moderate and high doses, 
we set out to investigate a potential association with enhanced 
proliferation at early times after irradiation.

Proliferation activity was measured by Ki67 staining 72 h after 
irradiation of HSE. Figure 4A shows Ki67-positive cells in the 
basal layer. In controls, around 5% of the basal cells were positive 
for Ki67. Quantification of the fraction of Ki67-positive cells is 
depicted in Figure 4B, normalized on the level of non-irradiated 
HSE. An enhanced proliferation activity was observed after irra-
diation with a low X-ray dose (0.5 Gy), though not significant due 
to interexperimental variation. For higher X-ray doses and a low 
dose of carbon ions (0.5 Gy), no changes were observed, whereas 
following exposure to 2  Gy carbon ions a reduced fraction of 
proliferating cells was detected.

An increase in proliferation activity of the basal cells for 
0.5 Gy and an unchanged activity for 10 Gy was confirmed in first 
experiments using explants of human skin (Figure 4C), which 
were ex vivo exposed to X-ray irradiation (24 and 48 h).

These results show an enhanced proliferation occurring only 
after exposure to a low dose of X-rays, but not for carbon ions, 
pointing to a specific effect, which is inversely correlated to 
increasing dose and ionizing density. According to this, at higher 
doses, no changes or even a reduced proliferation activity have 
been detected, the latter indicating an inhibition of cell cycle 
progression. This is consistent with the results obtained in NHEK 
(Figure S8 in Supplementary Material).

changed Polarity of the Basal cells
The polarity of the basal keratinocytes is a prerequisite for a 
balanced homeostasis of the epidermal layer (40). The typical 
palisade-like morphology of the basal cells allows for an attach-
ment to the basal membrane and for a regular alignment, deter-
mining the polarity of the basal cells. When the basal cells are 
not attached to the basal membrane, the order and structure of 
the basal layer is disturbed, potentially leading to uncontrolled 
proliferation and migration (41).

After irradiation, we observed a transition from the typical 
palisade-like morphology to a cobblestoned morphology of the 
basal cells, as shown in a representative picture in Figure 5A. As 
quantification is difficult, we performed a semiquantitative scor-
ing by determining if in the field of view all basal cells display a 
palisade-like morphology or if the cells have undergone a partial 
or a complete transition to a cobblestoned morphology. The semi-
quantitative evaluation in Figure 5B shows a shift to a cobblestoned 
morphology for X-ray exposure compared to controls. A transition 
to more areas with cobblestoned morphology was observed 24 and 
72  h after irradiation, and in some fields of view, all basal cells 
displayed a cobblestoned morphology. Interestingly, the effect was 
inversely correlated with increasing dose and most pronounced 
after 0.5 Gy. Similar changes were found after carbon ion irradiation 
(Figure 5B) but less pronounced comparing the low dose (0.5 Gy) 
for both radiation qualities. In addition, we observed an alteration, 
which may be related to the described changes in morphology and 
polarity of basal keratinocytes, i.e., a delocalization of E-Cadherin 
from the cytoplasmic membrane to the cytoplasm (Figure 5C).

In summary, the transition of basal cells from a palisade-like 
to a cobblestoned morphology, indicating a change in polarity 
and disorganization of the basal layer, occurs for low and high 
doses, and for all radiation qualities. However, the effect is clearly 
more pronounced for low compared to high doses and for X-rays 
compared to carbon ions comparing the same physical doses.

DiscUssiOn

The early and late skin response to ionizing radiation in classical 
photon therapy is clinically well known (31, 42) and constitutes 
a dose-limiting factor (43, 44). However, for reactions occurring 
within the first days in the epidermal layer of the skin, the cel-
lular and molecular basis is explored much more intensive for UV 
exposure than for ionizing irradiation. For carbon ion exposure, 
the early radiation response of skin tissue has been investigated 
for the first time on a cellular level in our current study.

cell Death Does not Play a Major role in 
the early radiation response of skin
The onset of an inflammatory reaction is one of the first events 
after irradiation of skin (45), and cell death can trigger this 
response (14, 46). Given the well-known enhanced efficiency for 
cell inactivation and higher relative biological effectiveness (RBE) 
of two to five of carbon ions (depending on the energy) compared 
to photons in mammalian cell types (47–49), a careful investiga-
tion of cell death induction in epidermal cells within the first days 
after exposure was conducted. As expected, clonogenic survival 
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FigUre 4 | Proliferation activity measured by Ki67 staining in hse and human skin explants after irradiation with X-ray and carbon ions. (a) 
Ki67-positive cells (arrows) in the basal layer of HSE. (B) Number of Ki67-positive cells in the HSE, normalized on the total number of cells in the basal layer and 
shown relative to the controls, shows enhanced proliferation after 0.5 Gy X-ray irradiation. (c) Ki67-positive cells in human skin explants (arrows); quantification 
shows an increase of proliferation after low dose of X-rays; N = 2, n = 4.
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of NHEK was reduced after X-ray exposure and even more 
pronounced after high LET carbon ion irradiation (170 keV/μm, 
Figure S1A in Supplementary Material). However, cell death was 
not detectable in mono and coculture of NHEK (Figures S1 and S4 
in Supplementary Material, assessed for X-rays), which is consist-
ent with reported results, where no or only a minor early increment 
in apoptotic cells was observed in primary keratinocytes exposed 
to moderate and high doses of γ-rays (50, 51). This indicates dif-
ferent mechanisms of clonogenic inactivation, such as accelerated 
differentiation, as shown for other primary cells (49, 52).

Using the more complex skin models, HSE and human skin 
explants, we confirmed that caspase-3-dependent apoptosis and 
necrosis do not play a role within the first days after radiation 
exposure to both X-rays and carbon ions in the assessed dose 
range (Figure 1). A low level of apoptosis, remaining unchanged 
after irradiation of the same HSE as used in our experiments, 

was also mentioned in an independent study (53). In biopsies 
of radiotherapy patients, the low basic level of apoptosis was 
increased only after more than 6  weeks (42), and in animal 
experiments, caspase-3-dependent apoptosis (22) and epidermal 
cell loss (54) were shown for very high doses. We conclude that 
apoptosis occurs only for very high doses and/or later than a few 
days. Early after exposure to low and moderate doses, apoptosis 
and necrosis do not contribute to inflammatory reactions.

carbon ions and X-rays Trigger an early 
release of Proinflammatory signals in 
irradiated hse with similar efficiency
For X-ray exposure, an early upregulation of inflammatory 
pathways on the transcriptional level in the irradiated epidermis 
is well established and has been investigated in skin biopsies of 
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FigUre 5 | changed polarity of basal cells in hse after irradiation 
with X-ray and carbon ions. (a) Transition of palisade-like morphology of 
basal cells to a cobblestoned morphology indicating a change in polarity and 
disorganization of the basal layer. (B) Quantification of palisade-like 
morphology and cobblestoned (partial or total) morphology shows a 
transition for all doses of X-ray and carbon ions; most pronounced and highly 
significant for 0.5 Gy. (c) E-Cadherin staining shows a delocalization of the 
protein in the cells from the basal layer (arrows) 72 h after irradiation with 
0.5 Gy X-rays; SEM; *p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001; N = 2, n = 4.
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radiotherapy patients, in HSE (12, 53, 55, 56), and in keratino-
cytes in animal and cell culture studies (50, 57). We could show 
in a HSE that both photon and carbon ion irradiation induce 
an early, significantly increased release of cytokines, which are 
known to trigger inflammation, such as IL-6 and IL-8, and a 
trend in increase of IL-1α. Anti-inflammatory cytokines (TGF-β 
and IL-10) were not elevated after exposure, except for a small 
enhancement of IL-10 at 48 h following carbon ion irradiation. 
This argues against an anti-inflammatory response at low doses 
elicited in the model systems investigated here. However, TGF-β 
mRNA was reported to be upregulated for high γ-ray doses (58), 
probably related to its key role in the late fibrotic response of skin.

In our study, comparing the same physical doses, the response 
to carbon ion irradiation compared to X-ray exposure was weak, 
detectable only after 48  h and significant only for IL-8 release 
(Figure 2). This indicates a similar enhancement in the release 
of proinflammatory cytokines after X-ray and carbon ion expo-
sure. However, this is more a relative statement concerning the 
efficiency of carbon ions compared to X-rays than a result which 
fully represents the inflammatory response in a skin model such 
as a HSE, because a partially, but not fully overlapping pattern of 
X-ray induced cytokine release was detected in a study conducted 
by an independent group in the same HSE (19).

The Differentiation of epidermal cells 
after irradiation is in Part abnormal and 
accelerated
Typical features that might contribute to the onset of an inflam-
matory reaction in skin are changes in proliferation and differ-
entiation of keratinocytes, as reported for radiotherapy patients 
and irradiated animals (31, 59, 60). The normal differentiation 
and migration process implies nuclear disintegration of the 
keratinocytes that have reached the stratum corneum (10). When 
nucleated cells are found in the stratum corneum, the differentia-
tion process is abnormal and called “parakeratosis”. We observed 
parakeratosis after exposure to carbon ions (2 Gy), whereas only a 
weak induction was detected after irradiation with moderate and 
high X-ray doses (Figure 3B). In line with a change occurring 
at higher ionizing densities, parakeratosis was reported also for 
proton irradiation in an epidermis equivalent (61).

Another indicator of abnormal development is the occurrence 
of cells with pyknotic nuclei and eosinophilic cytoplasm, which 
are located in the viable epidermis. We found an increased num-
ber of those cells, albeit at a low level, after exposure to moderate 
doses of X-rays and, longer persisting, for carbon ions (2 Gy; 
Figure  3D). However, unlike “sunburn cells”, which have been 
observed after UV exposure (34, 35), these cells did not show 
positive staining for activated caspase-3 and were not found in 
the basal layer. This result indicates that cells with a sunburn-like 
morphology detected after X-ray and carbon ion irradiation can 
be ascribed to abnormal differentiation and that this process is 
not necessarily associated with classical caspase-3-dependent 
apoptosis. Based on the morphological similarity, the occurrence 
of these cells might be a prestep for parakeratosis.

In contrast to the aberrant features (parakeratosis, “sunburn 
cells”), which occur to a higher extent after carbon ion exposure, 
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we found indications for non-aberrant, but accelerated differ-
entiation after exposure to moderate and high but not for a low 
X-ray dose. Quantitative analysis revealed a significant enhance-
ment of thickness of the stratum corneum (hyperkeratosis) for 
X-rays and for carbon ions. Similar observations in an epidermal 
skin equivalent are reported for proton exposure (61) and less 
pronounced for higher LET ions (62). All in all, our own and 
published data indicate for X-ray and charged particles of the 
lower LET range that the induced imbalance of the differentia-
tion process manifests as accelerated and not really aberrant as 
observed for higher LET radiation qualities.

The Proliferation activity of Basal cells is 
enhanced for a low Dose of X-rays
Differentiation and cell proliferation are directly associated; 
therefore, we also studied the proliferation activity of the basal 
cells in the HSE, which we found to be enhanced for a low X-ray 
dose (Figure 4). Notably, in human ex vivo irradiated skin, we 
could confirm the enhanced proliferation activity of epider-
mal cells induced by low X-ray doses (Figure  4C). For higher 
X-ray doses and for carbon ions, the proliferation activity was 
unchanged or even inhibited, which is in line with results from 
animal photon studies (22, 54, 60, 63) and consistent with the cell 
cycle arrest that we observed in NHEK (Figures 4A,B; Figure S8 
in Supplementary Material).

Our results suggest that increased proliferation is a low-
dose effect, which is induced within a few days after exposure. 
Furthermore, the effect seems to be related to ionizing density, 
which is endorsed by the observation of an increased prolifera-
tion after exposure to charged particles with a relatively low LET 
[protons (61) and oxygen (62)], which was not detected for heavy 
ions with a higher LET in the HSE construct used in our study 
(62). These findings and our results indicate a low-dose effect, 
which is induced by low or moderate LET radiation, and may 
correspond to an early onset of tissue regeneration but does not 
occur at high doses and high LET, where cell cycle arrest and 
terminal differentiation are dominating.

Obvious changes in the Organization of 
the Basal layer Occur after exposure to 
low Doses of X-rays
In addition to changed differentiation and proliferation, we 
observed a radiation-induced transition from the typical 
palisade-like to a cobblestoned morphology of the basal cells 
for X-rays and carbon ions (Figure  5A). This is independent 
of the anchorage to the basal membrane, indicating a changed 
polarity of the basal cells. Semiquantitative analysis revealed a 
more pronounced effect for low compared to higher doses and 
comparing the same physical doses, a more pronounced effect for 
X-rays than for carbon ions (see Figure 5B) and comparing the 
same physical doses, a more pronounced effect for X-rays than 
for carbon ions.

A changed polarity has been characterized as a cellular change 
concomitant to the onset of proliferation and/or to migration (64), in 
particular in carcinogenic development. Anchorage-independent 
growth of epidermal cells can be evoked by irradiation as established 

in a murine epidermal cell line. Interestingly, we detected a delo-
calization of E-Cadherin from the cytoplasma membrane in HSE 
after X-ray and carbon ion exposure (Figure 5C). E-Cadherin is 
involved in cell–cell contacts of keratinocytes, and the transition 
to a cobblestoned morphology of the basal keratinocytes implies 
a dissociation of the intercellular contacts in the basal layer. The 
translocalization of E-Cadherin could be involved in the molecu-
lar mechanisms of radiation-induced anchorage independence, 
which was observed in our study. According to the results obtained 
so far, changed epidermal tissue organization plays a role for both 
X-ray and carbon ion exposure.

cOnclUsiOn

Our results show that ionizing irradiation has an effect on the dif-
ferentiation and organization of the epidermal layers in the skin 
equivalent. Densely ionizing charged particle are more effective 
than X-rays per unit dose in the induction of several biological 
endpoints, including DNA damage, chromosome aberrations, 
mutations, and cell killing. Our results suggest that exposure to 
carbon ions under therapy-like conditions triggers proinflam-
matory signals and changes in homeostasis and epidermal tissue 
organization to a similar extent as photons, independent of cell 
death. On the other hand, heavy ions and X-rays modify epider-
mal tissue organization at low doses and differentiation at high 
doses. How these tissue-specific effects can be related to the initial 
DNA damage, whose quality is different after low and high LET 
radiation, is unclear yet. Recently, Kang et al. (65) have shown 
that DNA damage response activates the GATA4 pathway, thus 
inducing inflammatory responses and reducing proliferation. 
The establishment of a direct link between DNA repair and late 
changes in homeostasis is important to explain why some effects 
can be differently revealed at low/high doses or low/high LET.
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