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Communication between stromal cells and tumor cells initiates tumor growth, angio-
genesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, 
tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune 
cells. MicroRNAs (miRNAs) in the tumor microenvironment have emerged as key players 
involved in the development of cancer and its progression. miRNAs are small endog-
enous non-protein-coding RNAs that negatively regulate the expression of multiple 
target genes at post-transcriptional level and thereby control many cellular processes. In 
this review, we provide a comprehensive overview of miRNAs dysregulated in different 
stromal cells and their impact on the regulation of intercellular crosstalk in the tumor 
microenvironment. We also discuss the therapeutic significance potential of miRNAs 
to modulate the tumor microenvironment. Since miRNA delivery is quite challenging 
and the biggest hurdle for clinical translation of miRNA therapeutics, we review various 
non-viral miRNA delivery systems that can potentially be used for targeting miRNA to 
stromal cells within the tumor microenvironment.

Keywords: tumor microenvironment, tumor stroma, microRnA, gene delivery, cancer-associated fibroblasts, 
tumor-associated macrophages

inTRODUCTiOn

The tumor microenvironment is composed of cancer cells and non-cancerous cells so-called 
stromal cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages 
(TAMs), pericytes, endothelial cells, and infiltrating immune cells (1, 2). Over the last decade, 
it was well established that stromal cells promote tumor growth, angiogenesis, invasion, and 
metastasis (3, 4). These effects are observed in breast, pancreatic, liver, brain, ovarian, and pros-
tate cancer. Evidence suggests that tumor cells recruit stromal cells by secreting chemokines 
and growth factors, which educate them to create a tumor-favoring microenvironment (4). The 
“educated” stromal cells, such as CAFs, endothelial cells, pericytes, TAMs, and other immune 
cells, interact with tumor cells as well as among themselves to stimulate tumor growth, metas-
tasis, and development of resistance to chemotherapy (3, 4). Intervening into these interactions 
within the tumor microenvironment is an interesting strategy to develop novel therapies for 
cancer treatment.
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TABLe 1 | List of miRnAs in various tumor stromal cells.

Cell type miRnA Cancer type Target gene Functions

CAFs miR-155/214 (9) Ovarian CCL5 Differentiation
miR-31 (10) Endometrial SATB2 Migration, invasion
miR-148a (11) Endometrial WNT10B Migration
miR-15/-16 (12) Prostate FGF2 Migration, proliferation
miR-320 (13) Breast ETS2 Invasion, angiogenesis, tumor growth
miR-106b (14) Gastric PTEN Migration, invasion
miR-200c (15) Breast Fli-1, TCF12 Migration, invasion
miR-149 (16) Gastric IL-6 Differentiation, anti-stromal effects on tumor cells
miR-21 (17) Colorectal RECK Differentiation

Macrophages miR-155 (18) Hepatocellular carcinoma C/EBPβ Repolarization toward M2 phenotype
miR-511-3p (19) Macrophages expressing MRC1 ROCK2 Tumor growth, blood vessel morphology
miR-26a (20) Hepatocellular carcinoma M-CSF Recruitment of macrophages

T cells miR-34a (21) Hepatocellular carcinoma CCL22 Infiltration of immune cells
miR-30d (22) Melanoma cells GALNT7 Infiltration of Tregs cells

NK cells miR-150, miR-155 (23, 24) NK cells SHIP1 Activation of NK cells

Endothelial cells miR-200b (25) ETS1 Angiogenesis, migration
miR-29c (26) IGF1 Angiogenesis, proliferation
miR-7 (27) Glioblastoma Cell viability, migration, angiogenesis
miR-155 (28) Breast VHL Invasion, migration, proliferation, angiogenesis

Pericytes miR-145, miR-126a, miR-199a (29) Fli1 Migration
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MicroRNAs (miRNAs) are represented as a novel class of 
therapeutics, regulating multiple signaling pathways within the 
tumor microenvironment (5). miRNAs, a class of small (17–25 nt) 
endogenous non-coding RNAs, regulate gene expression at the 
post-transcriptional level and thereby control cellular processes 
such as differentiation, proliferation, and migration (6). miRNAs 
have the ability to regulate not only one but also hundreds of tar-
get genes simultaneously and thereby control multiple signaling 
pathways (7). Gene silencing occurs through imperfect/perfect 
complementary base pairing between a miRNA guide strand and 
the 3′ UTR region of the mRNA, which leads to translational 
repression or mRNA degradation (6, 8). During cancer initiation 
and progression, the expression levels of multiple miRNAs are 
aberrantly up- or downregulated, resulting in an imbalance of 
cellular pathways ultimately leading to the attainment of a patho-
logical state. In this article, we highlight dysregulated miRNAs in 
different tumor stromal cells and their functions in the regulation 
of the multifaceted tumor microenvironment. The expression 
of miRNAs can be controlled by administering either miRNA 
inhibitors (antagomiR) or miRNA agonists (miR mimics). We 
summarize various miRNA delivery approaches that have been 
or can potentially be applied to deliver miRNA as therapeutics 
into stromal cells.

MicroRnA in THe TUMOR 
MiCROenviROnMenT

In recent years, many miRNAs have been identified in different 
stromal cells of the tumor microenvironment as illustrated in 
Figure 1. The Table 1 summarizes the miRNAs in the stromal 
cells from different cancer types with genes regulated by these 
miRNAs and their functions.

Cancer-Associated Fibroblasts
Cancer-Associated Fibroblasts are one of the most abundant 
cell types in the tumor microenvironment of many solid 
tumors (30, 31). In response to inflammatory stimuli, quiescent 
fibroblasts differentiate into activated myofibroblast (CAFs), 
expressing increased levels of α-smooth muscle actin (α-SMA). 
CAFs secrete numerous cytokines, chemokines, and ECM 
components, which actively participate in tumor progression, 
invasion, and metastasis (32–35). Differentiation of fibroblasts 
into a CAF phenotype has been proposed to be regulated at the 
post-transcriptional level by miRNAs (36).

Several studies have reported the importance of specific 
miRNAs in the activation and transdifferentiation of fibroblasts 
to CAFs and CAF-induced tumorigenic actions (9–11, 37). 
miRNA-21 is one of the most common miRNAs that is reported 
to be induced in tumor cells and CAFs of pancreatic and colo-
rectal tumors (17, 37–40). Inhibition of miR-21 using antagomiR 
reduced the migration/invasion of CAFs (38). Not only upregula-
tion but also downregulation of certain miRNAs can induce a 
CAF phenotype. Tang et  al. identified downregulated miR-200 
as a direct regulator of reprograming fibroblasts into CAFs (15). 
Downregulation of miR-200 in normal fibroblasts accelerated 
their migration and invasion potential similar to CAFs (15). 
Bronisz and coworkers identified miR-320 as a downstream regu-
lator of the PTEN (Phosphatase and tensin homolog deleted on 
chromosome 10) gene that controls cell proliferation and migra-
tion in CAFs and was co-expressed in tumor stroma of breast 
tissue. Loss of PTEN and miR-320 has shown to be involved in 
the reprograming of the tumor microenvironment to promote 
tumor invasion and angiogenesis (13).

Mitra et al. found downregulation of miR-31 and miR-214 and 
upregulation of miR-155 in their miRNA profiling, and reversal 
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FiGURe 1 | miRnAs mediating changes in tumor microenvironment components. Up and down regulated miRNAs are enlisted? *Mark denotes that the 
specific miRNA is expressed differentially in different CAFs.
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of the activities of these miRNA in these patient-derived CAFs 
reversed their phenotype (9). This study suggested that miRNA 
reprograms fibroblasts into CAFs, and, therefore, targeting of 
miRNA in stromal cells could be a therapeutic approach to treat 
cancer (9). In other studies, miR-31 and miR-148a were shown to 
be downregulated in endometrial CAFs (10, 11). Overexpression 
of miR-31 or miR-148a in these CAFs impaired their ability to 
stimulate migration and invasion of endometrial cancer cells, 
which were linked to the direct targets SATB2 and WNT10B for 
miR-31 and miR-148a, respectively (10, 11).

Using miRNA microarray analysis, several dysregulated miR-
NAs have been identified in breast CAFs, e.g., miR-31-3p, 221-5p, 
and 221-3p were upregulated and miR-205, miR-200b, miR-200c, 
miR-141, miR-101, miR-342-3p, let-7g, and miR-26b were 
downregulated (41, 42). Furthermore, many miRNA-responsive 
target genes and signaling pathways were revealed that regulate 
different cellular processes such as cell differentiation, adhesion, 
migration, proliferation, and cell–cell interaction (41). It is 

important to note that miR-31 was found to be downregulated in 
CAFs derived from ovarian and endometrial tumors (9, 10) while 
it was upregulated in CAFs from breast tumor (41), indicating 
that the same miRNA can have dual activities, thereby acting as 
an oncogene in one tissue and as a tumor suppressor in another.

In prostate CAFs, miR-15a and miR-16 were shown to 
be downregulated in CAFs obtained from 23 patients (12). 
Downregulation of miR-15 and miR-16 in CAFs promoted tumor 
progression through the reduced post-transcriptional repression 
of Fgf-2 and its receptor Fgfr1. These pathways act on both 
stromal and tumor cells to enhance cancer cell survival, prolif-
eration, and migration (12). Reconstitution of tumor-suppressive 
miR-15a and miR-16 in CAFs inhibited tumor-promoting ability 
of stromal cells as shown in a co-injection (tumor cells and CAFs) 
mouse model, proposing these miRNA as potential targets for the 
development of novel therapies (12).

Additionally, Li et  al. demonstrated that miR-149 mediates 
the crosstalk between the tumor cell and CAFs in gastric cancer 
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via prostaglandin E2 (PGE2) and interleukin (IL)-6 signaling 
pathways (16). While it remains unclear how PGE-2 modulates 
this crosstalk, it was demonstrated that by targeting IL-6, miR-149 
inhibited fibroblast activation (16). The effects of CAFs on gastric 
cancer development were negatively regulated by miR-149 (16). 
Additionally, CAFs enhanced the epithelial to mesenchymal tran-
sition (EMT) and stem-like properties of gastric cancer cells in a 
miR-149-/IL-6-dependent manner (16). In another study, miR-
106b has been identified as a marker of poor prognosis in gastric 
cancer (14). Downregulation of miR-106b expression in CAFs 
resulted in significantly inhibited CAF-induced gastric cancer cell 
migration and invasion mediated through PTEN pathway (14). 
These studies reveal the miRNA targets as diagnostic biomarkers 
and therapeutic targets for developing the anti-CAF therapy.

Tumor-Associated Macrophages and 
immune Cells
Macrophages and other immune cells such as T-cells and natural 
killer (NK) cells are the major inflammatory cells infiltrating into 
the tumor microenvironment (3, 43). In the past, the infiltration 
of innate and adaptive immune cells into the tumor microen-
vironment was considered as an immune attack against cancer 
(43). However, now it is widely accepted that immune cells do 
also promote cancer initiation, progression, and metastasis (44). 
Macrophages within the tumor microenvironment can be polar-
ized from antitumorigenic M1 macrophages to pro-tumorigenic 
M2 macrophages [TAMs, via changes in their metabolic pathways 
and the production of cytokines (CSF-1, IL-4, IL-13) by immune 
cells (43)]. TAMs promote tumor progression by stimulating 
angiogenesis, tumor cell migration, and extravasation at meta-
static sites and suppressing antitumor immunity thereby reduce 
patient survival (43, 45, 46). Recent studies have unraveled the 
significance/dysregulation of miRNA in macrophages (47). In a 
study by Graff et al., miRNA expression profiles were determined 
in monocyte-derived macrophages differentially polarized into 
M1, M2a, M2b, and M2c phenotypes (48). They reveal several 
miRNAs to be uniquely regulated in human macrophages polar-
ized into M1 (miR-125a-3p, miR-26a-2*), M2a (miR-193b), and 
M2b (miR-27a*, miR-29-b-1*, miR-132, miR-222*) (48). Herein, 
we report approaches through which dysregulated miRNAs have 
been targeted to reprogram miRNA expression in TAMs and 
thereby suppress their pro-tumorigenic properties.

Squadrito et al. showed that miR-511-3p, encoding for the mac-
rophage mannose receptor, is upregulated in MRC1+ TAMs (19, 
49). Enforcing miR-511-3p expression in MRC1+ TAMs resulted 
in the suppression of pro-tumoral genes and inhibited tumor 
growth with a change in blood vessel morphology. These effects 
were attributed to ROCK2, a direct target of miR-511-3p (19). 
The protein expression of transcription factor C/EBPβ showed 
elevated levels in TAMs as well as human hepatocellular carci-
noma (HCC) tumor sections in situ (18). C/EBPβ expression was 
correlated with the production of cytokines in tumor-activated 
monocytes and shown to be regulated by sustained reduction 
of miR-155 (18). Overexpression of miRNA-155 was shown to 
attenuate the production of the cytokines (IL-6, IL-10, and TNF-
α) by suppressing C/EBPβ expression, which led to inversion of 

pro-tumoral M2 into pro-inflammatory M1 macrophages, as 
demonstrated by upregulated M1 markers (TNF-α, NOS2, and 
IL-12) and downregulated M2 markers (Arg1, Ym1, Msr2, Fizz1, 
and IL-10) (50). More recently, ectopic expression of miR-26 
in HCC cells suppressed the tumor growth, downregulated the 
expression of macrophage colony-stimulating factor (M-CSF) 
through the PI3K/Akt pathway, and suppressed the infiltration 
of macrophages in tumors (20). In addition, miR-26a expression 
was inversely correlated with M-CSF expression and the infiltra-
tion of macrophages into the tumor tissue of HCC patients (20).

Besides TAMs, other immune cells such as myeloid-derived 
suppressor cells (MDSCs), NK cells, and T cells also express miR-
NAs that regulate their pro-tumorigenic potential. MDSCs nega-
tively regulate immune responses by suppressing the antitumor 
functions of CD4+ and CD8+ T cells by inhibiting the activities 
of NK cells (51). miR-155 and miR-21 are reported as the most 
upregulated miRNAs in MDSCs from bone marrow cells, regulat-
ing PTEN and SHIP1, respectively (52). They promote STAT3 
activity by inducing MDSC expansion that promotes tumor 
aggressiveness via immunosuppression (52). In HCC, positive for 
the hepatitis B virus, suppressed levels of miR-34a resulted in the 
enhanced production of chemokine CCL22, thereby recruiting 
regulatory T cells (Tregs) into the tumor microenvironment to 
facilitate immune escape (21). In human melanoma upregula-
tion of miR-30b/-30d correlates with stage, metastatic potential, 
shorter time to recurrence and reduced overall survival (22). 
Upregulation of miR-30d in the immunocompetent mice trig-
gered immunosuppressive properties at the lung metastatic site, 
shown by an enhanced infiltration of Tregs (22). Bezman et al. 
suggested that miR-150 differentially controls the development 
of NK and invariant NK T (iNKT) cells by targeting c-Myb. Mice 
with miR-150 deletion showed a defect in their ability to develop 
mature NK cells (23). Overexpression of miR-150 promotes the 
development of mature NK-cells, which were highly responsive 
to activation (23). Contrarily, the number of iNKT cells was 
reduced upon miR-150 upregulation (23). MiR-155 was found to 
regulate partly interferon-gamma production in human NK-cells 
by downregulating SHIP1, making it a potential target in neoplas-
tic disease (24).

Tumor vascular Cells
Endothelial cells together with pericytes are the major cellular 
components of tumor blood vessels, thus playing an important 
role in angiogenesis during tumor development (2–4). Chan 
et al. identified avian erythroblastosis virus E26 (v-ets) oncogene 
homolog-1 (Ets-1), an angiogenesis-related transcription factor, 
regulated by miR-200b (25). Ectopic expression of miR-200b 
reduced the tube formation and cell migration ability of human 
microvascular endothelial cells (HMECs) in  vitro by targeting 
Ets-1 and its associated genes, matrix metalloproteinase-1 and 
VEGF receptor-2 (25). Interestingly, the authors demonstrated 
that miR-200b downregulation is hypoxia-induced and represses 
Ets-1 expression to promote angiogenesis in HMECs (25). Hypoxia 
stimulation also influences several miRNA expression levels in rat 
cortical pericytes compared to normoxic conditions (29). Real-
time PCR data revealed changes in the expression of miRNAs 
associated with hypoxia-inducable factor-1α (HIF-1α) (miR-322 
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and miR-199a), TGF-β1 (miR-140, miR145, and miR-376b-3p), 
and VEGF (miR-126a, miR-297, miR-16, and miR-17-5p) (29).

In human umbilical vein endothelial cells (HUVECs), miR-29c 
was identified to regulate cell cycle, proliferation, and angiogen-
esis in vitro, likely mediated by suppressing Insulin-like growth 
factor-1 (26). miRNA-7 was identified as a negative regulator of 
angiogenesis, strongly reducing cell viability, tube formation, 
sprouting and migration in vitro (27). In an in vivo murine neu-
roblastoma tumor model, angiogenesis and tumor growth were 
significantly inhibited upon local administration of miR-7 (27). 
MiR-155, which is known to be upregulated in various human 
cancers, is also involved in the angiogenesis of breast cancer 
by targeting the von Hippel–Lindau (VHL) tumor suppressor 
gene (28). Mammary fat pad xenotransplantation of ectopically 
expressed miR-155 strongly induced angiogenesis, proliferation, 
tumor necrosis, and recruitment of pro-inflammatory TAMs 
(28). Moreover, miR-155 was identified as a marker for late-stage, 
lymph node metastasis and poor prognosis in breast cancer (28).

Recently, miRNA array profiling revealed that endothelial cells 
communicate with pericytes via miRNA-containing exosomes, 
which increased VEGF-B expression in pericytes at both gene and 
proteins levels (53). In addition, Lim et al showed that CXCL12-
specific miRNAs are transported from bone marrow stroma to 
breast cancer cells via gap junctions and reduced CXCL12 levels 
as well as proliferation (54). Furthermore, mechanisms for the 
transfer of siRNA and miRNA through the gap junctions have 
been reviewed (55).

MicroRnA DeLiveRY TO THe TUMOR 
STROMAL CeLLS

To turn miRNAs into therapeutics, it is essential to deliver 
antagomiRs or miRNA mimics cell specifically into the target 
cells. However, naked miRNAs are unable to pass through cell 
membranes due to their hydrophilicity, polyanionic nature, and 
high molecular weight. Intravenous administration of naked 
miRNA leads to poor tissue distribution due to rapid renal excre-
tion (plasma half-life ~1  h) and degradation by serum RNases 
(56). In vivo application of miRNA either requires a chemical 
modification or formulation into delivery systems. There are 
several articles describing targeting strategies for miRNA delivery 
(57–64). Despite having many strategies reported, the number of 
successful delivery approaches in vivo is still limited.

Strategies for miRnA Delivery
Encapsulation of miRNAs into nanoparticles has been addressed 
to protect miRNAs from degradation by nucleases, resulting in 
an improved circulating half-life when administered systemically 
(65). Viral and non-viral encapsulation strategies have been inves-
tigated for this purpose. Viral-based delivery of nucleotides shows 
high transfection efficiencies, but will not be discussed in this 
review due to concerns regarding strong inflammatory side effects 
(66). The advantages of non-viral delivery systems over viral deliv-
ery systems are their well-defined molecular composition, simpler 
manufacturing and considerably lower immunogenicity (66). 
The advantages of non-viral delivery systems over viral delivery 

systems are their well-defined molecular composition, simpler 
manufacturing and considerably lower immunogenicity (67).

Non-viral delivery systems that have been investigated for their 
usability as miRNA carrier systems are liposomes, lipoplexes, and 
polyplexes. Liposomes are composed of phospholipids possessing 
a hydrophilic head linked to a hydrophobic tail (68). This amphi-
philic structure allows them to form vesicles with an inner aque-
ous compartment in which miRNAs can be encapsulated (68). 
Cationic lipids have been used to form complexes with negatively 
charged miRNA, called lipoplexes (69). Liposomes and lipoplexes 
have shown to protect miRNAs from degradation by nucleases, 
resulting in an improved circulating half-life when adminis-
tered systemically (65). In addition, cationic polymers that are 
frequently used for intracellular delivery are polyethyleneimine 
(PEI) and polyamide amine dendrimers (PAMAM). PEI- and 
PAMAM-based polyplexes have been used successfully for the 
delivery of miRNA and in  vitro and in  vivo (70, 71). Systemic 
delivery of PAMAM had toxic effects on the liver and the kidney 
in mice (72). For PEI, clinical translation has been hampered 
by dose-dependent toxicity upon systemic administration (73). 
Similar toxicity issues can be expected from lipoplexes.

MicroRnA Delivery to Tumor Stroma Cells
The number of studies for the delivery of miRNAs to the 
compartments of the tumor stroma in  vivo is highly limited. 
Polyplexes based on PEI delivered dicer substrate RNA duplexes, 
mimicking the structure of endogenous precursor miRNA-155 
hairpin (Dmi155), into ID8-Defb29/Vegf-A tumors in mice (74). 
Increasing the levels of miRNA-155 in tumor-associated den-
dritic cells silenced multiple immunosuppressive mediators (74). 
These changes lead to the transformation of tumor-infiltrating 
dendritic cells from their immunosuppressive phenotype to 
immunostimulatory cells (74). Post-transformation of these cells 
were capable of triggering antitumor responses thereby inhibiting 
the progression of established ovarian cancers in mice (74).

Endothelial cells are the only cell type present in the tumor 
microenvironment, which have been actively targeted in  vivo 
for miRNA delivery. Anti-angiogenic effects in tumors were 
achieved in a study performed by Ando et al. using lipoplexes 
modified with a PEG chain bearing the angiogenic vessel 
targeting peptide Ala–Pro–Arg–Pro–Gly (APRPG) (75). The 
APRPG–PEG-modified liposomes were used to form complexes 
with miR-499. The resulting lipoplexes were injected into mice 
bearing Colon 26 NL-17 xenografts (75). The lipoplexes accu-
mulated in both angiogenic vessels and cancer cells resulting 
in downregulation of miR-499-regulated proteins and vascular 
endothelial growth factor (VEGF) (75). Following an injection 
of 0.5 mg/kg of the lipoplexes, tumor growth in mice was signifi-
cantly inhibited (75).

In a study by Liu et al., anti-miR-296 antagomiR was delivered 
into HUVECs (76). PEGylated liposome-polycation-hyaluronic 
acid (LPH) nanoparticles conjugated with a cyclic RGD peptide 
(cRGD) were used as carrier systems for the specific targeting of αvβ3, 
a receptor present on endothelial cells in the tumor neovasculature 
(76). They reported inhibition of tube formation and endothelial 
cell migration, and the significant upregulation of hepatocyte 
growth factor-regulated tyrosine kinase substrate (HGS), one of 
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the genes suppressed by miRNA-296 (76). A matrigel plug assay 
was performed to analyze the effect of anti-miR-296 delivery on 
in vivo angiogenesis (76). As a result, a decrease in microvessel 
formation by preventing CD31-positive endothelial cells from 
invading into the matrigel in combination with an induction of 
HGS in angiogenic endothelial cells was observed (76).

Anand et al. aimed to repress neovascularization in tumors by 
inhibiting miRNA-132 levels via the delivery of anti-miRNA-132 
(77). Liposomal nanoparticles composed of distearoylphos-
phatidylcholine (DSPC), cholesterol, dioleoylphosphatidyle-
thanolamine (DOPE), distearoylphosphatidylethanolamine 
(DSPE)-mPEG2000 modified with a DSPE–cRGD, targeting αvβ3 
were used as a delivery system (77). miR-132, highly overexpressed 
in the endothelium of human tumors, mediated loss of p120Ras-
GAP thereby inducing neovascularization (77). By restoring 
p120RasGAP levels using anti-miR-132 delivery, neovasculariza-
tion was suppressed, and tumor burdens were decreased in an 
orthotopic xenograft mouse model of human breast carcinoma, 
and vessels were maintained in their non-pathological resting 
state (77). Systemically administered miRNA7 loaded peptide/
polymer-based delivery systems modified with a cRGP ligand 
targeting the integrins αvβ3 and αvβ5 (78), targeted human glio-
blastoma xenografts in mice and strongly reduced angiogenesis 
and tumor proliferation.

COnCLUSiOn

In  recent years, miRNAs have been extensively discovered in the 
tumor stromal cells either to be used as biomarkers or to show 
their potential for inhibiting cellular processes. Undoubtedly, the 
miRNA field has a high potential to develop novel therapeutics 
against cancer; however, at the same time development of tech-
nologies to deliver miRNAs to specific cells are highly essential to 
utilize them for therapeutic purposes. With this review, we bring 
together the fields of tumor biology and miRNA delivery, which 
will surely benefit both biologists and technology developers.
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