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A Compton telescope for dose monitoring in hadron therapy is under development at 
IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomulti-
plier arrays. 22Na sources have been successfully imaged reconstructing the data with an 
ML-EM code. Calibration and temperature stabilization are necessary for the prototype 
operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been 
obtained in the first imaging tests.
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1. InTRoDUcTIon

Hadron therapy allows a more precise delivery of charged particles in the tumor region as compared to 
photons. In order to fully exploit the benefits of this technique and reduce the safety margins applied, the 
dose administration requires accurate verification of the treatment delivery in real time. PET techniques 
currently employed suffer from some limitations such as low efficiency or the fact that the metabolic 
processes carry away the activity (biological washout). Also, positron production does not follow 
irradiation immediately and the difficulties of integrating the monitoring device with the treatment 
delivery make it hard to combine simultaneous treatment and monitoring. Different ways of achieving 
real-time monitoring are under investigation, employing other types of secondary particles emitted by 
the tissue after irradiation, such as prompt gamma-rays, which are emitted by the excited tissue nuclei 
within nanoseconds after irradiation (1). The ENVISION1 European project has addressed this problem 
by improving PET systems and developing novel devices for the detection of prompt gammas.

Collimated systems (2, 3) and Compton cameras (4–7) are possible alternatives to image such gamma-
rays, with energies mainly in the range of 0.5 to about 10 MeV. Prompt gamma timing techniques are also 
being investigated (8). Such systems have proven their ability to distinguish range shifts in beam tests. 
Compton cameras can offer higher efficiency than collimated cameras, as well as 3D imaging. For the 
construction of Compton cameras, different detector materials and geometries are being investigated, 
including silicon detectors, CZT, gas chambers, or scintillator detectors. Two approaches are followed: 
two-layer Compton cameras, with the traditional approach of a scatter detector followed by an absorber 
detector, and multiple-layer Compton cameras, requiring at least three interactions in three detectors. 
Two-layer Compton cameras have higher efficiency, but they rely on the knowledge of the incoming 
gamma-ray energy or on full absorption on the second detector for the determination of its energy. In 
this application, full absorption is difficult due to the high energies of the gamma-rays and the energy 
spectrum is broad and continuous up to high energies. The detection of three interactions on three 

1 http://envision.web.cern.ch/ENVISION/
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FIgURe 1 | Three-layer compton telescope prototype and readout 
electronics.
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detector layers fully determines the energy of the incoming gamma-
ray, improving detector resolution but decreasing efficiency by an 
order of magnitude with respect to the two-layer option.

A Compton telescope (multilayer Compton camera) based 
on several planes of continuous LaBr3 crystals coupled to silicon 
photomultiplier (SiPM) arrays is under development at IFIC, 
Valencia (9). We aim to combine both two- and three-layer 
modalities in one system to maximize resolution and efficiency. 
In addition, we have developed a method to estimate the energy 
from two-layer events. The choice of LaBr3 as scintillator detec-
tor makes it possible to achieve excellent energy and timing 
resolution. LaBr3 has been employed in Compton telescopes for 
gamma-ray astronomy in the megaelectronvolt range (10). SiPMs 
are fast and their reduced thickness minimizes the probability 
of gamma-rays interacting in the photodetector. This facilitates 
gamma-rays to escape one detector and reach the next one. The 
whole system is light, portable, scalable, and easy to operate. 
We have assembled a three-layer version of the system. In this 
article, we present the first images obtained with the three-layer 
prototype, assessing the imaging capabilities of the device.

2. MATeRIAlS AnD MeThoDS

2.1. prototype Description
The prototype consists of three detector layers, each one attached 
to a readout electronics board (Figure 1) (11). The first layer is 
made of a 27.2 mm × 26.8 mm × 5 mm LaBr3 crystal coupled to 
four Hamamatsu MPPC S11830-3340MF monolithic arrays, with 
4 × 4 pixels each. The arrays are biased individually. The second 
and third layers are composed of crystals of size 32 mm × 36 mm 
and thickness of 5 and 10  mm, respectively, coupled to four 
S11064-050P(X1)arrays with a common bias for all of them.

The readout of each plane is done with a custom-made data 
acquisition (DAQ) system that drives the 64-channel ASIC 
VATA64HDR16 (12). The DAQ board is equipped with an FPGA 
that controls the acquisition process, an 8-bit ADC (analog-to-
digital converter) to digitize the data, and it is connected to a PC 
through Ethernet connection. The ASIC allows individual adjust-
ment of the bias voltage of the 64 SiPM elements in the array through 
input DACs (digital-to-analog converters) in each channel.

2.2. Detector characterization
The three detector layers have been characterized independently 
by taking data with radioactive sources of different energies (22Na, 
137Cs, and 60Co). The light generated in the crystal by the gamma-
rays is detected by the 64-pixel elements of the SiPM array. For 
each event, the signals produced in each of the pixels are digitized 
and stored for data analysis.

The uniformity of the detector response has also been evalu-
ated. The 22Na source is placed 15 cm away from the detector in 
order to ensure a uniform illumination. The signals in each 
channel are histogrammed for all the events acquired, and the 
average signal per channel is assumed to be constant for a high 
number of events (>10,000) (13). This way, the differences in 
response among channels can be appreciated. In order to equalize 
the response, the bias voltage per channel is adjusted through the 
ASIC input DACs.

In order to obtain the energy spectra, for each event the 64 ADC 
values of the SiPM signals are summed up and histogrammed. 
A calibration curve is obtained by taking data with sources of 
different energies, fitting a Gaussian function to the photopeaks 
in the spectra in order to determine the peak position in ADC 
counts, and plotting the peak position versus the source energy.

The determination of the interaction position in the crystal is 
carried out with the method described in Ref. (14), which is based 
on a model of the light distribution in the photodetector, taking 
into account both the photons that reach it directly and those 
that are first reflected on the crystal sides. In order to determine 
the intrinsic spatial resolution, data are taken with a 22Na source 
placed at different positions of the detector surface. The source is 
electronically collimated by operating the detector in time coin-
cidence with a small detector, restricting the position at which 
the photons interact.

The current–voltage characteristics of the SiPM depend on 
the operating temperature. This is mainly due to the change in 
the breakdown voltage of the SiPM, which results in a different 
overvoltage for a given bias voltage applied to the detector. The 
variations of the photopeak position of the energy spectra with 
temperature have been studied. 22Na energy spectra are taken with 
the detectors in a climatic chamber, at different temperatures. A 
figure representative of the detector gain is calculated from the 
two photopeak positions of 22Na in each case.

2.3. prototype operation
The three detector layers have been assembled in order to work in 
time coincidence. The trigger signal generated by each detector is 
sent to a NIM coincidences unit. The coincidence is given by the 
overlap of the trigger signals of the three detectors, which is 25 ns 
wide. The threshold applied to the detectors is around 50 keV. The 
output coincidence signal is sent back to each of the DAQ boards 
in order to start the data acquisition.

The distance from the source to the first layer is 35 mm. The 
distances from the first to the second layer and from the second 
to the third are 60 and 65  mm, respectively. Coincidence data 
with the three layers have been taken placing the system inside a 
climatic chamber in order to maintain the temperature constant 
(the measurement was done at 25.5°C) and avoid temperature 
variations during data acquisition.

http://www.frontiersin.org/oncology/archive
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FIgURe 3 | 22na energy spectrum obtained with the first detector. The energy resolution is 6.4% FWHM at 511 keV.

FIgURe 2 | photopeak position vs. source energy for detector calibration.
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Data are taken with a 22Na source of 0.25 mm active diameter 
and 700  kBq activity. The data recorded in the three detectors 
are calibrated and summed up for each event. The energies and 
interaction positions in the three layers are the input of the image 
reconstruction code.

2.4. Image Reconstruction
For image reconstruction in Compton cameras, conventional 
two-interaction events require to know the energy of the incom-
ing photon or full absorption in the second detector in order 
to obtain the cone surface defined by all the possible photon 
trajectories. In hadron therapy monitoring, this is not possible 
due to the wide emission spectrum and the high photon energies. 

To overcome this limitation, the incoming photon energy can 
be estimated during the image reconstruction process, spectral 
reconstruction (15). However, havin g three layers allows us 
to access to three-interaction events, which convey enough 
information to directly determine this energy and, therefore, the 
associated cone surface.

An image reconstruction software based on the statistical 
iterative algorithm maximum likelihood-expectation maximiza-
tion (ML-EM) has been developed. These data are acquired in 
coincidence list-mode and the interaction positions and energies 
are directly used (not histogrammed) for avoiding resolution loss. 
The reconstruction code (16) implements the above-mentioned 
strategy to reconstruct the three-interaction events data.

http://www.frontiersin.org/oncology/archive
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FIgURe 6 | calibrated energy spectrum obtained by summing the 
energies recorded in the three detectors in coincidence for each event.

FIgURe 4 | 22na spectra obtained at different temperatures where one 
can see the gain variation.

FIgURe 5 | gain obtained from the calibration curves at different temperatures, plotted as a function of temperature.
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3. ReSUlTS

3.1. Detector characterization
The detectors employed in the prototype have been characterized 
in terms of energy and spatial resolution.

The results of the first detector calibration are shown in 
Figure 2, where it can be seen that the response is linear up to 
1.33 MeV. Similar results are obtained with the other two detec-
tors. Figure 3 shows a 22Na energy spectrum obtained also with 
the first detector. A Gaussian fit to the 511 keV photopeak results 
in an energy resolution of 6.4% FWHM. An energy resolution 
of 7.4% FWHM and 7.2% FWHM at 511 keV has been obtained 
with the second and third layers, respectively.

The intrinsic spatial resolution achieved with the three detec-
tors is of the order of 1 mm FWHM (17). The uniformity of the 
pixel response achieved applying the DAC corrections is around 
5% in the first detector, and around 10% in the second and third 

detectors. The difference is due to the fact that the first detector 
employs monolithic arrays that have a more uniform response 
within each array, and the four of them can be biased individually, 
adjusting better the four bias reference voltages.

The effects of temperature variations are shown in Figure 4, 
which shows 22Na energy spectra taken at different temperatures. 
The difference in gain can be clearly appreciated.

In Figure 5, the gain values obtained from the energy spectra 
are plotted versus temperature. The gain decrease with tempera-
ture is about 5%/°C.

3.2. prototype Results
The 22Na energy spectrum corresponding to the sum of the energies 
recorded in the three detector layers in coincidence in each event is 
shown in Figure 6. The two 22Na photopeaks (511 and 1275 keV) 
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FIgURe 7 | (A) 2D view of the reconstructed image of the 22Na source at the source plane. (B) Profile through the peak of the plot. The resolution is 7.8 mm 
FWHM.

can be observed. A sum peak of the previous two due to accidental 
coincidences can also be seen. The count rate with the tested geom-
etry is 0.3 events/s and the calculated efficiency is about 7 × 10−6.

The processed data are employed for image reconstruction. 
Figure 7A shows a 2D view of a reconstructed image with a total 
energy cut between 800 and 1400 keV in the sum spectrum, after 
30 iterations. Figure 7B shows a profile along the x axis through 
the maximum of the reconstructed image. A Gaussian fit to the 
profile results in a spatial resolution of 7.8 mm FWHM for the 
geometry employed and the cuts applied. In the tests reported 
here, it was not possible to obtain an image employing the data 
corresponding to the 511 keV photopeak.

4. DIScUSSIon AnD FUTURe WoRK

A Compton telescope composed of three layers of LaBr3 crys-
tals coupled to SiPM arrays has been successfully constructed 
and operated. The energy resolution obtained with the newest 
detector (first detector) 6.4% FWHM at 511  keV is closer to 
the one specified by the crystal manufacturer and measured by 
us with a PMT, 3.5% FWHM (17) and compatible with other 
measurements with SiPMs (18). Further improvements of the 
SiPM array pixel uniformity and photon detection efficiency in 
the LaBr3 peak emission wavelength (380 nm), together with an 
improved detector coupling should make it possible to achieve 
the excellent energy resolution expected with this kind of scin-
tillator crystal. The intrinsic spatial resolution of the detectors, 
close to 1 mm FWHM, is appropriate for the application. The 
timing resolution must also be characterized and brought close 
to 1 ns FWHM in order to reject the neutron background (19). 
The response of the detectors to temperature variations has 
been studied, and the temperature calibration can be applied to 
compensate for temperature changes when temperature control 
is not possible.

Even with this non-optimized setup, it has been possible to 
obtain an image of a 22Na source in the laboratory. An image 
reconstruction code has been developed, and it is ready for its 

use. The resolution of the reconstructed image in this first attempt 
is 7.8 mm FWHM at 35 mm distance from the first detector.

The spatial resolution achieved should still be improved in order 
to determine the position of the distal falloff with few  millimeter 
accuracy, as it is required for hadron therapy monitoring (20).

As expected, the experimental results obtained in this first 
test are behind similar systems in a more advanced development 
status. Comparison of the results with other approaches is not 
possible at this point due to the different sizes, configurations, 
and geometries. Work is being carried out to optimize the system 
results and estimate its potential capabilities.

A Monte Carlo simulation code has also been developed 
to optimize the detector configuration and determine the 
necessary improvements for its application to hadron therapy 
monitoring.
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