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Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). 
The potentially curative approaches can provide satisfactory results for many patients 
with non-metastatic PCa; however, a considerable number of individuals may present 
disease recurrence and die from the disease. Exploiting the rich molecular biology of 
PCa will provide insights into how the most resistant tumor cells can be eradicated to 
improve treatment outcomes. Important for this biology-driven individualized treatment 
is a robust selection procedure. The development of predictive biomarkers for RT effi-
cacy is therefore of utmost importance for a clinically exploitable strategy to achieve 
tumor-specific radiosensitization. This review highlights the current status and possible 
opportunities in the modulation of four key processes to enhance radiation response 
in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and 
regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell 
signaling pathways. In addition, we discuss how and which patients should be selected 
for biomarker-based clinical trials exploiting and validating these targeted treatment 
strategies with precision RT to improve cure rates in non-indolent, localized PCa.

Keywords: prostate cancer, radiotherapy, biomarkers, genomics, targeted therapies, molecular oncology, 
combined modality

iNTRODUCTiON

The Role of RT in Localized Prostate Cancer
In 2014, it was estimated that over 233,000 men would be diagnosed with prostate cancer (PCa) in 
the North America leading to over 29,480 deaths (1). The prognosis and treatment of these men 
is currently determined by a number of different risk classification systems (2–5). All of these use 
combinations of the conventional risk stratifications: TNM staging, pathologic Gleason score (GS), 
and prostate specific antigen (PSA) level. Treatment options vary from active surveillance for indo-
lent low-risk PCa (6) to different combinations of external beam radiotherapy (RT), brachytherapy, 
androgen deprivation therapy (ADT), and surgery. A comprehensive review of levels of evidence 
for the use of different types of treatment technologies, RT dose escalation, and the use of ADT is 
beyond the scope of this review, and the reader is pointed to several recent reviews in this area (7–15).

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2016.00024&domain=pdf&date_stamp=2016-02-16
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2016.00024
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:rob.bristow@rmp.uhn.on.ca
http://dx.doi.org/10.3389/fonc.2016.00024
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00024/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00024/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00024/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2016.00024/abstract
http://loop.frontiersin.org/people/101537/overview
http://loop.frontiersin.org/people/308169/overview
http://loop.frontiersin.org/people/201913/overview


February 2016 | Volume 6 | Article 242

Dal Pra et al. Molecular-Targeted Agents and PCa Radiotherapy

Frontiers in Oncology | www.frontiersin.org

Despite the use of clinical prognostic factors and improved 
technological advances in radiation delivery and surgery, patients 
with localized PCa are at risk for local failure and occult metas-
tases (not appreciated by current radiographic staging prior to 
treatment). Local recurrence after RT is thought to occur pre-
dominantly in regions bearing higher histological tumor burden 
(16, 17). Thus, strategies that improve both local control at the 
tumor site and eradicate occult metastases are required.

There is a pressing need to develop novel radiosensitizing 
strategies and agents to specifically target tumor cells to improve 
treatment outcome. Research exploiting the tumor-specific biol-
ogy in relation to the normal tissue cells will reveal the Achilles 
heel of the most resistant tumor cells and regions. In this review 
we focus on approaches that combine RT with one or more 
agents to enhance the radiation response specifically for tumor 
cells. We focus on four important pathways that could influence 
RT outcome, including the: (1) androgen signaling pathway; 
(2) hypoxic tumor cells and regions; (3) DNA damage response 
(DDR) pathway; and (4) abnormal extra-/intracell signaling 
pathways. In addition, we provide an insight into which patients 
will benefit from this approach and how to select these patients 
by clinically feasible biomarkers.

CURReNT MOLeCULAR PROGNOSTiC 
FACTORS AND COMBiNATiON 
TReATMeNTS

Patient selection and stratification over and above the current use 
of clinical prognostic factors is the cornerstone for an individual-
ized treatment with local therapy alone or combinations of local 
and systemic therapies (including the use of novel molecular 
targeted drugs). To explore this, the Radiation Therapy Oncology 
Group (RTOG) has completed studies on a wide range of immu-
nohistochemical (IHC) markers (18). Tissues from Phase III RT 
trial (with and without ADT) were evaluated within a variety of 
localized risk groups. IHC-based assessment of protein overex-
pression for p53, p16 INK4a, Ki-67, MDM2, CYP3A4, and BCL2 
were associated with adverse clinical outcomes (18) but has not 
yet been validated in modern-day IGRT–IMRT cohorts. Another 
approach is to study the somatic tumor genetics of patients 
based on tissues derived from pretreatment biopsies and utilizes 
genomics to add prognostic power for personalized medicine 
approaches. Indeed, recent studies from our own laboratory have 
implicated allelic changes in c-MYC, NKX3.1, PTEN, StAR, and 
HSD17B2 as adverse prognostic factors following IGRT (19–21). 
Novel gene signatures reflective of the underlying biology of 
PCa progression are also being developed in biopsy material and 
radical prostatectomy specimens [i.e., Myriad Genetics Prolaris 
Score™, Genome Health OncotypeDx™ Genomic Prostate 
Score, GenomeDx Biosciences Decipher™, NF-kB-activated 
recurrence predictor 21 (NARP21)] (22–26). The ability to 
analyze RNA expression on routine, archived, formalin-fixed, 
paraffin-embedded tissue samples is currently being developed 
and may provide analysis on the small amounts of tissue available 
from prostate biopsy specimens to help prognosticate patients 
prior to precision RT.

Table 1 presents a summary of some of the current biomarkers 
tested in PCa RT. If these prognostic markers were also predictive 
of efficacy for targeted drugs directed against abnormalities in 
cellular pathways in cancer cells, then this could lead to combin-
ing such drugs with precision RT.

Although several of these gene markers and signatures have 
demonstrated prognostic roles in small patient cohorts, many 
have not been validated in large-scale clinical trials of specific 
groups of patients (i.e., low, intermediate and high-risk PCa). 
Furthermore, comparison between genetic signatures has been 
limited; thus the best gene signature has not been identified. 
Future clinical trial studies should further probe these prognostic 
markers in larger cohorts to help optimize therapy for the indi-
vidual patient.

Furthermore, once prognosticated appropriately, the best 
combinational therapy with RT should be better specified for 
the individual patient. Although a number of preclinical PCa 
studies have tested novel targeted agents in combination with 
RT, a search of MEDLINE and EMBASE databases from 2000 
to 2014 shows that few of these preclinical strategies have led 
to the clinical trials evaluating these combinations. Instead, 
many of the ongoing trials are testing the use of non-targeted 
chemotherapies with RT in high-risk groups (Table  2). Early 
evidence supports this approach mainly through cytotoxic 
effects to micrometastatic disease and possibly addressing 
androgen-resistant clones. Neoadjuvant setting chemotherapy 
would present a synergistic role by radiosensitizing tumor cells 
at the primary site (63–65). The RTOG 0521 is a Phase III trial 
that tested adjuvant combination of docetaxel, ADT, and RT in 
comparison to RT and ADT in patients with high-risk localized 
PCa. Four-year OS rates were 89% for men who received ADT 
and RT vs. 93% for men treated with ADT, RT, and docetaxel 
(HR  =  0.70; 90% CI, 0.51–0.98; P  =  0.04). Whether adding 
chemotherapy will become a standard of care for this popula-
tion, especially considering toxicity outcomes, remains to be 
seen (66).

Herein, we share insight as to how to move this area of research 
forward improving personalized medicine for PCa patients in 
this era of novel prognostic and predictive markers and targeted 
therapies.

COMBiNiNG MOLeCULAR TARGeTiNG 
AND RT iN PCa

Androgen Depriving Associated Therapies 
and RT
Conventional ADT Plus RT
In the 1990s, ADT such as luteinizing hormone-releasing 
hormone (LH-RH) agonist or antiandrogens were tested as 
a combined modality therapy with RT (67). Phase III studies 
showed that ADT combined with RT allowed for better tumor 
control and survival as compared to RT alone in intermediate- 
and high-risk patients, and it is now considered as a standard 
treatment (68–70). However, despite ADT–RT combined treat-
ments, long-term follow-up at 10 years shows that about 50% of 
patients relapse and eventually 10–25% die of PCa (68, 71, 72), 
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TABLe 1 | Selected biomarkers tested with prostate cancer radiotherapy.

Biomarker
Reference

Treatment/follow-up 
time

Assay BF LF DM PCSS OS Comments

(i) PROTeiN

p53 overexpression

IHCGrignon et al. (27) RT vs. 
RT + STAD/5 years

NR − + + + RTOG 86-10; pre-PSA era

Che et al. (28) LTAD + RT vs. 
RT + STAD/5.9 years

− − + + − RTOG 92-02; adverse for STAD

Vergis et al. (29) RT + STAD/7 years − NR NR NR NR Not prognostic on MV; RT dose-escalation 
study

Scherr et al. (30) RT/2.1 years + NR NR NR NR Adverse; see also data on BCL-2; short follow-
up time

Ritter et al. (31) RT/5.1 years + NR NR NR NR Adverse following conformal RT
D’Amico et al. (32) RT + STAD/6.9 years + NR NR NR NR Adverse following RT ± AD

Loss of p16iNK4a

IHCChakravarti et al. (33) RT vs. 
RT + STAD/8.9 years

NR + + + − RTOG 86-10; adverse

Chakravarti et al. (34) LTAD + RT vs. 
RT + STAD/6.3 years

− − + + − RTOG 92-02; p16 expression adverse for 
STAD (suggests use of LTAD in p16Hi cases)

Loss of pRB

IHCChakravarti et al. (33) RT vs. 
RT + STAD/8.9 years

NR − − + − RTOG 86-10; loss of pRB adverse

Ki-67 overexpression

IHCLi et al. (35) RT vs. 
RT + STAD/9 years

NR NR + + − RTOG 86-10; High Ki-67 adverse

Khor et al. (36) LTAD + RT vs. 
RT + STAD/9.3 years

NR NR + + + RTOG 92-02; High Ki-67 adverse; see also 
data on MDM2

Pollack et al. (37) LTAD + RT vs. 
RT + STAD/8 years

+ + + + + RTOG 92-02; High Ki-67 adverse (continuous 
variable) 

Parker et al. (38) SRT/6.2 years + NR NR NR NR High Ki-67 adverse following SRT
Cowen et al. (39) RT/5 years + NR NR NR NR High Ki-67 adverse
Scalzo et al. (40) RT/NA + NR NR NR NR High Ki-67 adverse

DNA-PKcs

IHCBouchaert et al. (41) RT + NR NR NR NR DNA-PKcs adverse

MDM2 overexpression

Khor et al. (42) LTAD + RT vs. 
RT + STAD/9.3 years

IHC − − + − + RTOG 92-02; also adverse when combined 
with Ki-67

Vergis et al. (29) RT + STAD/7 years − NR NR NR NR Not prognostic on MV; RT dose-escalation 
study

Bcl-2 and Bax overexpression

Khor et al. (43) RT vs. 
RT + STAD/6.7 years

IHC NR − − − − RTOG 86-10; Bcl-2 and Bax not prognostic

Khor et al. (44) LTAD + RT vs. 
RT + STAD/10.5 years

− − − − − RTOG 92-02, negative Bcl-2/normal Bax 
adverse

Scherr et al. (30) RT/2.1 years + NR NR NR NR Bcl-2 adverse, see also data on p53; short 
follow-up time

Vergis et al. (29) RT + STAD/7 years + NR NR NR NR Bcl-2 adverse (suggests benefit with dose 
escalation) 

Pollack et al. (45) RT/5.1 years + NR NR NR NR Bcl-2 and Bax adverse on MV
Bylund et al. (46) RT/6.4 years NR NR NR + − Bcl-2 related to favorable outcome

AR CAG repeats

Abdel-Wahab et al. 
(47)

RT vs. RT + STAD/NA flow cytometry + − − − − AR CAG repeats was not prognostic (suggests 
benefit with RT + STAD if short CAG repeats)

COX-2

Khor et al. (48) LTAD + RT vs. 
RT + STAD/8.9 years

IHC + − + − − RTOG 92-02; COX-2 expression was adverse 

(Continued)
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Biomarker
Reference

Treatment/follow-up 
time

Assay BF LF DM PCSS OS Comments

STAT3

Torres-Roca et al. 
(49)

RT vs. 
RT + STAD/8.1 years

IHC NR − + − − RTOG 86-10; low levels of activated Stat3 was 
adverse

veGF

IHCGreen et al. (50) RT/5.3 years − NR − + − VEGF was prognostic
Vergis et al. (51) RT + STAD/7 years + NR NR NR NR VEGF was prognostic
Weber et al. (52) RT vs. 

RT + STAD/8.1 years
− NR NR NR NR VEGF was not prognostic

HiF-1

Vergis et al. (51) RT + STAD/7 years IHC + NR NR NR NR HIF1 α was adverse
Weber et al. (52) RT vs. 

RT + STAD/8.1 years
+ NR NR NR NR HIF1α expression was associated to favorable 

outcome

eGFR

Weber et al. (52) RT vs. 
RT + STAD/8.1 years

IHC + NR NR NR NR EGFR expression adverse

Osteopontin

Vergis et al. (51) RT + STAD/7 years IHC − NR NR NR NR Osteopontin was not prognostic
Thoms et al. (53) RT/NR Elisa − NR NR NR NR Plasma osteopontin was not prognostic – OPN 

tested 1 year after treatment

PKA

Pollack et al. (54) LTAD + RT vs. 
RT + STAD/10.1 years

IHC + + + − − RTOG 92-02; PKA expression adverse for 
LTAD

Khor et al. (55) RT vs. 
RT + STAD/12.2 years

+ + + − NR RTOG 86-10; PKA expression adverse

eRG

Dal Pra et al. (56) RT/6.2 years IHC − NR NR NR NR ERG status was not prognostic

(ii) DNA

DNA ploidy

Pollack et al. (57) RT vs. 
RT + STAD/9 years

Image analysis of Feulgen 
stained tissue sections

NR NR − NR + RTOG 86-10; non-diploid tumors was adverse 

Cyp3A4 polymorphisms

Roach et al. (58) LTAD + RT vs. 
RT + STAD/NA

PCR based detection − NR NR NR − Cyp3A4*1B polymorphism was not prognostic, 
regardless of race

c-MYC ± PTeN

Zafarana et al. (19) RT/6.7 years aCGH + FISH + NR NR NR NR c-MYC gain alone or combined with PTEN loss 
was adverse

NKX3.1 ± c-MYC

Locke et al. (21) RT/6.7 years aCGH + FISH + NR NR NR NR NKX3.1 haploinsufficiency alone or combined 
with c-MYC gain was adverse

StAR; HSD17B2

Locke et al. (20) RT/6.7 years aCGH + FISH + NR NR NR NR Allelic losses of the loci containing StAR and 
HSD17B2 were adverse

TMPRSS2-eRG

Dal Pra et al. (56) RT/6.2 years aCGH − NR NR NR NR TMPRSS2-ERG status was not prognostic 

NBN

Berlin et al. (59) RT/6.7 years aCGH + NR NR NR NR NBN gain predicted for decreased BF in RT, 
but not in RadP patients

Toronto

Lalonde et al (60) RT/6.7 years 100 loci DNA signature + NR NR NR NR Combined indices of genomic instability and 
hypoxia predict BF and early BF (≤18 months).

TABLe 1 | Continued

(Continued)
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TABLe 2 | Ongoing clinical trials testing radiotherapy combined with chemotherapy in non-indolent, localized prostate cancer.

Agent Study phase Title Protocol iD

Cabazitaxel I Cabazitaxel with radiation and hormone therapy for prostate cancer NCT01420250
Cabazitaxel II Cabazitaxel and radiation for patients with pathologically determined Stage 3 prostate cancer and/or  

patients with PSA elevation (>0.1 to <2.0 ng/mL)
NCT01650285

Docetaxel II The ELDORADO (Eligard®, docetaxel, and radiotherapy) study NCT00452556
Docetaxel III Treatment of prostate cancer with docetaxel + hormonal treatment vs. hormonal treatment in patients  

treated with radical radiotherapy (AdRad)
NCT00653848

Docetaxel I/II Postoperative radiation therapy, hormonal therapy, and concurrent docetaxel for high risk pathologic 
T2-T3N0 prostate cancer

NCT00669162

Docetaxel II Docetaxel, androgen deprivation, and proton therapy for high-risk prostate cancer NCT01040624
Docetaxel II Docetaxel + prednisone with or without radiation for castrate-resistant prostate cancer NCT01087580
Docetaxel III Androgen suppression therapy and radiation therapy with or without docetaxel in treating patients with   

high-risk localized prostate cancer
NCT00651326

Docetaxel III Hormone therapy plus radiation therapy with or without combination chemotherapy in treating patients with 
prostate cancer

NCT00004054

Docetaxel III Hormone suppression and radiation therapy for 6 months with/without docetaxel for high-risk prostate 
cancer

NCT00116142

Docetaxel III Hormone therapy with or without docetaxel and estramustine in treating patients with prostate cancer that  
is locally advanced or at high risk of relapse

NCT00055731

Ixabepilone I/II Radiation therapy and ixabepilone in treating patients with high-risk stage III prostate cancer after surgery NCT01079793

TABLe 1 | Continued

Biomarker
Reference

Treatment/follow-up 
time

Assay BF LF DM PCSS OS Comments

(iii) RNA

Myriad Genetics Prolaris Score™

Freedland et al. (61) RT + ADT/4.8 years 31-gene RNA expression 
signature – CCP genes 
(RT-PCR) 

+ NR NR NR NR RNA based diagnostic assay (CCP score) was 
prognostic after EBRT

GenomeDx Biosciences Decipher™

Den et al. (62) Post-operative RT/ 
8 years*

22-gene RNA expression 
signature (gene 
expression microarray)

NR NR + NR NR Genomic classifier is prognostic for distant 
metastasis

Importance of biomarker: + is statistically significant (p < 0.05) as independent prognostic marker on multivariate analysis, − is not significant.
NR, not reported; BF, biochemical failure; LF, local failure; DM, distant metastasis; PCSS, prostate cancer specific survival; OS, overall survival; IHC, immunohistochemistry; LTAD, 
long-term androgen deprivation; PC, prostate cancer; RT, radiotherapy; SRT, salvage radiotherapy; aCGH, array comparative genome hybridization; FISH, fluorescence in situ 
hybridization; MV, multivariate analysis; NA, not available; median follow-up after radiotherapy; RadP, radical prostatectomy.
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which further strengthens the need for novel drugs especially in 
the high-risk category.

ADT Plus RT: Mechanistic Insight
The mechanism(s) of interaction between ADT and RT is still not 
completely clarified. An important in vitro study showed that dif-
ferent PCa cells lines lacked an overall radiosensitization by ADT 
(73) whereas in vivo data showed synergism with ADT and RT 
(fractionated vs. single-dose). This may be explained by the fact 
that the ADT effect was related to the tumor microenvironment 
and not to the tumor cells per  se (74). ADT potentially affects 
tumor vascularization, and subsequently, tumor oxygenation. 
Testosterone was shown to act as a potent stimulator of prostatic 
endothelial cell growth (75, 76), and ADT induced a decrease in 
Mean Vessel Density (MVD) rapidly followed by an increase in 
MVD (76). Hypoxia is considered as an adverse predictive factor 

of RT response of prostate tumors (51, 77). ADT could decrease 
tumor hypoxia fraction in PCa, and this may represent a plausi-
ble explanation of the radiosensitizing properties of ADT (74). 
Moreover, it has been recently shown important new interactions 
between androgen signaling and DNA repair genes. In biopsies 
from patients with locally advanced PCa, androgen deprivation 
caused decreased levels of the Ku70 protein [responsible for 
non-homologous end-joining (NHEJ) repair of DNA double-
strand breaks (DSBs)]; thus impairing DNA repair and possibly 
explaining increased radiosensitivity (78). Polkinghorn et  al. 
(79) has recently shown that androgen receptor (AR) regulates a 
transcriptional program of DNA repair genes that promote PCa 
radioresistance. PCa cells treated with irradiation plus androgen 
demonstrated enhanced DNA repair and decreased DNA damage, 
whereas antiandrogen treatment caused increased DNA damage 
(also via decreased classical NHEJ) and decreased clonogenic 
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FiGURe 1 | Pathways for molecular targeting in prostate cancer radiotherapy. Several pathways can serve as potential targets in attempt to modulate 
radiotherapy response and enhance clinical outcomes in non-indolent, localized prostate cancers. This figure depicts four important pathways involved in disease 
progression and radiation response along with its potential targets. (A) Androgen Receptor (AR) Pathway. AR has a central role in the transcription of several genes 
important in the survival and proliferation of prostate cancerous cells. Several new agents have been explored in castration-resistant prostate cancers with encouraging 
results. In localized disease, when combined with radiotherapy, these novel therapies also constitute a promising avenue for cure. (B) Hypoxia. Hypoxia modulation 
constitutes an important way to improve clinical outcomes following prostate cancer radiotherapy. Tumor hypoxia fraction can be targeted either by hypoxia cell 
radiosensitizers, enhancing oxygen delivery, or decreasing oxygen consumption. (C) DNA Damage Response (DDR) Pathway. Figure shows simplified DDR scheme with 
agents acting in different repair processes including Base Excision Repair (BER), Single Strand Break (SSB), Non-homologous End-Joining (NHEJ), and Homologous 
Recombination. Targeting cell cycle checkpoint can lead to cells with abrogated G1 and G2 checkpoints and accumulation of DNA breaks resulting in mitotic 
catastrophe. The use of these agents with RT would be expected to lead to increased residual SSBs and DSBs that can be tracked by DNA repair foci within irradiated 
tumor and normal tissues. In addition, the use of some of these inhibitors (e.g., PARP inhibitors) may lead to cytotoxicity as single agents based on the concept of 
synthetic lethality. (D) PI3K/AKT/mTOR Pathway. Proliferation of prostate cancer cells is under control of the PI3K/AKT/mTOR signaling. As major growth factor receptors 
(e.g., EGFR, VEGFR) require this downstream kinase pathway, it is also promising target for radiosensitization through inhibitors of mono- or multiple actions.
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survival. Careful monitoring of tumor vascularization, hypoxia, 
DNA damage markers (i.e., Ku70), the development of serum 
biomarkers of CYP17A1 (see below), and AR activity will be 
crucial to identify those patients likely to respond to ADT and 
RT as well as new combined modality combinations.

Novel Molecules Targeting Androgen Receptor  
Plus RT
Depicted in Figure 1A is a summary of targets of the androgen 
axis that are currently being exploited in PCa treatment. Many of 
these agents have shown efficacy in castration-resistant disease. 
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We contend that a number of the newer targeted agents could 
be combined with RT in localized PCa to improve outcomes. 
Molecules targeting the AR pathway such as abiraterone (80), 
TAK700 (81), or enzalutamide (82) (formerly called MDV3100) 
were shown to induce tumor regression even in castration-resist-
ant disease. As compared to LH-RH agonists that only reduce 
circulating testosterone levels, all of these second-generation 
androgen agents, except enzalutamide, inhibit also paracrine and 
intracrine intraprostatic testosterone production, which implies 
a possible direct effect on PCa cells leading to more pronounced 
effects on the tumor microenvironment (83). Additionally, new 
AR inhibitors such as enzalutamide have displayed higher potency 
and specificity for the AR than bicalutamide and flutamide in 
preclinical studies and may lead to decreased side effects (84–86).

CYP17A1 Inhibitors Plus RT
The CYP17A1 inhibitor, abiraterone acetate, was shown to 
improve overall survival with minimal side effects in metastatic 
PCa (14.8 vs. 10.9  months, HR  =  0.65) (80). CYP17A1 is an 
enzyme important in the synthesis of dihydrotestosterone (DHT) 
from cholesterol (Figure 1A) and may be targeted in the testes, 
adrenal glands, and prostate to reduce tumor burden in PCa. 
Wright et al. recently demonstrated that a SNP variant allele of 
CYP17A1 found in the serum of PCa patients is associated with 
survival (87). Furthermore, protein expression of CYP17A1 in the 
serum of patients with PCa is twofold higher than in the serum 
of healthy age-matched controls (88). These studies preclude 
the measurement of CYP17A1 in serum as a potential predictor 
for disease outcome and in light of the new CYP17A1 inhibitor, 
abiraterone acetate, a potential predictor for treatment response. 
The feasibility of circulating tumor cells (CTCs) as a biomarker 
of drug efficacy was recently tested and shown to be an easily 
obtained tissue for molecular analysis (89). It will be interesting 
to follow the current phase II trial of RT and ADT ± neoadjuvant 
or adjuvant abiraterone acetate to determine if this will be a use-
ful means to cure intermediate to high-risk disease, and if serum 
CYP17A1 expression or maybe CTCs may be utilized for predic-
tion of treatment response (NCT01023061 and NCT01780220).

TOK-001 (Galeterone) and TAK-700 (Orteronel) were shown 
in preclinical studies to antagonize the AR and CYP17A1 and 
decrease the overall expression of AR in PCa cells (90, 91). After 
positive results of TOK-001 in Phase II study in men with CRPC, 
a phase III study is planned to begin (91). TAK-700 advanced 
rapidly to Phase III trial in patients with CRPC; however, the 
study did not meet the primary endpoint of improved OS (92). 
Thus, further development of TAK-700 has been terminated. This 
affected the RTOG 1115, which was an ongoing Phase III study of 
dose-escalated RT with a LH-RH agonist ± TAK-700 in high-risk 
PCa (NCT01546987).

With the minimal side effects observed with CYP17A1 inhibi-
tor abiraterone acetate (90), the use of these new compounds 
dually targeting CYP17A1 and AR are promising candidates to 
combine with RT.

Novel AR Inhibitors Plus RT
Enzalutamide is an AR antagonist with high affinity for the AR 
also inhibiting translocation of the AR to the nucleus and its 

binding to DNA. It was shown to improve OS in CRPC patients 
before and after chemotherapy (82, 93). In non-castrate-resistant 
disease, a significant biochemical response with minimal side 
effects was recently demonstrated in a phase II study (94). Due 
to important clinical response and low toxicity profile, enzalu-
tamide is a promising drug to be utilized in the earlier stages of 
the disease. Possible biomarkers of enzalutamide response have 
been investigated and include CTCs, mutated AR, AR ampli-
fication, and AR splice variants that lack the ligand-binding 
domain (95–98). Detection of AR splice variant 7 messenger 
RNA (AR-V7) in CTCs from men with advanced disease was 
recently found to be associated with resistance to enzalutamide 
and abiraterone (98).

ODM-201 is a new generation inhibitor of the AR with superior 
preclinical efficacy compared to enzalutamide and bicalutamide. 
It does not enter the brain in preclinical studies and does not 
interact with cytochrome 3A4, therefore it may have lower toxic-
ity as compared to other AR inhibitors (99).

There are several chaperone proteins associated with AR cur-
rently being targeted in CRPC including clusterin, HSP-27, and 
HSP-90. Serum levels of clusterin, an androgen-regulated chap-
erone protein, have been recently correlated with PCa outcome 
(100). Preclinical data has demonstrated that overexpression of 
clusterin decreases radiosensitivity in LNCaP cells (101) while 
clusterin knock-down has an effect to increase radiosensitivity 
of these cells (102). Moreover, a novel targeted agent to antisense 
clusterin (OGX-011) has been shown to be safe in men with PCa 
(103). Although trial data evaluating OGX-011 in patients with 
intermediate to high-risk PCa undergoing radical prostatectomy 
has been negative (104), the evaluation of OGX-011 with RT in 
patients with localized disease awaits investigation.

Androgen Depriving Associated Therapies and RT: 
How to Move Forward
To move forward in a personalized medicine setting, biomarker 
and mutation assays that reflect the functional status of the AR 
would help identify patients who may best benefit from these 
inhibitors. These assays are not in routine use in clinical RT 
practice, despite provocative data from the RTOG 86-10 trial that 
patients with short CAG repeats (which affect AR transcriptional 
activity) had better local control (47). The introduction of such AR 
biomarker methods into clinic may play an important role in the 
combination of current and future AR inhibitors and RT. With the 
introduction of such methods, second-generation antiandrogens 
represent interesting candidates to improve RT efficacy.

Hypoxia and RT
The biological effects of both chronic and acute/cycling tumor 
hypoxia are related to increased rates of genomic instability, 
systemic tumor spread, and resistance to RT, and several types of 
chemotherapy (105, 106). Hypoxic cells when compared to oxic 
cells show a twofold to threefold decrease in DNA damage and cell 
kill after RT. The increased resistance to chemotherapy is due to 
decreased perfusion of agents, decreased cell kill by proliferation-
dependent drugs because of hypoxic cells arrest in G0–G1 state, 
and increased DNA damage repair (105, 106). An increased rate 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


February 2016 | Volume 6 | Article 248

Dal Pra et al. Molecular-Targeted Agents and PCa Radiotherapy

Frontiers in Oncology | www.frontiersin.org

of metastases is due to multiple mechanisms including increased 
hypoxia-activated genes involved in metastasis and angiogenesis 
(e.g., VEGF, LOX) and selection of potential metastatic clones 
during tumor progression (106).

Clinically, hypoxia has been correlated with poor clinical 
outcomes in PCa following RT or surgery. Turaka et al. studied 
57 patients with more than 8 years of follow-up. They showed that 
decreased prostate-to-muscle oxygen ratio was an important pre-
dictor of early biochemical recurrence following brachytherapy 
(107, 108) and suggested that hypoxia was a biomarker of occult 
metastases at the time of treatment. Using immunohistochemis-
try, Vergis et al. showed that increased expression of the hypoxic 
markers HIF1 and VEGF leads to rapid RT failure, independent 
of classical clinical-pathologic factors and RT dose (51). Milosevic 
et al. directly measured intra-prostatic O2 levels of 247 PCa patients 
using needle–electrode technique. This was the largest clinical 
study of PCa hypoxia with direct measurement of tumor oxygen 
levels, and showed that hypoxia is associated with early biochemi-
cal relapse and local recurrence in the prostate gland (77).

Drugs Dependent on Hypoxia Gradient in the Tumor
Targeting hypoxia in the clinical setting has been attempted for 
many years (Figure 1B). This includes increasing the oxygen deliv-
ery to the tumor by the blood (normo- or hyperbaric oxygen) or the 
use of hypoxic cell cytotoxins, or hypoxic cell radiosensitizers. The 
class of agents, N-oxides, such as tirapazamine (TZP), is a prodrug 
that under hypoxic conditions undergoes intracellular one-electron 
reduction to highly toxic radicals that cause DSBs and DNA base 
damage. This damage stalls and DNA collapse replication forks. In 
preclinical studies, TZP is 15- to 200-fold more cytotoxic under 
hypoxia compared to aerobic conditions (109). The randomized 
phase II and III TZP studies completed to date have shown mixed 
tumor responses while frequently having increased normal tis-
sue toxicity. Dinitrobenzamide mustard (DNBM) is a new class 
of drugs that contain a latent nitrogen mustard moiety, which 
becomes activated when either of the nitro groups is reduced to the 
corresponding hydroxylamine or amine. This results in the selec-
tive generation of reactive nitrogen mustard metabolites causing 
DNA cross-linking in hypoxic cells (110). PR-104, a novel DNBM 
currently in clinical trials has shown great promise in preclinical 
studies and holds several advantages over other bioreductive drugs 
such as TZP. First its activation is confined to lower oxygen con-
centrations allowing for greater specificity, and second its activated 
metabolites are able to diffuse locally in tumor tissue, providing an 
efficient bystander effect. A recent study has shown that PR-104 
can be selectively active in hypoxic cells within treated 22RV1 PCa 
xenograft models (111). TH-302, which has a hypoxia-generated 
DNA damaging warhead, has also been shown to sensitize LNCaP 
and DU145 cells under hypoxia (112).

Drugs Targeting HIF-1
HIF-1 is an important transcription factor that is stabilized by 
low oxygen levels and is key in the expression of greater than 
100 gene products following hypoxic stress. Cycling hypoxia 
strongly induces HIF-1, increases glucose uptake, and drives 
the Warburg effect. This is due in part to reoxygenation post-
hypoxia increasing free radicals and thereby increasing HIF-1. 

HIF-1 could be a potential therapeutic target for PCa RT as it is 
also activated by oncogenic stress in addition to hypoxia (113). 
Drugs that inhibit glucose consumption by hypoxic tumor cells 
may be another strategy that explores the effects of hypoxia 
(114). This can be accomplished via HIF-1 inhibitors or by 
inhibition of MCT1 to force aerobic tumor cells to consume 
more glucose and less lactate and reduce glucose availability 
to the less well-perfused hypoxic cells. Lactate levels have been 
proposed to be a biomarker for HIF-1 inhibitors. As shown 
in Figure 1B, HIF-1 alpha can also be modulated by multiple 
upstream factors, including the PI3K/AKT/mTOR pathway (see 
PTEN/PI3K/AKT/mTOR) and downstream pathways, affecting 
gene expression, metabolism, cell survival, tumorigenesis, and 
tumor growth (115).

Hypoxia downregulation seems to relate to the effects of 
androgen deprivation in improving RT response. Al-Ubaidi et al. 
using pre- and posttreatment biopsies of patients treated with 
androgen deprivation have shown decreased HIF-1α levels by 
immunofluorescence (116). Many preclinical studies have tested 
HIF inhibition in PCa. Silencing HIF-1 alpha expression by small 
interfering RNA (siRNA) has shown increased radiosensitization 
of PC3 cells. HIF-1 alpha inhibition attenuated repair of radiation 
injury, with an increase in both interphase death and reproduc-
tive death after irradiation, apoptotic potential, and cell cycle 
arrest at the G2–M phase (more sensitive to radiation) (117). 
The use of dietary compounds, like soy isoflavones, has shown to 
improve radiation response both in PCa cell lines and xenograft 
models. It is believed that isoflavones inhibit the activation of the 
Src/STAT3 signaling pathway by radiation and radiation-induced 
HIF-1α expression thus contributing to increased response of 
cancer cells to radiation. These findings correlated with decreased 
expression of APE1/Ref-1 resulting in decreased DNA binding 
activity of HIF-1α and NF-κB, thereby inhibiting transcription of 
downstream genes essential for tumor growth and angiogenesis 
(118). Through HIF-1 abrogation and altered DNA damage repair, 
increased radiation response has been seen with nitric oxide 
donating non-steroidal anti-inflammatory drugs (NO-NSAIDs) 
(119). PX-478 is an oral agent that is currently under investiga-
tion in a phase I trial for advanced PCa. In vitro, it was shown 
to decrease HIF-1 alpha in PC3 and DU145 cells and enhance 
the radiosensitivity of PC3 cells under normoxic and hypoxic 
conditions (120).

Drugs Targeting Oxygen Consumption
While most strategies to modulate tumor hypoxia aim at increas-
ing oxygen supply during RT through breathing of hyperbaric 
oxygen (121) or an oxygen-rich gas like carbogen (95% O2, 5% 
CO2) in combination with vasodilating agents (122), an alterna-
tive approach is decreasing oxygen consumption (Figure  1B). 
This is a logical choice given that oxygen gradients and “diffusion 
limited” hypoxia arise due to high cellular oxygen consumption 
(123). Mathematical modeling suggests that decreasing oxygen 
consumption is more efficient at promoting tumor oxygenation 
than increasing oxygen supply (124).

Our group has investigated metformin, a commonly pre-
scribed anti-diabetic drug, as an effective and inexpensive means 
to improve RT outcome. Metformin inhibits complex I activity 
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in the mitochondrial electron transport chain (ETC), therefore 
inhibiting cellular oxygen consumption (125). We showed 
through in  vivo and in  vitro models that metformin could 
improve tumor radiation response through inhibiting tumor 
cell oxygen consumption and transiently increasing tumor 
oxygenation. We also tested the impact of metformin use on the 
outcome of 504 PCa patients treated with curative-intent RT. 
Metformin was associated with an independent and significant 
decrease in early biochemical relapse rates (126). Others groups 
have confirmed the clinical benefit of metformin in PCa patients 
undergoing RT (127, 128).

Targeting Hypoxia: How to Move Forward
In order to personalize combined therapy approaches in PCa, 
clear and accurate documentation of preexisting and/or treat-
ment-induced aggressive/adaptive tumor microenvironments 
is required to tailor such treatment to patients. Any trials with 
hypoxia-modifying agents will require biomarkers that measure 
hypoxic fraction before and after modification to place hypoxic 
patients into appropriate trials and prove that the drug is active 
in hypoxic tumor subpopulatons. Currently, different methods 
of hypoxia measurement have been used including pO2 micro-
electrodes, in  situ markers including extrinsic markers (EF-5 
and pimonidazole) or intrinsic markers (e.g., HIF1, VEGF, and 
GLUT-1) and imaging modalities involving functional PET and 
MRI (129). If hypoxia is to become a criterion for disease man-
agement in PCa, an agreement on invasive and/or non-invasive 
biomarkers is notably required (105, 130, 131).

Existing technologies can deliver a higher RT dose to specific 
regions in the tumor (i.e., dose painting) without increasing the 
dose in surrounding normal tissue. Dose painting as function 
of non-invasive hypoxia imaging modalities in combination 
with hypoxia-targeted systemic agents may be the way for-
ward (132); as the prognostic value of low pO2 and increased 
expression of hypoxia-associated markers in  situ was shown 
to be independent of radiation dose (51, 77), the hypoxic sub-
fraction may therefore benefit from both dose-escalation and 
systemic treatment.

Targeting DNA Damage Responses and 
DNA Repair
DNA Damage Responses and DNA Repair in RT
Radiation therapy results in the production of a variety of 
ionizing radiation-induced lesion in DNA. Specific pathways 
of DNA repair are required to repair the variety of lesions, 
which include DNA single-strand breaks (SSBs), DSBs, DNA 
base alterations, and DNA–DNA or DNA–protein cross-links. 
Non-repaired DNA damage can lead to normal and tumor 
cell death via apoptosis, mitotic catastrophe, autophagy, or 
terminal growth arrest senescence. In PCa patients, RT was 
shown to induce ATM-p53 DNA damage-dependent proteins 
thereby leading to long-term activation of p21WAF associated 
with reduced cell proliferation, but no apoptosis (133). Precise 
molecular targeting of the sensing and repair of DNA damage 
in PCa cells over surrounding normal tissues (e.g., rectum, 
bladder, bowel) is a promising area of combination therapy in 
non-indolent, localized PCa.

DNA DSBs are the most damaging breaks resulting in cell 
death. DNA DSBs are primarily repaired through two different 
pathways: HR and NHEJ. HR repair is a template-guided, error-
free pathway predominantly operating in the S and G2 phases of 
the cell cycle, which express many HR-related proteins, including 
Rad51, the Rad51 paralogs (XRCC3, RAD51B,C.D) XRCC2, 
RPA, BRCA2, and BLM proteins. In contrast, NHEJ is operational 
in all phases of the cell cycle and uses the KU 70/80, DNA-PKcs, 
Artemis, XLF, XRCC4, and DNA ligase IV proteins. The latter 
pathway would therefore only be operational in G0/G1-arrested 
slowly proliferating, late-reacting tissues (which limit the total 
dose of fractionated RT) (134).

Approaches to Target DNA Damage Responses
Using the Genetic Defects in Tumor Cells Involved in DNA 
Damage Response
Strategies that target DNA repair pathways that are dependent 
on DNA replication (i.e., HR during the S phase) may give rise 
to a therapeutic ratio when combined with fractionated RT 
(Figure 1C). We have shown that Rad51 expression and functional 
HR can be reduced using imatinib in PCa cells in vitro and in vivo 
during experimental RT (135). This combined imatinib–RT treat-
ment increased prostate tumor cell radiosensitization without 
increased gut toxicity. Similar preclinical data exist in  vitro for 
the targeting of the SSB and BER repair pathways [e.g., inhibiting 
the activity of poly (ADP-ribose) polymerase (PARP) or DNA 
polymeraseβ] whereby the increased levels of non-repaired SSB 
are converted to more lethal DSBs during replication. As such, the 
differential targeting of DNA repair in replicating tumor cells vs. 
non-replicating late-reacting normal tissues could be exploited in 
clinical treatment protocols.

Synthetic cell lethality defines a genetic interaction in which the 
combination of mutations in two or more genes (each mutation 
on its own being non-toxic) leads to cell death. A number of lethal 
combinations have been discovered using silencing RNA (siRNA) 
and chemical screens and, subsequently, validated in isogenic 
preclinical model systems and phase I and II clinical trials. From 
these screens, it was observed that certain DNA repair inhibitors 
may lead to tumor cell kill when used as single agents as they 
cause synthetic cell lethality when combined with a germ-line or 
somatic genetic defect in DNA repair. A remarkable example of 
this interaction is the results of recent trials that have observed 
tumor responses in chemoresistant breast and ovarian cancers 
with HR defects (BRCA1/2 deficient and HR defective) using 
inhibitors of the SSB repair protein, PARP1 without toxicity to 
repair-proficient normal tissues (136). Other approaches are to use 
PARP inhibitors with tumors deficient in phosphatase and tensin 
homolog (PTEN), Aurora A kinase, and HR- or cell cycle-related 
pathways or using DNA polymerase-β inhibitors in mismatch 
repair deficient tumors. These synthetic lethality approaches can 
be designed to decrease the number of PCa clonogens prior to RT 
if used in a neoadjuvant fashion and improve RT outcome (134).

DNA repair enzyme inhibition (e.g., PARP inhibition) may 
be prolonged in tumor tissues relative to normal tissues in vivo 
and recent data suggest that PARP inhibitors can “trap” the 
PARP1 and PARP2 enzymes at damaged DNA (137). In the 
latter scenario, the pharmacodynamics of an oral or intravenous 
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inhibitor could determine when RT is administered during the 
period when tumor enzymes are still inhibited for DNA repair 
function, yet the pathway is no longer inhibited in normal tis-
sues. Careful pharmacodynamic studies may lead to an increased 
therapeutic ratio based on differential scheduling of fractionated 
RT with a DNA repair inhibitor. Knowledge a prior of germ-line 
and somatic mutations in DNA damage and repair genes in RT 
patients could therefore be very helpful if the mutations lead to a 
functional loss of specific response pathways. We have used array 
comparative genomic hybridization to show that there can be 
allelic loss of PARP1, ATM, DNA-PKcs, p53, Rb, and RAD17 in 
PCa (59). If this leads to functional loss of DNA repair or damage 
signaling, then these patients may benefit from targeted therapies 
(e.g., inhibitors of PARP, ATM, DNA-PKcs, MTp53, and CHK1) 
in addition to the potential tumor cell radiosensitization based on 
inherently abnormal DNA repair (105).

Using the Difference of Cell Cycle Phase Stages between Tumor 
and Normal Cells
The radiosensitivity of human cells varies throughout the cell 
cycle (i.e., G1, S, G2, and M phases). S-phase cells are relatively 
more radioresistant than G1 and G2/M cells. Tumor cells have a 
shorter interval of subsequent cell cycles with a higher S-phase 
fraction correlated with base excision repair and/or homologous 
recombination (HR) compared to late acting G1-arrested normal 
tissue cells. Therefore the use of inhibitors of HR such as a recently 
described RAD51 inhibitor (138) may be selective for tumor cells 
over late reacting normal tissues.

Targeting Hypoxia Related Differences in DNA Damage 
Repair Pathway in Tumor Cells
Prolonged acute or chronic hypoxia can lead to decreased 
expression of HR genes, which decreases the radioresistance 
(e.g., reduced oxygen enhancement ratio); HR-deficient hypoxic 
cells can then be more radiosensitive when reoxygenated than 
even HR-proficient oxic cells (139). Thus, although acutely anoxic 
tumor cells that are repair proficient may be highly resistant to 
ionizing radiation, chronically hypoxic tumor sub-regions may 
contain cells with differential radio- and chemosensitivity. We 
observed that HR-defective hypoxic cells are more sensitive 
to radiation, mitomycin C, and cisplatin (140). Furthermore, 
these repair-deficient cells may also be more sensitive to PARP 
inhibitors; a phenomenon termed “contextual synthetic lethality” 
(141). Clinically useful functional assays of repair-proficient vs. 
repair-deficient oxic and hypoxic cells will be required to show 
the fraction of repair-deficient hypoxic cells in a given tumor. 
This could be useful to tackle advantage of contextual synthetic 
lethality using molecular targeted inhibitors with RT (142).

Abnormal extra-/intracell Signaling
PTEN/PI3K/AKT/mTOR
Proliferation of PCa cells is under control of the PTEN/PI3K/
AKT protein pathways (143, 144) (Figure 1D), and this is also 
critical for PCa stem-like cell maintenance (145). Loss of PTEN, 
a common event in many human cancers, can be detected in 
more than 60% of PCa. This leads to constitutive activation of 
AKT and thereby activation of a host of downstream proteins 

that are involved in cell cycle progression, apoptosis suppression, 
and glucose uptake and metabolism (146). Permanent AKT 
activation is a major factor of radioresistance and is an important 
target to increase the RT response (147, 148). Also, interactions 
between different extra- and intra-cell signaling pathways play a 
significant role in radioresistance.

In addition, signal transduction modulation interferes with DNA 
repair mechanisms, particularly DSB repair by NHEJ (147) being an 
important alternative to increase radiosensitivity. PI3K-dependent 
AKT phosphorylation triggers a downstream cascade of events that 
are likely to interact with AR transcriptional activity. These include 
interaction of the AR with FKHR and FKHRL1 transcription fac-
tors, cross-talk of AR and AKT with NF-κβ, regulation of AR via 
coactivator Wnt/β-catenin, and activation of AR via the mTOR 
pathway (147). PI3K/AKT/mTOR downstream kinase pathways 
also regulate NF-κB which, in turn, regulates AR expression (149) 
and various other pathways implicated in cell survival, proliferation, 
invasion, angiogenesis, and metastasis (112). Numerous agents 
identified from natural sources can block the NF-κB pathway, 
including curcumin, resveratrol, ursolic acid, capsaicin, silymarin, 
guggulsterone, and plumbagin. Curcumin was shown to down-
regulate both the NF-κB and Stat3 pathways (149–153).

Pharmacological mTOR inhibition has been demonstrated 
to block the induction of the proliferative, pro-survival, and 
oncogenic functions of mTOR (154), with important effects in 
PTEN-deficient tumors. mTOR signaling has been implicated as 
a determinant of cell survival in response to DNA damage (155). 
mTOR inhibitors have been shown to potentiate the effects DNA 
damaging agents, including ionizing radiation (156–159). As 
such, the mTOR-signaling pathway is a promising target for RT 
optimization in PCa.

Rapamycin, when administered in localized PCa patients 
before prostatectomy, attained high intra-prostatic levels with 
minimal adverse effects and effectively limited mTOR signaling. 
This was determined by inhibition of S6 kinase phosphoryla-
tion, which is a downstream target of mTOR activity involved 
in protein translation (160). Although some preliminary results 
with mTOR inhibitors (temsirolimus and everolimus) have been 
disappointing when administered as single agents in castration-
resistant disease, they showed radiosensitizing effects independ-
ent of castration status (156). The combination of RAD001 with 
radiation has been tested in phase I and II trials (NCT00657982, 
NCT01548807, NCT00943956). Dual PI3K/mTOR inhibitors 
(BEZ235 or PI103) when combined with RT greatly improved 
treatment efficacy by repressing colony formation, inducing more 
apoptosis, leading to the arrest of the G2/M phase, increased 
double-strand break levels, and less inactivation of cell cycle 
check point, autophagy and NHEJ/ HR repair pathway proteins 
in PCa-radioresistant cells (161). BEZ235 has been shown to 
improve tumor sensitization by improving tumor oxygenation 
and vascular structure (162–164), and the radiosensitizing 
properties of BEZ235 seem to occur in normoxic and hypoxic 
PCa cells (164). Other PI3K inhibitors like XL147, GDC-0941, 
XL765, and small-molecule AKT inhibitors MK2206 are cur-
rently in Phase I trial (144) and are promising candidates for 
future studies with RT. Predictive biomarkers are essential for the 
clinical success of these agents targeting the PI3K/AKT/mTOR 
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pathway. Possible biomarkers for mTOR inhibitors response may 
be phosphorylated p70S6K, pS6, AKT as well as VEGF, BCL2, 
and PTEN.

The Akt inhibitor Erufosine (ErPC3) was studied in PCa 
cell lines. It was shown to have a potential therapeutic benefit 
when used as monotherapy or in combination with RT (165). 
The Akt inhibitor P529 potentiates the effect of RT in PC3 cells 
mainly not only through the blockade of Akt activation but 
also through the alteration of other cancer-related pathways 
involving MMP-2, MMP-9, Id1, and VEGF. P529 also enhances 
the antitumor effect of RT in vivo by reducing the proliferation 
rates and promoting apoptosis. This ability to act at different 
pathway levels, all of them involved in the response to radiation, 
makes this compound an interesting agent for radiosensitiza-
tion (166).

EGFR
EGFR for a long time has been considered an appealing target 
for monoclonal antibody (mAb) therapy. The treatment of head 
and neck cancers with EGFR inhibitors represents a model for 
the optimization of RT with molecular targets (167–169). In 
non-metastatic PCa, studies have reported high EGFR expres-
sion ranging from 18 to 41% (170, 171). There is evidence that 
the activation of EGFR and downstream signaling pathways are 
implicated in cell survival and proliferation following radiation 
(172–174) thus several studies have addressed potential mecha-
nisms for radiosensitization by EGFR inhibitors. The prognostic 
role of EGFR expression in PCa is not clearly defined, although 
some studies have shown that an increased EGFR expression was 
associated with higher GS, early PSA relapse, and progression to 
CRPC (170, 175–178).

Exposure of tumor cells to radiation results in immediate 
activation of EGFR by autophosphorylation (179) and a second-
ary prolonged release of TGF-α (180). This creates an autocrine 
loop, which is important for proliferation and is thought to play 
a part in accelerated repopulation following radiation (181). 
EGFR activation of downstream pathways including the Ras/Raf/
MAPK and STAT3 pathways results in protection from radiation 
induced cell death (182, 183). EGFR inhibition in different model 
systems has shown to affect proliferation, angiogenesis, and cell 
survival. Radiosensitization by EGFR inhibition seem to involve 
changes in cell-cycle arrest, endothelial cell sensitivity, apoptosis 
and DDR (184, 185).

Phase I and II trials tested the EGFR inhibitor gefitinib 
in combination with PCa RT (186). The toxicity profile of the 
combination appears to be acceptable, as less than 10% of patients 
had toxicity-related interruptions of RT. The preliminary efficacy 
seems promising compared to matched controls treated with a 
slightly higher biologically effective dose; however, further stud-
ies are required.

When cetuximab was tested in DU145 cells, it increased the 
radiosensitivity through antiproliferative effect, inhibition of 
clonal growth, G(0)/G(1) phase arrest, apoptosis induction, and 
inhibition of EGFR-signaling pathways by the downregulation of 
MAPK activation (187). The simultaneous blockade of EGFR and 
VEGFR (i.e., AEE788) has been tested with radiation and can 
lead to significant tumor growth delay in DU145 cells (188–190). 

Potential mechanisms of action could include: (1) enhanced 
tumor vasculature destruction and (2) decreased proliferation 
of tumor cells surviving cytotoxic effects of RT (191). Preclinical 
studies with PCa cells using coinhibitors of both EGFR and 
type 1 insulin-like growth factor receptor (IGF1R) significantly 
dampened cellular growth and DDR, therefore increasing 
radiosensitivity. The synergistic effect of the EGFR and IGF1R 
inhibitors was also confirmed in nude mouse xenograft assays, 
thus may provide a therapeutic rationale to be tested in future 
clinical trials (192).

Immune Checkpoint Inhibitors
Experimental data from multiple cancer models have provided 
cumulative evidence of an interaction of ionizing radiation with 
the systemic antitumor immunity, and this has created several 
opportunities in the field (193).

The combination of immunologic checkpoint inhibitors with 
RT offers an additional area to improve cancer cell kill in PCa 
(194). Based on preclinical data, manipulating immune response 
through checkpoint molecules using mAbs has thus gained inter-
est (195). Early phase I and II clinical trials have demonstrated 
favorable safety profiles with cytotoxic lymphocyte antigen-4 
(CTLA-4) blockade via the mAbs ipilimumab and tremelimumab 
(196–200). Recent phase I/II trials have been conducted combin-
ing single-dose RT concomitant or sequential to ipilimumab. 
These trials have confirmed the preclinical data that RT could 
help prime an immune response (200). A phase III study subse-
quently compared ipilimumab with a placebo following RT (8 Gy 
in one fraction) and demonstrated a significant PFS benefit but 
no benefit in terms of OS (201).

Future clinical trials are further investigating the ability of 
immunologic checkpoint inhibitors to enhance RT’s effect on 
tumor growth rate kinetics and cellular apoptosis on clinical end-
points such as PFS and OS. Clinical studies with novel immune 
strategies must include tissue and blood for interrogation of 
how and which immunologic populations can benefit from this 
approach.

CONCLUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

Despite all technological advances in RT delivery over the 
recent years, improvements in molecular characterization of 
PCa have not changed clinical practice. Decision-making in 
RT for PCa treatment is still guided by conventional clinical-
pathological factors: PSA levels, GS and T category. In order 
to minimize RT failures (local and systemic) in non-indolent 
PCa, precision RT needs to exploit the rich molecular land-
scape of PCa.

Although the present review focused on four major pathways, 
other intricate and dynamic mechanisms related to intrinsic 
and/or acquired radioresistance contribute to the complexity of 
PCa radioresistance. Many groups have investigated the role of 
prostate cancer stem cells in providing a reservoir of cells resistant 
to radiation (202–205). The inhibition of signaling pathways in 
combination with RT may be a strategy to target PCa stem cells 
leading to better outcomes (205, 206) by providing improved 
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