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Purpose: The identification of the phosphodiester (PDE) 31P MR signals in the healthy 
human breast at ultra-high field.

Methods: In vivo 31P MRS measurements at 7  T of the PDE signals in the breast 
were performed investigating the chemical shifts, the transverse- and the longitudinal 
relaxation times. Chemical shifts and transverse relaxation times were compared with 
non-ambiguous PDE signals from the liver.

results: The chemical shifts of the PDE signals are shifted −0.5 ppm with respect to 
glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), and the trans-
verse and longitudinal relaxation times for these signals are a factor 3 to 4 shorter than 
expected for aqueous GPC and GPE.

conclusion: The available experimental evidence suggests that GPC and GPE are not 
the main source of the PDE signals measured in fibroglandular breast tissue at 7 T. These 
signals may predominantly originate from mobile phospholipids.

Keywords: Mrsi, 31P, relaxation time, 7 T, phosphodiester, breast, phospholipids

inTrODUcTiOn

The phosphomonoesters (PME), phosphocholine (PC) and phosphoethanolamine (PE), and the 
phosphodiesters (PDEs), glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), 
are involved in cell membrane metabolism. From ex vivo studies, it is known that the PC/GPC ratio 
goes up on malignant transformation of cells (1, 2), while the decrease of the PC/GPC ratio was 
shown to be a marker in predicting cancer treatment response in ex vivo NMR studies (2–4). In 
vivo, the total choline signal, which can be obtained by localized 1H MRS, has been shown to be a 
biomarker for malignancy and treatment response (5). In contrast to in vivo 1H MRS, where only 

Abbreviations: AMESING, Adiabatic Multi-Echo Spectroscopic ImagING; CSA, chemical shift anisotropy; DPPC, 
dipalmitoylphospatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine); DMPC, dimyristoylphospatidylcholine 
(1,2-dimyristoyl-sn-glycero-3-phosphocholine); GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine; GPtC, 
(diacyl-)glycerophosphatidylcholine; GPtE, (diacyl-)glycerophosphatidylethanolamine; ILA, inter-lamellar attachment; MPL, 
membrane phospholipids; PC, phosphocholine; PE, phosphoethanolamine; Pi, inorganic phosphate; PCr, phosphocreatine.
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a total choline signal can be observed, one can easily distinguish 
PME from PDEs with in vivo 31P MRS and even PE from PC and 
GPE from GPC, with ultra-high field 31P MRS (6). Besides higher 
spectral resolution, ultra-high field MRS comes with a higher 
signal-to-noise ratio that can be traded off for improving spatial 
resolution or to shorten scan time. High in vivo PME/PDE ratios, 
as measured with 31P MRS, have been shown to be indicative 
of cancer, while treatment response is often accompanied by a 
reduction in PME/PDE (7–12). However, in contrast to some ex 
vivo methods, where extraction techniques are used to separate 
aqueous pools of metabolites from lipid pools, in vivo methods 
will also obtain signals from membrane phospholipids (MPL) 
(13, 14). Moreover, as these MPL have chemical shifts similar to 
GPC, e.g., glycerophosphatidylethanolamine (GPtE) has almost 
identical chemical shift as GPC (15, 16) (the molecular structures 
and chemical shifts are shown in Figure 1) – in vivo distinction of 
these compounds is hampered.

At lower field strength (<2.5 T), in vivo 31P spectra of various 
tissues, e.g., breast (17, 18), brain (19–24), liver (25–28), and 
kidney (29, 30), show a large signal in the PDE chemical shift 
range, with its top between 2 and 3 ppm with respect to phospho-
creatine (PCr) at 0 ppm. The full width at half max of this signal is 
dependent on the field strength, and the delay between excitation 
and acquisition, as, for instance, caused by phase encoding. It 
has been suggested (21, 25) that this membrane peak disappears 
almost completely at high-field strength due to enhanced relaxa-
tion by chemical shift anisotropy, leaving only the signals of the 
aqueous-soluble metabolites GPC and GPE. Nowadays, with 
high magnetic field human MRI systems becoming available, the 
origin of the PDE 31P MRS signal – whether GPC and GPE, and/
or GPtC and GPtE – is of renewed interest.

Here, we show that the PDE signals measured in  vivo in 
fibroglandular tissue of the human breast (31P signal from breast 

fatty tissue is below the detection limit) at 7 T are possibly signals 
from MPL, although their line widths suggest aqueous small 
molecules, such as GPC and GPE. Measurements are performed 
at 7  T to distinguish GPE from GPC and GPtE from GPtC. 
Adiabatic multi-echo spectroscopic imaging (AMESING) (31) 
and progressive saturation are used to identify the mobility of 
the molecules as reflected in the T2- and T1-values, respectively, 
to enable a distinction between the aqueous GPE and GPC from 
the more restricted MPL (GPtE and GPtC). Data are obtained in 
breast glandular tissue and compared to GPC and GPE metabo-
lite signals as measured in liver tissue, all in healthy human 
volunteers in vivo.

MaTerials anD MeThODs
31P MRS measurements of glandular breast tissue were obtained 
from healthy volunteers using a dedicated breast coil (MR Coils 
BV, Drunen, The Netherlands) interfaced to a 7-T MRI system 
(Philips, Cleveland, OH, USA). Pulse-acquire and multi-echo 
acquisitions [AMESING (31)] were obtained with adiabatic RF 
pulses. Excitation was done with an adiabatic half passage (AHP) 
of 2 ms. For refocusing 4 ms B1 insensitive rotation pulses (BIR-4 
180°) were used. The AHP excitation pulse had a frequency sweep 
of 10.0 kHz and the BIR-4 refocusing pulses a frequency sweep 
of 20.0  kHz. Both pulses had tangent frequency modulation 
and hyperbolic tangent amplitude modulation as described in 
Garwood and Ke (32). Pulses were driven with γB1max = 1700 Hz. 
Transmitter offset on the 31P channel was set to 600  Hz with 
respect to the resonance of PCr. All chemical shifts reported here 
are referenced to PCr as standard at a chemical shift of 0.0 ppm, 
which is −2.48 ppm compared to 85% phosphoric acid. Frequency 
calibration of the scanner is done based on the water signal (the 
MR system uses a fixed ratio between 31P and 1H carrier frequency 

FigUre 1 | Molecular structures of gPc, gPe, and their membrane phospholipids gPtc and gPte. Chemical shift of GPC is taken as a reference at 
2.80 ppm. Chemical shift differences Δδ(GPtE−GPtC) = 0.56 ppm and (GPC−GPtC) = 0.62 ppm were calculated from high-resolution spectra (spectral resolution 
<0.02 ppm) by Schiller and Arnold (15), and Δδ(GPE−GPC) = 0.50 ppm from Payne et al. (16).
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such that the proton signal for water corresponds to the 31P 
PCr signal). Measurements with the AMESING sequence were 
performed with a TR of 6 s, 8 × 8 × 8 spherical acquired MRSI, 
2 cm × 4 cm × 4 cm voxel sizes for the breast on five volunteers.

Both FID and symmetric echoes were acquired with 256 data 
points, and the spectral bandwidth for the acquisition of the FID 
was 17.0 kHz and for the echoes 8.5 kHz (echo spacing 45 ms) 
to maintain equal acquisition durations for FID and each half 
echo. Acquired data were spatially Hamming filtered and zero 
filled in the time domain to 8192 data points. To obtain high 
SNR spectra of the breast, the datasets of five volunteers (age 
range 24–30  years) were pooled and Pi-weighted based on the 
FID signal. Phosphorus metabolite T1-values in the breast were 
measured for five volunteers by means of progressive saturation 
with an adiabatic AHP pulse-acquire 1D MRSI sequence with 
TR values in the range of 0.5–8 s, where the scan time was kept 
identical for each TR. The FID data were acquired with 512 data 
points and a spectral bandwidth of 8.2 kHz. A 1D MRSI encoded 
in the anterior–posterior direction was chosen to effectively sup-
press signals from the underlying pectoral muscles. Data were 
spatially Hamming filtered and subsequently zero filled in the 
time domain to 8192 data points. To obtain high SNR datasets 
for T1-fitting, the volunteers were measured two or three times 
and the data per volunteer were averaged. Before averaging, all 
spectra were aligned for Pi. Averaged spectra were spectrally fit-
ted in JMRUI (33) using the AMARES algorithm (34), chemical 
shifts for the GPtE + GPC and GPtC resonances were fixed with 
a soft constraint to 2.77 ± 0.1 ppm and 2.18 ± 0.1 ppm and free 
but equal line width.

31P MRS liver measurements were also done with the AMESING 
sequence with 32 × 10 2D MRSI (feet–head direction unlocalized) 
voxel sizes 1 cm × 1 cm (echo spacing 40 ms) on five volunteers 
for the liver [data included from earlier study (35)], using a half 
volume coil (MR Coils BV, Drunen, The Netherlands). Other 
parameters and data post-processing and analysis were equal to 
those used in the breast measurements. Here, a 2D scheme with 
small AP and LR dimensions of the voxels was chosen to be able 
to exclude signal from muscle tissue, whereas the FH dimension 
is unlocalized but constrained by the coil sensitivity to encompass 
the liver but not beyond.

The study was approved by the local medical ethics review 
board (METC UMC Utrecht) and written informed consent was 
obtained from all volunteers.

resUlTs

In Figure 2, the spectra of a voxel of the breast (average spectrum 
of five volunteers) and the liver (five volunteers) are shown. Due 
to limited bandwidth of the adiabatic pulses only the spectral 
range from +10 to −10 ppm is shown. The chemical shifts of the 
GPC and GPE signals in the liver (Figure 2C) do not correspond 
to the signals observed in the breast spectra (Figures  2A,B), 
which are usually labeled GPC and GPE, while the chemical 
shifts of the other metabolites (PE, PC, Pi, γ-ATP, α-ATP) in liver 
and breast do match. Figures 2A,B show, for a voxel of breast 
glandular tissue, the average FID and the average T2-weighted 

echo-sum spectra using a fixed T2 weighting of 154 ± 5 ms (36), 
scaled to the same noise. Note that the signal intensities of the 
peaks labeled PE, PC, Pi, and (GPtE  +  GPC) increase, or at 
least do not decrease, in the echo-sum spectrum as compared 

FigUre 2 | (a) Pulse acquire, (B) T2-weighted echo sum (T2 = 154 ms) 31P 
MR spectra [AMESING sequence (31)] from a voxel (2 cm × 4 cm × 4 cm) of 
the breast (average of five volunteers) scaled to the same noise, and  
(c) pulse-acquire 31P MR spectrum from the liver (average of five volunteers). 
Note that only the aqueous metabolites with long T2-values, such as PE, PC, 
Pi, and GPC get enhanced in the T2-weighted echo sum and that the 
chemical shifts of liver GPE and GPC do not match the PDE signals from the 
breast, but are shifted +0.5 ppm.
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to the FID spectrum of the breast, while the signals of GPtC and 
ATP, with known short T2-values, do decrease in the echo-sum 
spectrum. Unlike ATP, the short apparent T2 for GPtC (and 
GPtE) is not the result of homonuclear coupling. In Figure 3, a 
comparison is made between T2 fits obtained for the PDE signal 
at 2.2 ppm (labeled GPtC) from the breast (a) and the 2.8 ppm 
signal from the liver (labeled GPC), showing almost a factor 3 
lower T2 for the GPtC signal from the breast. Figure 4 shows the 
T1-fits for the average signals of (GPtE + GPC) and GPtC from 
fibroglandular breast tissue as measured in the five volunteers. 
The (GPtE + GPC) signal is fitted bi-exponentially with a short 
T1 component for GPtE (taken equal to GPtC, T1 = 1.2  s) The 
T1-value that is fitted for the long T1 component GPC is 3.2 s.

DiscUssiOn

Phosphorous spectra from the breast and liver as shown in 
Figure 2 do not match to the chemical shift of the PDE signals. 
As the chemical shift of GPC and GPE are hardly pH sensitive, 
but Pi and to a lesser extent also PE, PC, and γ-ATP are (37), pH 
differences between liver and breast may influence chemical shift. 
If we would shift the breast spectrum by +0.5 ppm to match the 
PDE signals between breast and liver, this would correspond to 

a shift in pH of +0.4 units based on Pi chemical shift. This pH 
difference is unreasonably large, moreover expressing the change 
in chemical shift of +0.5 ppm for PE, PC, and γ-ATP in pH units 
is either not possible, or goes beyond any physiologic condition. 
Therefore, it seems likely that the metabolite signals in the breast 
that do not match those in the liver are (GPtE + GPC) and GPtC. 
Healthy liver is known to show high signals of GPC and GPE in 
31P MRS in vivo and also in ex vivo perchloric acid extracts (38, 
39). The peak labeled GPtC in the liver spectrum of Figure 2C 
is sometimes referenced to as (potentially) phosphoenolpyruvate 
(28, 40). However, it does not show up in 31P MRS perchloric acid 
liver extract studies (38, 39), even though phosphoenolpyruvate 
is sufficiently soluble in an aqueous phase.

The most likely reason for the nearly constant (GPtE + GPC) 
signal over FID and echo sum (Figures  2A,B) is that aqueous 
GPC, with a relatively long T2, increases in the echo sum, while 
GPtC, just like GPtE, decreases in intensity due to short T2.

A recent lipidomic profiling study on healthy mammary 
epithelial and breast cancer cells (41) has shown that in the mem-
branes of healthy mammary epithelial cells the concentration of 
GPtC is approximately twice the concentration of GPtE. If we 
assume that the T2-weighted echo-sum signal at the chemical shift 
of GPtE + GPC in Figure 2B is indeed all GPC and we assume 

FigUre 3 | signal decay [as quantified by spectral fitting of FiD and echoes with JMrUi (33)] as a function of time of the gPtc peak at 2.2 ppm 
obtained from (a) the breast (36) (echo spacing 45 ms) and (B) the true gPc peak from the liver (35) at 2.8 ppm (echo spacing 40 ms). Data were 
obtained by the AMESING sequence (31) and are averaged values for the group of volunteers. Note the threefold reduced T2 of the 31P spins of GPtC in the breast 
as compared to GPC in the liver. Images shown are (fast field echo) examples of breast and liver for one volunteer.

FigUre 4 | T1-fits of the progressive saturation measurements for the PDe signals (sum of five volunteers) in the breast at 7 T. (a) The T1-value of the 
GPtC signal (mono-exponential decay) is 1.2 ± 0.3 s. (B) The (GPtE + GPC) signal for the five volunteers was fitted bi-exponentially with a fixed short T1 component 
for GPtE taken equal to GPtC leading to a T1 for GPC of 3.2 ± 0.6 s.
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a similar T2 for GPC and PE and PC, then we can calculate the 
GPtC to GPtE ratio by subtraction of the GPC contribution in 
Figure 2A. This leads to a GPtC to GPtE ratio of 2, in close agree-
ment with the lipidomic profiling study. Minor contributions 
from sphingomyelin and glycerophosphatidylserines, seen in the 
lipidomic profiling study will probably add to the in vivo 31P MR 
signal of GPtE and glycerophosphatidylinositol to the in vivo 31P 
MR signal of GPtC, not altering the ratio substantially. Chemical 
shift differences for these different phospholipids are reported by 
Schiller and Arnold (15).

The 31P T2 values in liver can be low due to the presence of iron, 
for instance, in the form of ferritin, which is known to increase 
the relaxivity of water (42). In vivo values for T2 of 31P metabolites 
(PE, PC, Pi, GPE, GPC) in the liver ranging between 37 and 71 ms 
have recently been measured at 7 T in our hospital in a group of 
five healthy volunteers (35). For the breast, however, we measured 
that the T2 of the 31P spins at the chemical shift of GPtC (36) is even 
a factor 3 shorter than the T2 of the 31P spins of GPC in the liver 
(35), as shown in Figure 3. In fact, compared to the reported T2 
values – measured at 7 T – of PDEs in calf muscle [T2 = 314 ms (43), 
375 ms (31)] or of PC and PE in the breast, the T2 value of GPtC we 
measured is almost an order of magnitude lower. Spectral fitting 
of the FID spectrum of Figure 2A, simplified by equal line widths 
for PE, PC, Pi, and equal linewidths for the PDE signals shows an 
additional linewidth for the PDE signals of 9 Hz, which is close to 
the calculated value of 12 Hz when considering the measured T2 of 
23 ± 1 ms (35) and a T2 for the PMEs and Pi of ~ 160 ms.

The low signals for GPE and GPC in the echo-sum spectra 
of the breast are corroborated by an in  vitro extract study on 
breast tumors by Smith et al. (14), where it was shown that GPE 
and GPC concentrations are low in non-necrotic breast tumors 
and that, at low field, PDE signals observed in vivo are mainly 
from phospholipids. A recent LC MS study by Mimmi et al. (44) 
showed a very low average concentration of only 0.04 mmol/kg 
GPC in three healthy fibroglandular breast tissue samples.

Another reason to suspect that the dominant PDE signal we 
observe in the breast at 7 T originates from mobile lipid structures 
is based on the results of the T1-measurements of the PDE signal 
in the breast, as depicted in Figure 4. Here, the T1 of GPtC was 
fitted mono-exponentially leading to 1.5 ± 0.1 s and the signal of 
GPtE + GPC was fitted bi-exponentially with the T1 of the GPtE 
component fixed equal to the T1 of GPtC. For the signal of the 
aqueous GPC, this leads to 6 ± 2 s. The fitted T1 of mobile GPtC is 
three- to fivefold lower than that reported for GPC and GPE in calf 
muscle and brain at 7 and 3 T (43, 45, 46). A value of 1.4 s for the T1 
of the 31P MRS signal of dipalmitoylphosphatidylcholine (DPPC) 
vesicles with an average diameter of 100 nm has been measured 
by Klauda et al. (47) above the phase transition temperature. For 
multi-lamellar dispersions of dimyristoylphosphatidylcholine 
(DMPC), a value around 1 s has been measured just above the 
phase transition temperature by Dufourc et al. (48). The T1-value 
of 6 s fitted for the GPC component, Figure 4B, agrees well with 
the T1-values for GPC reported at 3 T and 7 T for calf muscle and 
brain ranging from 4 to 7.8 s (43, 45, 46).

All presented data throughout this paper is based on average 
spectra of the group of volunteers. This has the advantage that it 
maximizes signal to noise and enables the most reliable relaxation 

time fitting. A short coming is that individual physiological dif-
ferences between volunteers are averaged out.

The fitted linewidth of the two overlapping PDE signals of the 
breast spectrum depicted in Figure 2A is 58 Hz (i.e., 0.5 ppm). 
Bulk phospholipid bilayers show broad asymmetrical lineshapes 
(several tens of ppm) caused by large chemical shift anisotropy 
(49). Therefore, if the very sharp PDE resonances that we observe 
are from MPL, then these MPL must be highly mobile phospho-
lipids, for which chemical shift anisotropy and dipolar couplings 
are sufficiently averaged out. Especially at ultra-high field, relaxa-
tion by chemical shift anisotropy that goes with the square of the 
field causes additional line broadening as compared to spectra 
recorded at lower field strength. Highly mobile phospholipids 
can be found in small-sized vesicles (<50 nm) (50), and in large 
arrays of lipidic particles (51), inter-lamellar attachments (52), 
and inverted cubic structures (52–54) within the lipid bilayer.

A rough estimate of the percentage of in  vivo visible mobile 
phospholipids at 7 T can be made as follows. The ratio of PE to 
PC is ~2 and the PME to PDE ratio is ~1 (Figure 2A). A weighted 
average of PC concentrations measured in healthy breast tissue by 
Mimmi et al. (44) is 0.08 mmol/kg, with PE/PC = 2 (Figure 2A), 
this leads to a PME concentration of ~ 0.2 mmol/kg. Most of the 
PDE signal is from mobile phospholipids (Figures 2A,B). The total 
concentration of phospholipids in human tissues is in the range of 
17–83 mmol/kg (55). With a signal ratio of PDEs to PMEs in breast 
glandular tissue of 1.4 at TR = 6 s (35) and a T1 of PMEs of 5 s (56) 
and a T1 of mobile phospholipids of 1.5 s, the total concentration 
of in vivo visible mobile phospholipids in the human breast at 7 T 
is also of the order of ~0.2 mmol/kg. This leads to a crude estimate 
of the visible mobile phospholipid fraction at 7 T of 0.2–1.2%.

cOnclUsiOn

The PDE signals from the breast, as measured with MRSI tech-
niques at 7 T in vivo, show aberrant behavior from aqueous GPE 
and GPC. The T1 and T2 relaxation values for these PDE signals 
are too short to represent true aqueous GPC and GPE. In addi-
tion, the chemical shifts of these PDE signals do not correspond 
to GPE and GPC, but are shifted −0.5 ppm with regard to these, 
and correspond to chemical shift values of GPtE and GPtC. These 
PDE signals could originate from mobile lipid structures such 
as small vesicles with diameters ≤50 nm, large arrays of ILAs or 
large domains of inverted cubic phases within the lipid bilayer. 
As the PC over GPC ratio is used as a biomarker in breast cancer 
research, the in  vivo obtained value will be contaminated with 
signal from GPtE – having a similar chemical shift as GPC – or 
the GPtC peak may be erroneously assigned as GPC.
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