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Aurora A has been extensively characterized as a centrosomal kinase with essential 
functions during cell division including centrosome maturation and separation and spin-
dle assembly. However, Aurora A localization is not restricted to the centrosomes and 
compelling evidence support the existence of specific mechanisms of activation and 
functions for non-centrosomal Aurora A in the dividing cell. It has been now well estab-
lished that spindle assembly involves an acentrosomal RanGTP-dependent pathway that 
triggers microtubule assembly and organization in the proximity of the chromosomes 
whether centrosomes are present or not. The mechanism involves the regulation of a 
number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) 
that exert their functions upon release from karyopherins by RanGTP. One of them, the 
nuclear protein TPX2 interacts with and activates Aurora A upon release from importins 
by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity 
of the chromosomes potentially translating the RanGTP signaling gradient centered on 
the chromosome into an Aurora A phosphorylation network. Here, we will review our 
current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from 
centrosomes: from the mechanism of activation and its functional consequences on the 
kinase stability and regulation to its roles in spindle assembly and cell division. We will 
then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule 
nucleation, stabilization, and organization. Finally, we will briefly discuss the implications 
of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional inter-
action with TPX2.
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Cell cycle progression is crucial for cell viability. During mitosis, most cellular components undergo 
a dramatic reorganization. In particular, the relatively stable interphase microtubule (MT) network 
disappears and highly dynamic MTs organize the bipolar spindle, the molecular machine that pro-
vides the support and forces for chromosome segregation. The progression and coordination of the 
events that drive spindle assembly and culminate with the birth of two daughter cells rely on complex 
regulatory networks involving several kinases. One of them is Aurora A (1), a kinase originally 

Abbreviations: γTuRC, γ-tubulin ring complex; APC/C, anaphase-promoting complex; K-Fiber, kinetochore-fiber; MAP, 
microtubule-associated protein; MT, microtubule; NLS, nuclear localization signal; SAF, spindle assembly factor.
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FiGURe 1 | TPX2 and Aurora A are cell cycle regulated proteins. Both proteins accumulate during G2/M and are degraded through the APC/C proteasome 
pathway at the end of mitosis. The relative protein levels of TPX2 (yellow triangle) and Aurora A (blue circle) in the different cell cycle phases are represented at the 
top. The localization of the two proteins during these cell cycle phases is represented in the drawings. In G2, TPX2 accumulates inside the nucleus whereas Aurora 
A accumulates at the centrosomes. During mitosis, both proteins co-localize along the spindle microtubules, and Aurora A also accumulates at the centrosomes.
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identified in Drosophila (2). In higher organisms, Aurora A is a 
member of the Aurora kinase family consisting of three serine–
threonine kinases whose expression and kinase activity peak in M 
phase (Figure 1). Aurora kinases have essential roles during cell 
division and in particular in centrosome duplication and separa-
tion, spindle assembly, chromosome alignment, spindle assembly 
checkpoint, central spindle assembly, and cytokinesis (3–5).

The potential link between the Aurora kinases and tumor 
initiation and/or development has fueled the interest in under-
standing their function and regulation over the last years. Indeed, 
Aurora A gene is located in a region of chromosome 20 that is 
frequently overexpressed in human cancers (6, 7), and it is found 
in higher levels in many tumor types (8–10). Moreover, it shows 
oncogenic properties (3, 11, 12). Aurora A gene is also a candidate 
low penetrance cancer-susceptibility gene (13, 14). Aurora A is 
therefore considered as a potentially useful molecular therapeutic 
target, and several specific small molecule inhibitors are currently 
being tested in clinical trials (15–18).

Although the three Aurora kinases share a conserved catalytic 
domain, a few critical amino acid substitutions in their cata-
lytic domains confer activator specificity. Moreover, divergent 
N- and C-terminal domains provide specificity at least in part 
through protein–protein interactions and distinct subcellular 
localizations during mitosis. While Aurora B and C localize to 
the kinetochores and the anaphase central spindle as part of the 
chromosomal passenger complex (19), Aurora A localizes to the 
centrosome throughout cell division and is often described as 
a centrosomal kinase (Figure  1) (20). However, Aurora A also 
localizes along the spindle MTs and performs essential functions 
unrelated to its centrosomal localization. Here, we will focus on 
the TPX2-dependent regulation and function of acentrosomal 
Aurora A during cell division.

AURORA A KinASe ACTivATiOn

The activity of Aurora A is regulated by phosphorylation– 
dephosphorylation (21, 22). In particular, the autophospho-
rylation of Thr288 (in humans), a residue residing within the 

activation loop of the catalytic domain, has been described as 
critical for kinase activity (11). In addition, other kinases may 
phosphorylate Thr288, and in  vitro assays showed that PKA 
phosphorylates Aurora A on at least three residues, including 
Thr288 (11, 22). Specific anti-Phosho-Thr288 antibodies have 
been useful to monitor when and where Aurora A is active in 
tissue culture cells, revealing that the kinase is activated at the 
centrosomes and the spindle microtubules proximal to the 
poles during prometaphase and metaphase (23). However, some 
controversy regarding Aurora A activation has recently emerged 
because phosphorylation on Thr288 alone was shown to be insuf-
ficient for the kinase to adopt a fully active conformation (24). On 
the other hand, there is evidence that activation may occur in the 
absence of Thr288 phosphorylation (see below).

Aurora A activation can also be triggered through allosteric 
interactions with a number of proteins such as Ajuba, Bora, pro-
tein phosphatase inhibitor-2, nucleophosmin, and PAK (25–29). 
A specific mechanism drives Aurora A activation in a RanGTP-
dependent manner in dividing cells (21, 30, 31) (Figure 2A). This 
mechanism involves TPX2, a cell cycle regulated nuclear protein 
essential for chromosome and RanGTP-dependent MT nucleation 
(32, 33) and bipolar spindle assembly whether centrosomes are 
present or not (34–36) (Figure 1). TPX2 release from importins 
is triggered by RanGTP in the proximity of the chromosomes and 
enables its interaction with Aurora A thereby promoting its local 
activation in a centrosome-independent manner (34).

COnSeQUenCeS OF TPX2 inTeRACTiOn 
wiTH AURORA A

The interaction between TPX2 and Aurora A has several impor-
tant functional consequences including the targeting of Aurora 
A to the spindle microtubules (37) and the assembly of spindles 
of the correct length that faithfully segregate chromosomes (38). 
Mechanistically it drives the activation of Aurora A (21, 30) 
through a direct interaction between the catalytic domain of 
Aurora A and the first 43 residues of TPX2 in humans (39 residues 
in Xenopus) (30, 37). Despite the high degree of conservation 
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FiGURe 2 | (A) Schematic representation of the RanGTP-dependent interaction between TPX2 and Aurora A in the proximity of the chromosomes. The exchange 
factor RCC1 associated with the chromosomes generates a peak of RanGTP that releases TPX2 from the importin alpha and beta complex. TPX2 can then bind to 
Aurora A, promoting its autophosphorylation on Thr288 and kinase activation (blue color). The phosphatase PP1 can inactivate TPX2 free active Aurora A (mainly at 
the centrosome, gray color) through dephosphorylation but not the TPX2-activated Aurora A (blue color). (B) Direct consequences of the TPX2–Aurora A interaction. 
(C) Schematic representation of the mechanism driving acentrosomal RanGTP MT nucleation triggered by the complex TPX2–Aurora A. The TPX2–Aurora A 
complex associates with another specific complex containing XRHAMM-NEDD1–γ-TurC. In this macro complex the activated Aurora A phosphorylates NEDD1 at 
Ser405, an essential prerequisite for MT nucleation.
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between the catalytic domains of Aurora A and B, the interaction 
between Aurora A and TPX2 is highly specific. Indeed, a single 
amino acid difference in the catalytic domain of Aurora B is suf-
ficient to impair its interaction with TPX2 (39).

Structural studies showed that the binding of TPX2 to Aurora 
A promotes a conformational change in its catalytic domain 
involving the reorganization of the activation segment, providing 
a good binding platform for substrates (30). This also triggers 
Aurora A autophosphorylation at Thr288 in human cells (Thr295 
in Xenopus laevis) (21) contributing to its activation (Figure 2A). 
Although it has been shown that TPX2 can fully activate Aurora 
A in the absence of Thr288 phosphorylation (40), other authors 
have proposed that Aurora A Thr288 phosphorylation and TPX2 
binding act synergistically for the full kinase activation (41).

The conformational change induced by the binding of TPX2 to 
Aurora A results in the change in position of Thr288 that moves 

it into a buried position inaccessible to inactivating phosphatases 
(30). Therefore, TPX2 not only activates Aurora A but it “locks” the 
kinase into an active conformation that cannot be readily inacti-
vated by PP1 like TPX2 free Aurora A (Figure 2A). Interestingly, 
the phosphatase PP6 was recently shown to specifically target the 
Aurora A–TPX2 complex triggering the dephosphorylation of 
the protected Thr288 thereby regulating Aurora A activity and 
consequently, spindle formation (42).

Finally, TPX2 protects Aurora A from degradation that occurs 
under normal conditions at the end of mitosis through the cdh1 
activated APC/C proteasome pathway (43). Certainly, TPX2 
depletion promotes a premature decrease of Aurora A levels in 
prometaphase (44) (Figure 2B).

Other functional implications of the TPX2–Aurora A inter-
action may derive from the phosphorylation of TPX2 itself. 
Indeed, TPX2 is a substrate of Aurora A. Xenopus Aurora A 
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phosphorylates TPX2 on three serine residues (Ser48, Ser90, and 
Ser94) (21, 45). In HeLa cells Aurora A phosphorylated TPX2 
was shown to control mitotic spindle length (46). However, the 
specific function of the Aurora A-dependent phosphorylation of 
TPX2 is still not entirely clear. In addition, TPX2 phosphoryla-
tion by the essential mitotic kinase polo-like kinase 1 (Plk1) was 
reported to increase its ability to activate Aurora A (47) while 
ckd1/2-dependent TPX2 phosphorylation was shown to regulate 
TPX2 localization impacting spindle assembly via Aurora A and 
Eg5 (48).

FUnCTiOnAL ReLevAnCe OF  
TPX2-DePenDenT AURORA A 
PHOSPHORYLATiOn DURinG MiTOSiS

TPX2 and Aurora A both perform essential functions during cell 
division although not all of them are dependent on their interac-
tion. Aurora A null mouse embryos, similar to TPX2 ablation, 
are embryonic lethal failing to undergo the morula-blastocyst 
transition due to defects in mitosis (49–51).

The functional consequences of Aurora A activation by TPX2 
in the dividing cell have to be examined in the context of the func-
tion and regulation of TPX2 during cell division. In Xenopus egg 
extract and in mammalian cells TPX2 is essential for acentrosomal 
MT assembly driven by the chromosome-dependent RanGTP 
pathway in M phase (33, 52). In turn, this pathway is essential 
for the assembly of a functional spindle that can drive faithful 
chromosome segregation to the daughter cells (35, 53–55).

Ran cycles between an inactive GDP-bound state and an 
active GTP-bound state, which is controlled by regulatory 
proteins. The Ran exchange factor RCC1 localizes to the mitotic 
chromosomes whereas other factors that promote RanGTPase 
activity (RanGAP1 and RanBP1) are cytosolic. This promotes 
the formation of a RanGTP gradient centered on the chromo-
somes that has been directly visualized in Xenopus egg extracts 
(56–58) and in mammalian cells (59, 60). In the dividing cell, 
RanGTP provides a spatial signal that triggers MT assembly in 
the proximity of the chromosomes and their organization into a 
bipolar spindle [reviewed in Ref. (61)]. In mammalian cells the 
system may however be more complex since it has been shown 
that components of the Ran system, including RanGTP, localize 
to the centrosome and play an important role in MT nucleation 
(62–64). One essential target of the RanGTP pathway away from 
the centrosome is the nuclear protein TPX2. Work performed in 
Xenopus egg extracts showed that RanGTP promotes the disso-
ciation of TPX2 from inhibitory interactions with importin-α/β 
in the vicinity of chromosomes (52, 65). This release enables 
the interaction of TPX2 with Aurora A leading to its activation. 
Therefore, it is tempting to speculate that the RanGTP gradient 
translates into an Aurora A-dependent phosphorylation signaling 
network.

Some functional implications of the TPX2-dependent interac-
tion with and activation of Aurora A have been recently uncov-
ered through the characterization of the mechanism underlying 
RanGTP-dependent acentrosomal MT nucleation in Xenopus 
egg extract (32). In higher eukaryotes MT nucleation is driven by 
the γ-tubulin ring complex (γ-TuRC), a multi-subunit complex 

consisting of multiple copies of γ-tubulin and a number of associ-
ated proteins named as gamma-tubulin complex proteins (GCPs) 
(66, 67). Together with the adaptor protein NEDD1, γ-TuRC is 
required for all the MT nucleation pathways described in mitosis 
(68, 69). Another specific requirement for the RanGTP pathway is 
TPX2 (65). Recently, we showed that RanGTP promotes the asso-
ciation of TPX2 with a XRHAMM-NEDD1– γ-TuRC complex 
that includes Aurora A. We also showed that within this complex 
the TPX2-activated Aurora A phosphorylates NEDD1 on Ser405 
an essential step for RanGTP-dependent MT nucleation (32, 70) 
(Figure 2C).

Another RanGTP-dependent protein complex containing 
TPX2 and Aurora A was previously identified in Xenopus egg 
extract (71) and shown to be required for RanGTP-dependent 
MT organization. This complex includes the tetramic plus-end 
directed motor Eg5, XMAP215 and the RanGTP target HURP. In 
Xenopus egg extract and in mammalian cells, TPX2 regulates Eg5 
activity through a direct interaction (72, 73). Although Aurora 
A phosphorylates Eg5 (74) no function for this phosphorylation 
in spindle formation was identified in Xenopus egg extracts (75). 
On the other hand, HURP is necessary for K-fiber stabilization in 
mammalian cells (76–78) and its phosphorylation by Aurora A is 
required for MT binding (79). Altogether these data suggest that 
some proteins may be specific substrates of the TPX2-Aurora A 
complex. However, further work is needed to test this idea.

The dual role of TPX2 in activating and localizing Aurora A to 
the spindle microtubules through an allosteric interaction is not 
unique. For example, besides the classical activation of the MAPK 
p38α by MAPKK, p38α can be activated by TAB1 [transform-
ing growth factor-β-activated protein kinase 1 (TAK1)-binding 
protein 1] as well (80). The binding of TAB1 to p38α promotes 
its autophosphorylation and consequently, its activation. 
Concerning the targeting role, a similar mechanism is at play for 
the A-kinase anchoring proteins (AKAPs). AKAPs bind directly 
PKA and recruit it to specific subcellular localizations where the 
kinase activity is required (81). AKAPs also function as scaffold 
proteins to facilitate the formation of multiprotein complexes. 
TPX2 may also provide a scaffolding activity. It may have a criti-
cal role for the recruitment of the MT nucleation complex and 
NEDD1 phosphorylation by Aurora A. Similarly, it may also act 
as a scaffold for the HURP containing complex whose formation 
and function depends on Aurora A activity, and consequently on 
TPX2 (71).

COnSeRvATiOn OF THe TPX2–AURORA 
A MODULe?

Aurora kinases are found in a wide range of organisms from yeast 
to humans and they have conserved functions during cell division. 
TPX2 orthologs have also been identified in a variety of genera 
and different kingdoms. Interestingly, the tpx2 knockout mice 
display severe developmental defects and embryonic lethality 
(82) and similar phenotypes were described for a tpx2 knockout 
in Arabidopsis thaliana (83).

Aurora A was identified in Drosophila. However, it is only 
recently that Ssp1/Mei-38 was proposed to be a putative TPX2 
ortholog (84). Although the effects of loss-of-function of this 
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protein are less severe than in the case of human TPX2, Ssp1/Mei-
38 shows similar localization to spindle microtubules. Moreover, 
it also contains a sequence conserved in human TPX2 that con-
fers the microtubule-binding and bundling activities. However, 
Ssp1/Mei-38 lacks an Aurora A binding domain suggesting that 
it does not fulfill the same role as the vertebrate TPX2 during cell 
division and therefore it may not be a true TPX2 ortholog.

Caenorhabditis elegans has two Aurora-like kinases. A putative 
ortholog of TPX2 was recently identified and named TPX2-like 
protein (TPXL-1) (85). Although TPXL-1 activates and localizes 
Aurora A to the mitotic spindle and not to the centrosome, it 
actually does not share other essential features and functions 
of TPX2 like its RanGTP regulation and its role in microtubule 
nucleation (86).

These data suggest that different evolutionary modules may 
exist to control the localization and activation of the Aurora 
kinases during cell division. Vertebrates seem to have developed 
a unique module to integrate the control of localization and 
activation of Aurora A by the chromosomal RanGTP-dependent 
pathway through a single interacting protein, TPX2.

CAnCeR AnD THeRAPeUTiCS: TPX2 AnD 
AURORA ARe OveReXPReSSeD in 
DiFFeRenT TUMORS

Aurora A and TPX2 are overexpressed in several types of tumors 
and have been implicated at different levels in cancer. Although 
the mechanism underlying the role of TPX2 and Aurora A in 
tumorigenesis may be at least in part independent, there are data 
to suggest a role for the complex. TPX2 was initially identified 
as a proliferation marker with a potential role in human cancer 
(87). It is indeed overexpressed in many tumor types (88). High 
levels of Aurora A were detected in many cancer types including 
prostate cancer, gastric carcinoma, breast carcinoma (89), ovar-
ian cancer, laryngeal carcinoma, bladder cancer, and pancreatic 
carcinoma, among others (90). Moreover, both genes are part of 
the chromosomal instability signature that was found to predict 
clinical outcome for different cancers with TPX2 having the high-
est CIN score (91).

Interestingly, both TPX2 and Aurora A genes are located 
on chromosome 20q, whose amplification is found in tumors 
and moreover, co-expression of TPX2 and Aurora A has been 
observed in some tumors (92). For instance, Aurora A and TPX2 

were found overexpressed in lung cancer cells (93), different colon 
cancers (94, 95) and neuroblastoma (96). Based on the correlation 
of co-expression it was in fact proposed that TPX2 and Aurora 
A might act as a functional unit (90). Interestingly, a mutant of 
Aurora A (S155R), that is unable to interact with TPX2, has been 
identified in colon cancer (97), suggesting that the misregulation 
of Aurora A localization and/or activity may also be deleterious 
for the cell. It is also interesting to note in this context that the 
tumor suppressor p53 is regulated by both TPX2 and Aurora A 
in Xenopus (98).

Some data suggest that the increased levels of Aurora A in vari-
ous tumors may be the consequence of protein stabilization rather 
than gene amplification. Indeed, phosphorylation of Aurora A 
Ser51 inhibits its degradation via the cdh1 activated ubiquitin 
ligase APC/C at the end of mitosis and Aurora A constitutively 
phosphorylated at Ser51 was shown to be present in neck and 
head cancer tissues with Aurora A overexpression (99). Although 
no direct connection has been reported yet, it is interesting to note 
here that TPX2 protects Aurora A from degradation potentially 
contributing to the maintenance of high levels.

The clear implications of Aurora A in cancer have promoted 
the intensive search for small molecule inhibitors for their poten-
tial therapeutic use (100). Some of them already show interesting 
potential in clinical trials but a further optimization may be 
required. Targeting specifically the TPX2-activated Aurora A may 
open new strategies in cancer therapy.
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