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Extracellular vesicles (EVs) are considered to be a novel complex mechanism of cell 
communication within the tumor microenvironment. EVs may act as vehicles for tran-
scription factors and nucleic acids inducing epigenetic changes in recipient cells. Since 
tumor EVs may be present in patient biological fluids, it is important to investigate their 
function and molecular mechanisms of action. It has been shown that tumor cells release 
EVs, which are capable of regulating cell apoptosis, proliferation, invasion, and epithe-
lial–mesenchymal transition, as well as to suppress activity of immune cells, to enhance 
angiogenesis, and to prepare a favorable microenvironment for metastasis. On the other 
hand, EVs derived from stromal cells, such as mesenchymal stem cells (MSCs), may 
influence the phenotype of tumor cells through reciprocal cross talk greatly influenced 
by the transcription factors and nucleic acids they carry. In particular, non-coding RNAs 
(ncRNAs), including microRNAs and long ncRNAs, have recently been identified as 
the main candidates for the phenotypic changes induced in the recipient cells by EVs. 
ncRNAs, which are important regulators of mRNA and protein expression, can function 
either as tumor suppressors or as oncogenes, depending on their targets. Herein, we 
have attempted to revise actual evidence reported in the literature on the role of EVs in 
tumor biology with particular regard to the cross talk of ncRNAs between cancer cells 
and MSCs.

Keywords: exosomes, extracellular vesicles, non-coding RNA, microRNA, long non-coding RNA, tumor stem 
cells, mesenchymal stem cells

iNTRODUCTiON

Extracellular vesicles (EVs) have recently been identified to be instrumental in intercellular com-
munication through the exchange of biologically active molecules, in particular, non-coding RNAs 
(ncRNA) that can not only modulate gene expression locally but also systemically (1–3). EV molecu-
lar composition (nucleic acids and protein) is regulated by cell growth conditions, signal molecules, 
growth factors, etc. (4–6). Apart from healthy cells, tumor cells also release excessive amounts of 
tumoral extracellular vesicles (T-EVs) found to be rich in specific sets of ncRNAs different from 
normal cells, which circulate in different biological fluids in the body (7). The role of ncRNAs in the 
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FiGURe 1 | ev transfer of ncRNA between MSCs and tumor cells. Green, rose, and yellow flows represent the EV-mediated exchange of information between 
cells. All mentioned RNAs have been detected in both MSC-EVs and T-EVs. Green flow: RNAs that transferred function in both MSC and tumor cells. Rose flow: it 
depicts bidirectional transfer of tumor-suppressor miRNAs. Whereas the anti-tumoral action of these EV-carried miRNAs is well established, no data are available on 
their function on MSC (question mark) (5, 21–28). Yellow flow: it indicates traffic of oncomiRs and oncogenes, that were shown to prime MSCs toward a protumoral 
phenotype. The action of EVs carrying these RNAs has not been investigated in tumor cells (question mark) (6, 29–32).
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regulation of gene expression has been extensively studied, and 
various classes of ncRNAs, with different targets and functions, 
have been identified (8, 9).

Non-coding RNAs are usually divided into two major groups 
according to their length. These include small ncRNAs (below 
200  nt) defined as microRNAs (miRNAs), and the long ncR-
NAs (lncRNAs; above 200 nt). miRNAs mostly act on RNA by 
silencing or post-transcriptionally regulating gene expression 
(10, 11), whereas lncRNA participate in imprinting and gene 
dosage regulation, using diverse molecular mechanisms. These 
include complement annealing with genome DNA, scaffolding 
histone-modifying complexes by acting as either a “sponge” for 
proteins and miRNAs, and/or as molecular guides within ribonu-
cleoprotein complexes (12). Other important roles played by both 
ncRNAs include stem cell pluripotency, embryonic development, 
cell differentiation, and tumorigenesis.

Recent evidence demonstrates dramatic changes that hap-
pen in the level and pattern of RNA carried within circulating 
EVs during tumor development. Depending on their biological 
properties and content, EVs have been involved in cancer initia-
tion, progression, and pre-metastatic niche formation (13). It has 
also become evident that EVs may transfer not only functional 
ncRNA but also DNA, thus modifying gene expression in recipi-
ent cells (14–16).

Tumors contain a heterogeneous population of cells, 
including mesenchymal stem cells (MSCs), endothelial cells, 
cancer-associated fibroblasts, immune inflammatory cells, and 
also cancer stem cells (CSCs). Communication between these 
cells and cells present in the normal surrounding tissue helps 
tumor-initiating cells to survive, proliferate, invade, and establish 
metastasis (17–19). This communication is performed not only 
by cytokines, hormones, and proteins, but also by transcription 
factors, ncRNAs, and DNA carried by EVs.

In this review, we mainly focus on the role of ncRNAs carried 
by T-EVs and by MSC-derived EVs (MSC-EVs) in modification 

of tumor microenvironment with particular regard to the interac-
tion between cancer cells and MSCs.

SeLeCTeD ncRNAs DeTeCTeD 
FReQUeNTLY iN evs DURiNG CANCeR 
DeveLOPMeNT

The discovery of defined pattern of ncRNA expression in can-
cer patients has exposed the potential to exploit them as novel 
diagnostic markers as well as possible therapeutic targets. For 
instance, Lawrie and colleagues in 2007 reported the presence 
of miRNAs in the blood of cancer patients and demonstrated 
their potential as cancer biomarkers (20). Since then, the list of 
tumor-associated circulating miRNAs has grown evidently and 
the molecular function of miRNAs in the context of cancer widely 
elucidated. Interestingly, many of these ncRNAs were also detected 
within EVs derived from MSCs, therefore possibly indicating a 
bidirectional function in the communication between tumor cells 
and stem cells (see Figure 1). However, the functions of different 
miRNA are not univocal and depending on the context they may 
exert pro- or anti-tumorigenic activity. Here, we discuss the func-
tions of some miRNAs, miRNA families (i.e., miRNAs sharing 
similar seed sequence), or clusters (i.e., miRNAs processed from 
one transcript), which have been reported to be present in both 
MSC-EVs and T-EVs.

Let-7 FAMiLY

Let-7 family consists of 13 different members, including let-7a-1, 
7a-2, 7a-3, 7b, 7c, 7d, 7e, 7f-1, 7f-2, 7g, 7i, mir-98, and mir-202. 
Furthermore, the presence of these miRNAs has been detected 
in the circulation of patients with breast, prostate, colon, gastric, 
oral, and ovarian cancers (21). This cluster of miRNAs are consid-
ered to have tumor-suppressor properties as they not only repress 
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genes responsible for self-renewal and “stem” characteristics in 
cells but also promote differentiation during normal development. 
Many oncogenes, such as RAS, MYC, HMGA2, and LIN28, are 
known to be direct targets of let-7 (33). Furthermore, low levels 
of let-7 have been identified to correlate with more aggressive 
tumors as well as CSCs (29, 34, 35). Whether let-7 deregulation 
is the cause of cancer initiation and development or vice versa is 
still unknown.

Extracellular release of let-7 in plasma of cancer patients 
or in conditioned medium of tumor cells and MSCs has been 
reported in several studies (36–38). There are two hypotheses 
about the function of extracellular let-7 in tumorigenesis: the first 
hypothesis proposes that the release of let-7 through EVs results 
in the depletion of cells of this miRNA consequently leading to 
the maintenance of oncogenesis and invasiveness of donor cell. 
The second theory considers extracellular let-7 as pro-oncogenic 
based on evidence that it targets caspase-3 (39) and BAX mRNAs 
(40). In the latter theory, EVs containing let-7 may cause resist-
ance to apoptosis, thus favoring the acquisition of a malignant 
phenotype by recipient cells.

miR-21

miR-21 is one of the most frequently upregulated miRNA identi-
fied in various different cancer types, including lung, ovarian, 
breast, colon, gastric, and pancreatic cancers (30, 41, 42). miR-21 
is highly enriched in EVs and is considered to be an oncogene, 
as it promotes tumor cell proliferation, migration, and invasive-
ness by targeting a number of tumor-suppressor genes, such as 
various components of the p53 network (43), PTEN (44), and 
antagonists of the RAS pathway PDCD4, BTG2, SPRY2, and 
others (45–47). Furthermore, miR-21 also exhibits angiogenic 
properties as EV-mediated transfer of miR-21 from tumor cells 
to recipient cells alters their phenotype and promote angiogenesis 
by enhancing the expression of VEGF (48–50).

Due to its upregulation in cancers and oncogenic properties, 
miR-21 levels in the plasma has been described as a marker for 
several types of tumors, such as breast, colorectal, prostate, gas-
tric, ovarian cancer, B-cell lymphoma, glioblastoma, pancreatic 
cancer, and non-small cell lung cancer (51). Interestingly, this 
miRNA has also been detected in EVs derived from several stem 
cells, including MSCs (31). Since MSCs are recruited within the 
tumor, they may contribute to tumor angiogenesis by releasing 
miR-21containing EVs.

miR-17-92 CLUSTeR

The cluster consists of seven different miRNAs: miR-17 (miR-
17-5p and miR-17-3p), miR-18a, miR-19a, miR-19b, miR-20a, 
and miR-92a. Overexpression of this cluster of miRNAs has 
been observed in several types of cancers (52–56). Numerous 
studies have shown the presence of these miRNAs in EVs present 
in plasma or in conditioned medium from cancer cell cultures 
(42, 51, 57, 58). The molecular mechanisms of pro-tumorigenic 
action of the miR-17-92 cluster include the targeting of E2F 
transcription factor family – a critical regulator of cell cycle and 

apoptosis (59); cyclin-dependent kinase inhibitor CDKN1A 
(p21) – a potent negative regulator of the G1-S checkpoint (60); 
and BCL2L11/BIM pro-apoptotic gene (61). Interestingly, it was 
reported recently that EVs from non-tumor astrocytes were rich 
in miR-19a and could promote metastatic transformation of 
recipient tumor cells by targeting PTEN (62). Furthermore, this 
cluster of miRNAs has also been identified to play a role in tumor 
angiogenesis by directly targeting anti-angiogenic factors, such 
as thrombospondin-1 and connective tissue growth factor (63), 
as well as several other pro-angiogenic proteins, including the 
integrin subunit alpha5 (64).

miR-92a is an example of miRNA with a dual role in angiogen-
esis depending on the cell of origin. For instance, when carried 
by T-EVs, it has been shown to be pro-angiogenic (58), whereas 
when carried by MSC-EVs it exhibits anti-angiogenic proper-
ties (57). This observation suggests that the function of a single 
miRNA should be considered within a more complex context 
depending on the interaction with multiple factors.

miR-15-16 FAMiLY

This family includes miR-15a/16-1 cluster (on chromosome 
13q14), the miR-15b/16-2 cluster (on chromosome 3q25), and 
the miR-195/497 cluster (on chromosome 17p13).

The role of miR-15a/16-1 in cancer was suggested by the 
observation that these genes were down-regulated in B-cell 
chronic lymphocytic leukemia (65). These two miRNAs func-
tion as tumor suppressors, targeting Bcl2, MCL1, and Cyclin 
D1 genes (66). 15b/16-2 miRNAs are highly similar with 
miR-15a/16-1 cluster (miR-16-1 and miR-16-2 are identical), 
but their biological function is controversial, as this cluster has 
been reported to behave as either a tumor suppressor (67, 68) or 
oncogenic (69–71).

Expression of miR-15-16 cluster within plasma EVs has been 
shown by several research groups (51, 72). EVs containing miR-
15a and miR-16 are released by different types of vascular cells 
(such as endothelial progenitor cells, vascular smooth muscle 
cells, and pericytes) as well as by MSCs. These miRNAs display an 
anti-angiogenic activity by targeting VEGF-A and AKT3 (73, 74).

miRNA-200 FAMiLY

The miRNA-200 family consists of five highly homologous 
members: miR-200a, miR-200b, miR-200c, miR-429, and miR-
141. They are described as tumor-suppressor miRNAs, which are 
dysregulated in several malignancies (75, 76). For instance, miR-
200c and miR-141 are strong epithelial differentiation inducers 
of undifferentiated cancer cells (77). They also tend to increase 
E-cadherin expression and, therefore, cell adhesion, as well as 
reduce cancer cell migration and invasion (78). Targets of this 
family of miRNAs include E2F3, E-cadherin suppressor targets, 
such as Zeb1, Zeb2, and SNAI2, which are important inducers 
of epithelial–mesenchymal transition and of subsequent tumor 
cell invasion (79). Additionally, these miRNAs repress Suz12 
and Bmi1 stem cell markers whose expression leads to the 
formation of CSCs (80). Interestingly, other studies suggest a 
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pro-tumorigenic activity of this family of miRNAs, since miR-
141 is upregulated in the plasma during prostate (81) or ovarian 
cancer development (82) and miR-200b has been shown to 
stimulate epithelial– mesenchymal transition in human tongue 
cancer cells (70).

miR-122

miR-122 acts as a tumor suppressor by targeting genes involved 
in cell proliferation, migration, differentiation, apoptosis, and 
angiogenesis particularly in hepatocellular carcinoma (83). For 
instance, it directly down-regulates cyclin G1 that negatively 
regulates p53 protein stability (84). Other pro-tumorigenic targets 
of miR-122 include disintegrin, metalloprotease 10 (ADAM10), 
serum response factor (SRF), and insulin-like growth factor-1 
receptor (IGF-1R) (85, 86).

On the other hand, high levels of circulating miR-122 has 
been shown in hepatocellular carcinoma (87) and, therefore, it 
is considered as a diagnostic marker for prediction of metastatic 
progression in other malignancies, including breast cancer (88). 
Furthermore, T-EVs carrying miR-122 downregulate the con-
sumption of glucose in recipient cells by targeting pyruvate kinase 
PKM2 and Glucose transporter 1, leading to increased glucose 
availability for cancer cells. In addition, the same authors showed 
that T-EV secreted miR-122 also stimulated metastasis (89). It 
can, therefore, be suggested that miR-122 potentially plays a role 
during the early stages of tumor growth prior to angiogenesis, 
when the availability of nutrients is limited, and also when dis-
seminated tumor cells reach distant tissue where they compete 
with surrounding normal cells for nutrients (89). Therefore, 
miR-122 has potentially a dual role in cancer development acting 
as inhibitor and or as an inducer of metastasis depending on the 
stage of tumor development.

miR-221/222

miR-221/222 have been characterized as both oncogenic and/or 
as a tumor suppressor, according to the type of cancer (90). These 
miRNAs target the oncogene KIT, thus inhibiting tumor growth 
(91). However, they also target important tumor suppressors, 
such as PTEN, p27, p57, and TIMP3 (92), and overexpression of 
miR-221 has been observed in CSCs and also during EMT (93). 
Furthermore, secretion of miR-221/222 has been shown in the 
plasma of patients with oral, colon, lung, and other cancers (51). 
Interestingly, EVs released by MSCs also contain miR-221 and 
have been implicated to exhibit anti-angiogenic effects (94).

C19MC CLUSTeR

The miRNAs of C19MC cluster (“chromosome 19 microRNA 
cluster”) constitutes the largest human miRNA cluster known as 
of yet (95) as it encodes more than 50 mature miRNAs sharing 
common seed sequences (96). C19MC is exclusively expressed in 
the placenta and in undifferentiated cells, being the predominant 
miRNA species detected in placenta-derived EVs (97). Although 
the placenta is a normal tissue, it shares several common features 

with tumors, such as high cell proliferation, lack of cell-contact 
inhibition, and migratory and invasive properties. Both cancer 
and placental cells create a microenvironment supportive of 
immunologic privilege and angiogenesis (98, 99). Some C19MC-
miRNAs were classified as oncomiRs as they were associated with 
invasion and metastasis (100, 101). One such example is miR-520 
that was described to play a supportive role in proliferation and 
invasion due to its ability to suppress CD44 (102) and activate Ras/
Raf/MEK/Erk signaling pathways (103). By contrast, this miRNA 
has also been reported to be involved in suppressing metastasis as 
it is also attributed toward the direct downregulation of TGFBR2 
(104). Nevertheless, amplification of C19MC cluster is considered 
as a marker characteristic of pediatric brain tumors (100) and 
the emission of the related oncomiRs has been recently described 
(105). In addition, it has been shown that C19MC-carring EVs 
can also exert a possible antiviral effect (106, 107). The pattern of 
expression of C19MC-miRNAs in embryonic and tumor tissues 
suggests that exosomes carrying C19MC-miRNAs may play an 
important role in immunomodulation, cell reprograming, inva-
sion, and angiogenesis.

LONG-NON-CODiNG RNA

Recently, lncRNAs have been identified to be involved in various 
human cancers. Many of them have been detected within EVs 
present in biological fluids. Metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1) and HOX transcript antisense 
RNA (HOTAIR) are the most studied lncRNAs, which are 
deregulated in majority of cancers (108). They promote tumor 
growth by regulating cell cycle, invasiveness, migration, epithe-
lial–mesenchymal transition, and tumor angiogenesis.

Metastasis-associated lung adenocarcinoma transcript 1 regu-
lates alternative splicing of pre-mRNAs (109), and influences the 
expression of different metastasis-associated transcripts (110). 
HOTAIR downregulates various genes, including HOXA5 – dif-
ferentiating factor involved in lung development (111); p21 – a 
mediator of p53-induced growth arrest and apoptosis (112); Wnt 
inhibitory factor 1 (WIF-1) – an inhibitor of the Wnt/β-catenin 
pathway that mediates EMT (113); as well as tumor suppressor 
PTEN – an inhibitor of EMT (114).

In some cases, lncRNAs carried by EVs could enhance its own 
expression by an autoregulatory loop, as it has been observed with 
highly upregulated in liver cancer (HULC) lncRNA (115). HULC 
inhibits expression of tumor suppressor gene p18 and promotes 
hepatoma cell proliferation. In turn, the inhibition of tumor sup-
pressor gene p18 activity enhances expression of HULC (116).

The biological activity of lncRNAs carried by EVs has been 
described in CSCs studies. lncRNA H19 carried by T-EVs released 
from liver CSCs has been shown to promote angiogenesis and 
endothelial cell pro-adhesive functions (117). H19, as well as 
other lncRNAs, can not only function as a miRNA sponge for 
let-7 (118) but also as a precursor for miRNAs, or as an epigenetic 
modulator (119). Furthermore, H19 has been shown to play a role 
in tumor angiogenesis, upregulating VEGF and also stimulating 
heterotypic adhesion between endothelial cells and CSCs (117). 
Interestingly, the H19 lncRNA has been recently identified in EVs 
released from MSCs (6).
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DNA CARRieD BY evs

Extracellular DNA is predominantly found within apoptotic 
bodies; however, it is also present within microvesicles and 
exosomes (120, 121) particularly more common in EVs released 
by tumor cells. Similar to other genetic cargo, EV DNA may also 
be incorporated and reused by recipient cells (122). Holmgren 
et  al., for instance, reported that DNA secretion within EVs 
by tumor apoptotic cells occurred independently from nuclear 
condensation and apoptosis, and that only specific fractions 
of DNA fragments were present in apoptotic bodies. These 
fragments were enriched in oncogenes and had the ability 
to induce malignancy (123). Furthermore, DNA enriched in 
T-EVs was identified to reflect the genetic status of the tumor, 
for example, the amplification status of the oncogene c-Myc, as 
well as retrotransposons such as LINE-1 and Alu (124). This, 
therefore, means that T-EVs could transfer DNA between cells 
and insert it into recipient genome using a retrotransposon 
mechanism (124). It has also been shown that on transfecting 
non-tumorigenic immortalized rat intestinal epithelial cells 
(IEC-18) with human Ras oncogene increased the production 
of EVs rich in double-stranded DNA fragments spanning the 
entire host genome, including full-length human Ras and other 
rat oncogenes. In addition, exposure of non-transformed RAT-1 
cells to EVs containing mutant H-ras DNA led to enhanced cell 
proliferation (125), therefore, implying that cancer cells could 
use EVs for the transfer of DNA oncogenes. Recently, mitochon-
drial DNA has also been reported to be present in plasma EVs 
that can be imported into the mitochondria of recipient cells with 
physiological or pathological consequences (126). Transferred 
DNA can, therefore, act as a template for both DNA and RNA 
synthesis (127).

CANCeR STeM CeLLS ReGULATe 
TUMOR eNviRONMeNT THROUGH evs: 
eSTABLiSHMeNT OF TUMOR NiCHe, 
MeTASTASiS, AND iMMUNOMODULATiON

T-EVs have a number of specific characteristics relevant to 
tumor development. The acidic microenvironment present 
around tumors stimulates the release of T-EVs with higher 
cell fusion capacity and elevated content of the tumor marker 
Caveolin-1 (128). A number of studies have shown that T-EVs 
facilitate the escape of tumor cells from the immune system 
(129). For instance, it has been show that T-EVs carry ligands for 
death receptors FasL and TRAIL that may induce apoptosis in 
lymphocytes (130, 131). Furthermore, these EVs could regulate 
monocyte differentiation, promoting the generation of myeloid 
immunosuppressive cells (132). Biological function of the 
circulated T-EVs and their horizontal transfer of nucleic acids 
between distant cells have been reported in various studies. For 
example, Cossetti et  al. demonstrated that human melanoma 
cells [transfected with enhanced green fluorescent protein 
(EGFP) plasmid] when injected into mice, released exosomes 
carrying EGFP RNA, that was found not only in the circulation 
but also in spermatozoa (133). Furthermore, EVs have also been 

reported to have the ability to shuttle viruses, such as HIV and 
EBV (124, 133–135). These data, therefore, suggest that EVs may 
potentially participate in the dynamic regulation of whole body 
functions. Since T-EVs exhibit specific molecular patterns and 
are present in the circulation, saliva, urine, and other biological 
fluids, they are considered as a new diagnostic non-invasive tool, 
whose reliability has been demonstrated by diverse clinical stud-
ies reported in the literature (136, 137).

Cancer stem cells, also known as “tumor-initiating cells,” 
are a subpopulation of cancer cells that have the ability to 
self-renew and give rise to new tumors and metastasis. At 
present, CSCs were identified in many solid tumors, such as 
breast, renal, ovary, brain, pancreatic, prostate, colon, mela-
nomas, and hepatocellular cancers (138, 139). Several studies 
indicate that CSCs release EVs that may contribute to tumor 
initiation and progression by stimulation of cell proliferation, 
invasion, angiogenesis, and metastasis formation, as well as 
by the promotion of tumor immune escape (29, 140–143). 
In our laboratory, we have observed that EVs derived from 
renal CSCs impaired dendritic cell maturation as well as T cell 
immune response through HLA-G, a known suppressor of 
immune cell function and an effector of cancer immune escape 
(140). Moreover, these EVs promoted angiogenesis and lung 
metastases. Possible effectors of the above observed effects by 
EVs can be attributed to miRNAs carried by EVs, which are 
implicated in angiogenesis, tumor progression and metastases, 
such as miR-200c, miR-146, miR-92, miR-301, miR-7g, and 
miR-130b (29).

Extracellular vesicles derived from breast CXCR4-positive 
CSCs were shown to promote proliferation, motility, and 
metastasis, generating an enhanced tumorigenic phenotype in 
tumor cells (144). These EVs were highly enriched in mRNA 
of genes related with stem cell differentiation and development, 
such as NANOG, NEUROD1, HTR7, KISS1R, and HOXC6. 
Enrichment of these mRNA was detected also within EVs from 
plasma of breast cancer patients with poor prognosis, suggesting 
that CSCs-derived EVs could enhance cancer development by 
transporting RNA (144). Alessandro et al. (117) observed that 
CD90-positive CSCs from hepatocellular carcinoma released 
EVs, enriched with lncRNA H19, which upregulated VEGF 
in endothelial cells, stimulated angiogenesis, and promoted 
the adhesion of cancer cells to the endothelial cell monolayer. 
Furthermore, EVs from different cancer cell types were shown 
to contain different miRNA patterns. For instance, Sanchez 
et  al. (145) demonstrated that EVs from bulk prostate cancer 
cell line and from prostate CSCs contained 19 differentially 
expressed miRNAs and showed collaborative biological effect in 
tumorigenic niche formation. Moreover, breast cancer cell lines 
released EVs were identified to be rich in mir-130a, which con-
tributes to tumorigenesis of cancer by regulating TGB-β/Smad 
signaling (146), mir-106b that promotes breast cancer invasion 
and metastasis by targeting BRMS1 and RB (147), miR-210 that 
promotes angiogenesis and metastasis in vivo (148), and several 
others miRNAs (149).

As single miRNA can regulate multiple targets in different cells 
or tissues, single miRNA could act as a tumor suppressor in one 
context and as an oncogene in another. Let-7, miR-15b, miR-122, 
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and miR-100 are examples of miRNAs that were detected in 
plasma of cancer patients and exhibited dual role in cancer 
development.

MeSeNCHYMAL STeM CeLLS COULD 
ReGULATe TUMOR GROwTH viA evs

Tumor initiation and metastasis require formation of a favorable 
niche, which is a specific microenvironment that promotes tumor 
cell viability, proliferation, invasion, and involves several other 
types of cells, including MSCs. MSCs may enhance or suppress 
tumor progression and metastasis depending on doses and time 
of administration as well as on tumor model and stage (150). Their 
effects are considered to be dependent on paracrine mechanisms 
(150, 151) and EVs have been implicated as mediators of MSC 
actions (152).

Similar to MSCs, EVs derived from them also exhibit a contro-
versial influence on the development of tumors. Several studies 
have shown that MSC-EVs promote tumor growth through 
different mechanisms, including miRNAs transfer. For example, 
Zhu et al. (153) showed that MSC-EVs enhanced VEGF expres-
sion in tumor cells by activating extracellular signal-regulated 
kinase1/2 (ERK1/2) pathway. Other research groups showed 
that MSC-EVs significantly increased survival of tumor cells and 
support tumor growth in vivo in part by mechanism involving 
miR-21 and miR-34a (6).

On the other hand, several studies have also demonstrated the 
inhibitory role of MSC-EVs on tumor growth. For instance, it 
has been described, that MSC-EVs markedly downregulated the 
expression of VEGF in tumor cells, inhibiting tumor angiogen-
esis, by a mechanism involving miR-16, which was abundant in 
MSC-EVs and predicted to target VEGF (74). In our laboratory, 
it was found that EVs derived from human bone marrow MSCs 
inhibited both in  vitro and in  vivo growth of HepG2, Kaposi, 
and Skov-3 cells (19). MSC-EVs induced a block in cell cycle 
progression in G0–G1 phase in all cell lines. Moreover, they 
induced apoptosis in HepG2 and Kaposi cells and necrosis in 
Skov-3 cells. The biological effect was explained by a differential 
regulation of genes involved in the control of cell cycle inducing 
arrest of proliferation, therefore causing cell death by apoptosis 
or necrosis. Similar inhibition of cell cycle progression with arrest 
in the G1 phase was reported for MSCs as well (154–156). This 
anti-proliferative effect of MSCs was related to soluble factors 
since the cell-to-cell contact was not required (157).

EVs derived from human liver stem cells (HLSCs) also 
exhibited an anti-tumor effect due to the transfer of anti-tumor 
miRNAs (miR-223, miR-24, miR-31, miR-125b, and miR-451). 
EVs obtained from Dicer knock-down HLSCs showed a sig-
nificant reduction of anti-tumor activity both in vitro and in vivo. 
Furthermore, the inhibition of miR-451 and miR-31 reduced the 
observed pro-apoptotic activity of HLSC-EVs. When injecting 
HLSC-EVs or miR-31 or miR-451 mimics in vivo (intra-tumor), 
a regression in the tumor was observed (22). In another study, it 
has been shown that MSC-EVs carried miR-23b, which decreases 
proliferation and invasion of breast cancer cells through the inhi-
bition of MARCKS promoter of cell motility and cycling (158). 

Notably, this miRNA was detected in T-EVs as well together with 
other anti-tumor miRNAs, such as miR-145, miR-143, miR-223, 
and miR-224. It has, therefore, been suggested that tumor cells 
possibly dismiss these miRNAs through EVs to achieve more 
metastatic properties (159).

This controversial data on the effect of MSC-EVs suggest that 
MSCs could release EVs that could have functions that are com-
plex, diverse, and even opposite depending on the environment 
they are in. Even the same molecular pathways may respond in 
a different manner when stimulated by EVs. For instance, VEGF 
expression in tumor cells and consequent angiogenesis were 
shown either to be upregulated (153) or downregulated (74) 
after MSC-EV stimulation. The main difference between these 
studies showing anti-tumor or pro-tumor effect of MSC-EVs 
was the method of EV collection. When EVs were obtained from 
serum deprived MSCs they promoted tumor growth. In contrast, 
when EVs were collected from MSCs cultured with serum, they 
exhibited tumor-suppressive action. Indeed, Vallabhaneni et al. 
(6) showed that serum-deprivation may stress MSCs resulting 
in upregulation of miRNAs (miR-21 and miR-34) and lncRNA 
(lnc-Y1 and lnc-7SK) that are involved in cell survival and inhibi-
tion of apoptosis. These results suggest that cell stress stimulate 
production and secretion of molecules that may support tumor 
growth.

Another condition that changes the pro- or anti-tumoral char-
acteristics of MSC-EVs is MSC priming by tumor cells. MSCs co-
cultured with tumor cells or stimulated with T-EVs were shown 
to release EVs with tumorigenic properties. For example, in our 
laboratory, it was found that MSC stimulation with EVs from renal 
carcinoma CSCs leads to production of MSC-EVs that enhanced 
tumor cell migration and exhibited angiogenic properties (160). 
Another research group showed that MSC-EVs of patients with 
multiple myeloma-induced tumor growth in vivo and promoted 
dissemination of tumor cells to the bone morrow, whereas normal 
MSC-EVs exhibited an anti-tumor effect. Possible mechanism of 
this finding was the decreased content of tumor-suppressor miR-
15a in EVs derived from multiple myeloma MSCs with respect to 
normal MSC-EVs (161).

As for the cells, the timing of EV administration may be 
 critical (150). In fact, in the early phase of tumor growth, MSCs as 
well their EVs may facilitate the angiogenic shift of tumor favor-
ing tumor initiation (162). By contrast, in established tumors, 
MSCs and MSC-EVs may promote apoptosis of endothelial cells 
and tumor regression (163). Therefore, MSC-EV influence on 
tumor growth may depend not only on type and stage of tumor 
but also on MSC culture conditions that may modify the cell 
secretome.

CONCLUSiON

Through various studies reported in the current literature, it 
is quite evident that EVs derived from both MSCs and tumor 
cells display common ncRNAs; however, the functions they 
exhibit may be diverse depending on the cellular environment. 
Since ncRNAs interact with numerous molecular partners, their 
function is complex and depends on the cellular context. The 
response to EVs not only depends on their ncRNA/protein 
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content but also on the metabolic pathways activated in recipient 
cells as well as their specific function. The same EVs, for instance, 
may trigger opposite actions in normal and tumor cells (22). 
Pandolfi and co-workers (164) have suggested that there is a 
RNA language that uses miRNAs response elements in differ-
ent transcripts as “letters.” These diverse sets of miRNAs may 
form diverse “words,” thus performing different molecular and 
cellular functions. This hypothesis may, therefore, explain the 
different functions carried out by the same miRNAs in different 

contexts on tumor development. Taking into account that EV 
transport is bidirectional and that tumor cells can change the 
content of MSC-EVs and vice  versa (160, 161), it is possible 
that the individual ncRNA display different and even opposite 
functions in vivo.
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