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Tumors consist of cells in different stages of transformation with molecular and cellular 
heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), 
the most malignant and aggressive type of glioma. Most proteomic studies aim in com-
paring tumors from different patients, but here we dive into exploring the intratumoral 
proteome diversity of a single GBM. For this, we profiled tumor fragments from the 
profound region of the same patient’s GBM but obtained from two surgeries a year’s time 
apart. Our analysis also included GBM‘s fragments from different anatomical regions. 
Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by 
a four-step strong cation chromatographic separation; each fraction was then analyzed 
by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass 
spectrometer. Unsupervised clustering grouped the proteomic profiles into four major 
distinct groups and showed that most changes were related to the tumor’s anatomical 
region. Nevertheless, we report differentially abundant proteins from GBM’s fragments 
of the same region but obtained 1 year apart. We discuss several key proteins (e.g., 
S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO 
GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we 
know, this is the only report that compares GBM fragments proteomic profiles from 
the same patient. Ultimately, our results fuel the forefront of scientific discussion on the 
importance in exploring the richness of subproteomes within a single tissue sample for a 
better understanding of the disease, as each tumor is unique.
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inTrODUcTiOn

Glioblastoma multiforme (GBM) is by far the most malignant and aggressive type of glioma. Despite 
the conventional treatments such as surgical resection, radiotherapy, and chemotherapy, GBM is 
likely to recur. The approximate median survival rate for recurrent GBM patients after surgery is 
of 7.4 months (1), so to comprehend this disease, an understanding of the molecular mechanisms 
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FigUre 1 | Magnetic resonance imaging (Mri) of a patient with 
recurrent glioblastoma multiforme (gBM) in the right temporal lobe. 
(a), external; (B), profound; and (c), intermediary (as in according to the 
tumor’s center) area of the GBM.
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inherent from recurrence is fundamental (2). Furthermore, due 
to heterogeneity, glioblastomas, and gliomas in general, do not 
present well-defined surgical margins (3).

In a previous report, transcriptomic data revealed that, for most 
cases, fragments from the same GBM sample could be classified 
into at least two molecular subgroups (4); needless to say, tumors 
consist of cells in different stages of transformation, resulting in 
both molecular and cellular heterogeneity. We recently assessed 
the proteomic profile of two different morphological regions 
from the same GBM sample derived from a formalin-fixed 
paraffin-embedded tissue (FFPE) (5) and found proteins exclu-
sively identified in each region. These results corroborate on the 
postulation of the great variability, within the a single GBM, be it 
at the transcriptomic or proteomic level (6). Aquino et al. used a 
Multidimensional Protein Identification Technology (MudPIT) 
(7) to compare the protein profile present in gastric cancer 
biopsies against its respective resection margin and healthy tis-
sue acquired from endoscopic patients (8). The authors suggested 
that the resection margin “seemed more proteomically alike” to 
cancer than the healthy tissue (8). In another work from Aquino 
et  al., a gastric cancer biopsy was sectioned into ten parts and 
then each part was analyzed by MudPIT. The authors pinpointed 
tissue-specific proteins along the entire stomach with different 
levels of abundancy (9).

The aforementioned studies reflect difficulties and challenges 
in the inter and intratumoral assessment. In fact, large-scale 
intratumor heterogeneity assessments have been tremendously 
overlooked, most possibly because of technical difficulties. 
Nevertheless, the study of intratumor heterogeneity is now recog-
nized as one of the main areas in the study of cancer, culminating 
in ever-increasing evidence that intratumor heterogeneity is the 
key to understanding treatment failure (10). The reasons are 
many, heterogeneity affects the tumor biology in various ways; 
for example, through the generation of chemoresistant microen-
vironment, or even rendering mutations that could be linked with 
a therapy failure (3). The understanding of such heterogeneity 
is fundamental for designing treatments that are more effective.

Here, we perform a GBM intratumoral heterogeneity study by 
comparing tumor fragments from the same patient, but obtained 
from surgeries held 1  year apart. Our quantitative proteomic 
assessment was performed by labeling the tryptic peptides with 
Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) 
(11) and then performing a four-step offline MudPIT with an 
Orbitrap Velos mass spectrometer. Our study includes proteomic 
profiling of the profound, intermediary, and external regions of 
the GBM tumor.

case PresenTaTiOn

The University Hospital Ethics committee approved this 
study under the following permit: CONEP 9681 no. 124 
25000.009267/2004-25. A written informed consent was acquired 
from the patient.

A 49-year-old white man presenting painful headaches, 
drowsiness, and dysarthria was admitted to the neurosurgery ser-
vice. A brain magnetic resonance imaging (MRI) scan revealed 

a regular space-occupying lesion in the right temporal lobe that 
was enhanced with gadolinium. MRI revealed presence of a right 
temporal mass with an intense surrounding vasogenic edema. The 
patient promptly (December, 2011) underwent a right temporal 
craniotomy with total tumor resection that was also confirmed 
by MRI. In order to control the intracranial hypertension, the 
patient was treated with dexametazona before and after surgery. 
Histological analysis carried out by three different pathologists 
confirmed the diagnosis of a GBM. The patient was treated with 
hydantoin and subjected to radiotherapy concomitantly with 
chemotherapy using temozolomide. After 15 days, the patient was 
accepted to join the phase I/II protocol of intranasal administra-
tion of 55 mg of the monoterpene perillyl alcohol four times a day 
(12–14). One year later, the patient returned to the same hospital 
presenting similar symptoms and another MRI was obtained 
(Figure 1). The patient underwent a second neurosurgery due to 
the recurrence of the GBM.

One tumor fragment from the profound region was obtained 
during the first surgery and three tumor fragments, from different 
regions (i.e., profound, external, and intermediary) (Figure 1), 
from the second surgery. All fragments were stored at −80°C for 
further proteomic analysis.

eXPeriMenTal secTiOn

Materials
Isobaric Tags for Relative and Absolute Quantitation (Cat. no 
4352135) and Self-Pack Poros 20 R2 resin (Cat. no 1112810) 
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were acquired from Applied Biosystems. Qubit® Protein Assay 
Kit (Cat. no Q33212) and RapiGest SF acid-labile surfactant 
(Cat. no 186001861) were purchased from Invitrogen (Carlsbad, 
CA, USA) and Waters Corp. (Milford, MA, USA), respectively. 
Sequence grade modified trypsin (V511A) was purchased from 
Promega. Strong Cation Exchange Macro Spin Column (Cat. no 
744202) was acquired from Harvard Apparatus. All other labora-
tory reagents were acquired from Sigma-Aldrich (St. Louis, MO, 
USA), unless specified otherwise.

sample Preparation and Protein Digestion
All four glioblastoma sample lysates were obtained by sonication 
in ice, with amplitude of 30% for three cycles of one and a half 
minute each (Hielscher – UP50H) immerse in a solution con-
taining 0.2% of RapiGest™ (w/v) in 50 mM triethylammonium 
bicarbonate. Then, the lysates were centrifuged at 20,000  ×  g 
during 30  min at 4°C. Subsequently, the protein content was 
quantified by a fluorimetric assay using the Qubit® 2.0 platform 
according to the manufacturer’s instructions. Two hundred 
micrograms of protein from each region were reduced with 
20 mM of Tris (2-carboxyethyl) phosphine (TCEP) at 60°C for 
30 min. Afterward, all samples were cooled to room temperature 
and incubated in the dark with 66 mM of iodoacetamide (IAA) 
for 30 min.

Afterward, the samples were digested for 20 h with sequence 
grade modified trypsin (Promega) at a 1:50 (E/S) ratio at 37°C. 
Following digestion, all reactions were acidified with 10% (v/v) 
trifluoroacetic acid (0.5% v/v final concentration) to stop prote-
olysis and degrade RapiGest. The samples were centrifuged for 
30 min at 20,000 × g at 20°C to remove insoluble materials.

isobaric Tags for relative and absolute 
Quantitation labeling
The peptides were desalted with Poros® R2 resin (Applied 
Biosystems) packed “in house” according, to the manufacturer’s 
instructions. Twenty micrograms of tryptic peptides obtained 
from each area of the glioblastoma (i.e., profound from the first 
surgery, profound, intermediary, and external area from the 
second surgery) were labeled with the iTRAQ reagents according 
to the manufacturer’s directions. Briefly, for each iTRAQ 4-plex 
reagent vial, 70  μL of ethanol was individually added at room 
temperature. Each vial was vortexed and its contents were trans-
ferred to another tube containing twenty micrograms of digested 
peptides and labeled as follows: profound area from first surgery 
with iTRAQ-114, and profound, intermediary, and external areas 
from the second surgery labeled with iTRAQ-115 (Figure  1), 
iTRAQ-116 (Figure 1), and iTRAQ-117 (Figure 1), respectively. 
Subsequently, the samples were incubated for 1 h at room tem-
perature. Labeled peptides were combined in a single tube and 
concentrated on a SpeedVac (Thermo Fischer Scientific).

strong cation exchange chromatograph
The labeled peptides were suspended in solution A (5  mM 
KH2PO4  +  25% ACN, pH 3) and loaded into a strong cation 
exchange macro spin column from Harvard Apparatus. Peptides 
were eluted from the column in a stepwise manner by applying 

solution A with increasing KCl concentrations of 75, 150, 250, 
and 350 mM. Each fraction was desalted once again with Poros R2 
resin 20 μm (Applied Biosystems) according, to manufacturer’s 
instructions. The flow-through was also desalted and stored for 
posterior analysis.

Mass spectrometry analysis
The desalted peptide mixture was analyzed three times as follows. 
The setup used an Easy-nLC II (Proxeon) coupled online with a 
LTQ-Orbitrap Velos (Thermo, San Jose, CA) mass spectrometer 
(15). The peptide mixtures were loaded in a pre-column (2 cm, 
200 μm inner diameter, 5 μm C18 beads Reprosil-AQ Pur, Dr. 
Maisch) and were chromatographically separated using a 20 cm 
analytical column (75 μm inner diameter) that was packed in-
house with 3 μm C18 beads (Reprosil-AQ Pur, Dr. Maisch). The 
flow rate was 200 nL/min and the mobile phase composition was 
5% acetonitrile in 0.1% formic acid. We then applied a 120 min 
gradient using first 5–40% acetonitrile in 0.1% formic acid for 
100 min, then 40−95% acetonitrile in 0.1% formic acid for 20 min. 
The effluent from the nLC column was directly electrosprayed 
into the mass spectrometer.

The LTQ-Orbitrap Velos instrument was set in data dependent 
mode to automatically switch between full scan MS and MS/MS 
acquisition with a dynamic exclusion of 20 s turned on. Survey 
scans (350–2,000  m/z) were acquired in the Orbitrap system 
with a resolution of 60,000 at m/z 110. The ten most intense 
ions with charge states of 2+ or 3+ were sequentially isolated 
and fragmented in the HCD collision cell using a normalized 
collision energy of 40. The fragment ions were analyzed with a 
resolution of 7,500. The general mass spectrometric conditions 
were as follows: 2.30 kV spray voltage, 100 μA source current, 
no sheath and auxiliary gas flow, heated capillary temperature 
of 225°C, predictive automatic gain control (AGC) enabled, and 
an S-lens RF level of 64%. Mass spectrometer scan functions 
and nLC solvent gradients were controlled by the Xcalibur data 
system (Thermo, San Jose, CA, USA).

Peptide spectrum Matching
Sequences from Homo sapiens were downloaded from the 
UniProt consortium. A target-decoy database was generated using 
PatternLab 4.0 (16) to include a reversed version of each sequence 
found in the database plus those from 127 common mass spec-
trometry contaminants. The ProLuCID search engine (v. 1.3.1) 
(17) was used for comparing experimental spectra against those 
theoretically generated from a sequence database. The search was 
limited to fully and semi-tryptic peptide candidates. The search 
parameters imposed carbamidomethylation of cysteine as a fixed 
modification and the iTRAQ-4 modification in the N-terminal, 
K, and Y residues as variable. The search engine accepted peptide 
candidates within a 40-ppm tolerance from the measured precur-
sor m/z and used the XCorr as the primary search engine score.

assessment of Peptide sequence 
Matches and Profile grouping
The Search Engine Processor (SEPro), built into PatternLab 4.0, 
was used for converging to a list of identifications with less than 
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1% of false discovery rate (FDR) at the protein level, as previ-
ously described (18). Briefly, the identifications were grouped by 
charge state (2+ and ≥3+), and then by tryptic status, resulting 
in four distinct subgroups. For each group, the XCorr, DeltaCN, 
DeltaPPM, and Peaks Matched values were used to generate a 
Bayesian discriminator. The identifications were sorted in non-
decreasing order according to the discriminator score. A cutoff 
score was established to accept a false-discovery rate (FDR) of 
1% at the peptide level based on the number of labeled decoys. 
This procedure was independently performed on each data 
subset, resulting in an FDR that was independent of charge state 
or tryptic status. Additionally, a minimum sequence length of six 
amino-acid residues was required. Results were post-processed 
to only accept peptide spectrum match (PSMs) with less than 
6 ppm from the global identification average. One-hit wonders 
(i.e., proteins identified with only one mass spectrum) with the 
peptide having an XCorr of less than 2.5 were discarded. This last 
filter led to FDRs, now at the protein level, to be lower than 1% 
for all search results.

PatternLab’s TrendQuest module was used for grouping the 
proteomic profiles from each protein according the signals pro-
vided by the corresponding reporter ions as previously performed 
(19). PatternLab’s isobaric analyzer module was employed for 
pinpointing differentially abundant proteins when comparing 
the profound tissue samples from the first and second surgery as 
described in our bioinformatics protocol (16). PatternLab’s Gene 
Ontology Explorer module (20) and www.reactome.org (21) were 
used to help interpret the data.

resUlTs anD DiscUssiOn

Here we used iTRAQ to study the proteome diversity from three 
different areas of a recurrent GBM tumor i.e., profound, inter-
mediary, and external, as described in the experimental section. 
We also compared proteomic profiles of tumor fragments from 
the same patient’s GBM profound area, but obtained from 
surgeries held a year apart. Our proteomic results identified 
18,929 mass spectra providing sequences of 3,779 peptides 
(FDR  =  0.29%) that map to 2,773 (FDR  =  0.97%) protein 
sequences, of which 2,742 were successfully quantitated by 
iTRAQ; this list can be simplified to 768 proteins according to 
the bipartite-graph analysis for maximum parsimony (22). We 
employed the reactome software to obtain a birds-eye view of 
enriched pathways; for this, we provided as input all proteins 
quantitated by iTRAQ. The reactome pointed 21 enriched 
pathways (p  <  0.01); a full list (enriched or not) is provided 
in Table  S1 in Supplementary Material. Among the enriched 
pathway diagrams, we highlight the “RHO GTPases activate 
PKNs,” of which we identified 31 out of the 60 possible proteins 
from this pathway (Figure 2). PKNs, or protein kinase C-related 
kinases, feature a C-terminal serine/threonine kinase domain 
and three RHO-binding motifs at the N-terminus. PKNs play 
key roles in the regulation of cell cycle, receptor trafficking, 
vesicle transport, apoptosis, and mediating ligand-dependent 
transcriptional activation by the androgen receptor, to name a 
few. According to Fortin Ensign et al., in GBMs, Rho GTPases 

are usually deregulated, generally by hyperactivity or overex-
pression of their activators, Rho GEFs (Guanine Nucleotide 
Exchanging Factor); this ultimately promotes invasiveness and 
survival of the glioma cell (23).

The TrendQuest module generated four major protein groups 
by clustering proteins according to their relative abundance in 
each of the four samples under consideration (Figure 3). We note 
that not all identifications belong into one of these four groups. 
The clusters 1, 2, 3, 4 are composed of 377, 103, 392, and 281 pro-
tein entries, respectively. A visual assessment in Figure 3 reveals 
that Cluster #1 relates to proteins with higher abundancy in the 
external tissue (second surgery), #2 high in the profound tissue 
(first surgery), #3 high in intermediary tissue (second surgery), 
and #4, high in the intermediary (second surgery) and slightly 
less in the external tissue (second surgery). TrendQuest’s unsu-
pervised clustering provides a bird’s-eye view of the proteomic 
landscape throughout the four biological conditions. Figure  3 
reveals that more changes occurred when comparing the different 
anatomical regions of the same tumor (i.e., surgery 2) versus the 
comparison of the profound region of surgery 1 (point 1) versus 
that of surgery 2 (point 2). This conclusion emerges as cluster 
2, linking to differentially abundant proteins between profound 
from surgery 1 and 2, is only accountable for 103 proteins; the 
remaining clusters (1050 proteins), show major changes among 
the different anatomical regions from surgery 2 and, arguably, no 
changes between surgery 1 and 2.

The list of the proteins from each cluster, together with their 
summed reporter ion signal, is provided in the Tables S2–S5 in 
Supplementary Material, respectively. Table S6 in Supplementary 
Material lists 27 proteins belonging to a (small) cluster that 
presented the least changes as in according to our visual inspec-
tion; we believe this cluster indirectly reflect the heterogeneity 
of the tumor. Quantitated proteins not belonging to one of these 
clusters are listed in Table S7 in Supplementary Material. A 
complete list of all identified proteins with their corresponding 
peptide identifications is available in Table S8 in Supplementary 
Material. We make all our raw mass spectrometry files, SEPro 
results and intermediary ProLuCID/PatternLab files available for 
downloading at http://proteomics.fiocruz.br/supplementaryfiles/
oncology2016

Several reports corroborate with our results at the genomic 
and transcriptomic levels. Sottoriva et al. examined intratumoral 
heterogeneity of the external and profound areas of eleven GBMs 
at genomic and transcriptomic levels and concluded that frag-
ments from the same patient could be categorized into distinct 
subclasses of GBM (10). Several groups propose that treatment 
failure and recurrence of this tumor type is a consequence of 
intratumoral heterogeneity (24–26). It is tempting to hypothesize 
that most changes would occur when comparing the GBM frag-
ments from 1 year apart; yet, our results prove otherwise.

We used the PatternLab’s isobaric analyzer module to further 
pursue the differentially abundant proteins between the tissues of 
the profound regions obtained from different surgeries. We recall 
that this module employs a peptide-centric approach to assigned 
paired t-test p-values to each peptide and then converge to a final 
p-value, at the protein level, through the Stouffer’s method. We 
applied stringency filters to only consider the signal from unique 
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FigUre 2 | rhO gTPases activate PKns pathway (reactome identifier: r-hsa-5625740). The diagram represents a curated pathway provided from www.
reactome.org generated with our data. The circles and boxes represent small molecules and sets of proteins, respectively. Some protein sets are partially filled with 
dark green representing the percentage of the proteins we identified in that collection.
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peptides, proteins with p-value < 0.01, and presenting an average 
absolute peptide fold change greater than 1.5. Figure 4 shows a 
volcano plot of these results. Table 1 lists selected proteins satisfy-
ing these criteria. The complete list of the differentially abundant 
proteins is addressed in Table S9 in Supplementary Material. 
Figure  5 demonstrates the normalized iTRAQ signals from 
peptides mapping to the Metallothionein (P02795) and Lumican 
(P51884) proteins, upregulated in the first and second surgery, 
respectively.

Proteins presenting differential abundance between the 
surgeries held 1  year apart could be linked to recurrence or 
resistance to anti-cancer agents. We now shortlist several proteins 
from Table 1 that presented the greatest changes in abundance 
(p < 0.01). S100-A9, myeloperoxidase, catalase and metallothio-
nein-2 were upregulated in the sample from the first surgery and 
lumican, cathepsin D, galectin-1, and the S100-B protein in the 
second.

Proteins Upregulated in the First surgery
S100 describes proteins from a family that play key roles in mul-
tiple stages of tumorigenesis and progression (27). According to 

Li et al., these proteins, at relatively low concentrations, promote 
angiogenesis by increasing proliferation, migration, and tube 
formation of vascular endothelial cells (28). Interestingly, Huang 
et  al. reports S100-A9 to be upregulated in gliomas; however, 
treatments with NS-398 or aspirin lead to a downregulation of 
this protein (29). These facts, together with our results, pose the 
S100A9 as an interesting follow-up marker candidate for this type 
of tumor.

The myeloperoxidase is a lysosomal enzyme found in neutro-
phils and monocytes. Its atypical expression can lead to oxidative 
damage in normal tissues, contributing for the emergence of 
diseases such as atherosclerosis, Alzheimer, and cancer (30, 31). 
This protein has been correlated to ovarium (31), lung (32), and 
prostate cancer (33), to name a few. A recent study suggested that 
myeloperoxidase activity is essential during the tumoral devel-
opment; in the later stages; its expression is independent of the 
progression of cancer cells (34), once again corroborating with 
our results.

The catalase is an antioxidant enzyme, which play a role in cell 
defense against oxidative stress (35). In a study with mammary 
cancer cells, Glorieux et al. observed that higher abundances of 
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FigUre 4 | Volcano plot comparing peptides (the dots) from the profound glioblastoma multiforme (gBM) area derived from the first versus the 
second surgery. The y-axis represents the Loge fold change and the x-axis the −log of the paired t-test p-value. Peptides (dots) with a positive y-value had a higher 
abundancy in the first surgery; likewise, negative values, are peptides with higher abundancy in the second surgery. Green and red dots represent peptides that 
achieved a p-value lower than 0.01 and an absolute fold change in abundance greater than 1.5.

FigUre 3 | Proteomic profile clusters. Each panel displays the expression profiles of proteins that were grouped according to their abundance derived from 
each glioblastoma multiforme (GBM) condition. Each line represents a protein’s relative abundance. A thicker line is found in each cluster, this line is obtained by 
averaging the values at each point. The y-axis shows the normalized iTRAQ intensity. The x-axis represents the following conditions: 1, profound tissue area of a 
GBM from the first surgery (iTRAQ-114); 2, profound tissue area of a GBM from the second surgery (iTRAQ-115); 3, intermediary tissue area of a GBM from the 
second surgery (iTRAQ-116), and 4, external tissue area of a GBM from the second surgery (iTRAQ-117).
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TaBle 1 | Differentially abundant proteins obtained when comparing 
the profound glioblastoma multiforme tissues from the first versus the 
second surgery.

iD seq spec Fold change Description

P51884 6 51 −1.666 Lumican

P04271 3 20 −1.456 Protein S100-B

Q562Z6 3 40 −1.371 Actin-like protein (Fragment)

P12109 3 16 −1.338 Collagen alpha-1 (VI) chain

P07339 3 24 −1.295 Cathepsin D

P09382 5 59 −1.287 Galectin-1

P08670 29 592 −1.237 Vimentin

P06703 2 8 −1.052 Protein S100-A6

Q06830 5 36 −0.988 Peroxiredoxin-1

P04792 4 25 −0.865 Heat shock protein beta-1

P30041 2 18 −0.816 Peroxiredoxin-6

P13591 2 8 −0.755 Neural cell adhesion molecule 1

P29966 2 26 −0.751 Myristoylated alanine-rich 
C-kinase substrate

P50454 4 37 −0.735 Serpin H1

P07237 5 36 −0.727 Protein disulfide-isomerase

P06733 8 92 −0.702 Alpha-enolase

P16152 2 17 −0.696 Carbonyl reductase [NADPH] 1

P30101 3 21 −0.629 Protein disulfide-isomerase A3

P06576 3 23 −0.603 ATP synthase subunit beta, 
mitochondrial

P09211 3 13 −0.603 Glutathione S-transferase P

P30044 2 9 −0.552 Peroxiredoxin-5, mitochondrial

P08758 4 53 −0.401 Annexin A5

Q9H3Z4 2 11 0.123 DnaJ homolog subfamily C 
member 5

P01024 4 19 0.699 Complement C3

P01023 3 11 0.744 Alpha-2-macroglobulin

P04040 2 7 0.756 Catalase

P02647 2 7 0.932 Apolipoprotein A-I

Q6P5S8 6 65 1.228 IGK@ protein

A8K008 3 35 1.229 cDNA FLJ78387

P26022 2 11 1.244 Pentraxin-related protein PTX3

P02768 4 23 1.321 Serum albumin

P02795 2 23 1.357 Metallothionein-2

Q96K68 2 7 1.37 cDNA FLJ14473 fis, clone 
MAMMA1001080, highly similar 
to Homo sapiens SNC73 protein 
(SNC73) mRNA

P02763 2 15 1.438 Alpha-1-acid glycoprotein 1

P05164 5 30 1.967 Myeloperoxidase

P06702 5 57 2.281 Protein S100-A9

The ID column lists the Uniprot ID, Seq lists the peptide (sequence) count, Spec 
lists the spectral count, fold change lists the average Loge fold change of the unique 
peptides belonging to that protein. All proteins in the Table have a p-value <0.01 
according to the paired t-test for being differentially abundant. A positive fold change 
indicates the protein to be more abundant in the first surgery.
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this protein decreases the cellular growth and proliferation (36). 
On the other hand, in a report with lung cancer cells, it was 
suggesting that catalase may regulate the activity of cathepsin, 

resulting in a high variation of migration and invasion ability 
for the cancer development (37). The mechanism of catalase in 
cancer tumors remains unclear.

The metallothionein-2 was recently reported to be a negative 
regulator of apoptosis (38). Some studies showed an increased 
abundance of this protein to be correlated to tumor grade and 
a proliferative activity in solid tumors, linked to poor survival; 
therefore, this protein could be a protagonist in carcinogenesis 
and drug resistance; our results reinforce what was previously 
demonstrated in some cancer cells, including GBMs (38–40).

Proteins Upregulated in the second 
surgery
Lumican is a small leucine-rich proteoglycan (SLRPs) that plays 
roles in cell adhesion and by serving as a regulatory molecule 
in cellular functions such as cell migration, proliferation, and 
apoptosis (41, 42). Studies in colorectal, pancreatic, and breast 
cancer correlated an increased abundance to tumoral growth and 
metastasis (42–44). Farace et al. noted that the presence of cancer 
stem cells (CSCs) or tumor-initialing cells, in neuroblastomas 
and gliomas, promotes the activation of high abundance of 
SLRPs, creating a cell-microenvironment to survival and possibly 
favoring cancer recurrence (45).

The cathepsin D is an aspartyl endoproteinase, its higher 
abundance has been correlated with poor prognosis in breast and 
glioma cancer patients (46–48). Studies associated its molecular 
functions with protein catabolism, tissue remodeling, and in mul-
tiple tumor progression steps such as proliferation, angiogenesis, 
and apoptosis (46, 49). According to Berchem et al., this protein 
stimulates cancer cell proliferation and tumor angiogenesis, 
independently of its proteolytic activity (49).

Galectin-1 belongs to the carbohydrate-binding proteins 
family, it is abundantly secreted by almost all types of malignant 
tumor cells and its expression is tightly linked to the tumor aggres-
siveness. In particular, this protein plays vital pro-tumorigenic 
roles within the tumor microenvironment as the suppression of 
immune responses, promotes the tumor angiogenesis, and others 
functions related to invasion and metastasis (50, 51). A study with 
GBM cells revealed that the diffuse gliomas demonstrated higher 
expression levels compared with pilocytic astrocytoma, which 
the galectin-1 may modulate the migration and invasion in these 
cells (52).

The S100-B protein has been used in clinical studies to evalu-
ate the staging malignant melanoma and the treatment success, 
being considering an independent prognostic factor to predict 
the survival rate of the patients (53). The increasing S100-B 
concentrations indicate tumor progression and a worse prognosis 
for the patient (53); this is coherent with our results, which the 
patient presents in the second surgery, a high abundance of this 
protein. The patient deceased 1 year and 1 month after the second 
surgery.

gene Ontology enrichment analysis
PatternLab’s Gene Ontology Explore module was employed 
to statistically pinpoint over-represented gene ontology terms 
according to the hypergeometric distribution. The completed list 

http://www.frontiersin.org/Oncology/
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FigUre 5 | The iTraQ normalized signals from peptides mapping to lumican (left panel) and to Metallothionein (right panel). In each plot, each pair of 
columns with the same color are derived from the same spectrum (markers 114 and 115); this information is necessary for calculating the paired t-test. The left and 
right charts originate from five and eight spectra, respectively.
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of the enriched terms is long, and made available as Table S10 in 
Supplementary Material. Among some of the most statistically 
enhanced terms (p <<  0.01) many are related to the Ras pathway, 
frequently uncontrolled in gliomas (54). The Ras protein belongs 
to a familly of small GTPases that is ubiquitously expressed in 
all cell lineages and organs. This family is responsible for cellular 
signal transduction bringing to cell growth, differentiation, and 
survival. The clinically most notable members of the Ras subfam-
ily are H-Ras, K-Ras, and N-Ras, mostly for being involved in 
many types of cancer (55–57). The enriched terms related to this 
pathway were: Ras protein signal transduction (GO: 0007265), 
regulation of Ras protein signal transduction (GO: 0046578) and 
positive regulation for cell development (GO: 0010720), growth 
(GO: 0030307), migration (GO: 0030335), and proliferation 
(GO: 0008284). Among these terms, protein members of the Ras 
family are frequently found; some examples are: Rab GDP dis-
sociation inhibitor alpha (P31150), Ras-related protein Rap-1A 
(P62834), Rho GDP-dissociation inhibitor (J3QQX2), Rho 
GDP-dissociation inhibitor 1 (P52565), Rho GTPase-activating 
protein  1 (Q07960), Transforming protein RhoA (P61586), 
Importin subunit beta-1 (Q14974), Rho GDP-dissociation 
inhibitor 2 (P52566), Ras-related protein Rap-2c (Q9Y3L5), 
Ras-related protein Rap-2a (P10114). Some other key proteins 
related to tumors, identified in our dataset, and pertaining to 
these terms are: Cofilin-1 (P23528), 14-3-3 protein beta/alpha 
(P31946), Apolipoprotein A-I, E, C-III, Flotillin-1 (P35241) 
Radixin (P35241, A7YIJ8).

Final cOnsiDeraTiOns

Our strategy enabled us to peek behind a GBM’s heterogeneity 
smokescreen. Nevertheless, our glimpse remains elusive toward 
probing the real complexity of the cellular networks connecting 
a GBM’s core to its outer rims. We postulate that spatial com-
prehension is fundamental for paving the way toward effective 

treatments and have concentrated efforts in this direction. For 
example, one of our previous reports explored the proteomic 
landscape of a gastric cancer total resection (9); here, besides 
assessing the molecular topology, temporal changes were con-
sidered. As far as we know, this is the first work to accomplish 
such using an isobaric labeling approach. In the midst of so 
much heterogeneity, so many questions remain. Are the changes 
detected in the profound region a mechanism of survival? Or a 
causation from drug resistance? This scenario brings to forefront 
the discussion on how proteomic experimental design is carried 
as many reports do not consider spatial proteomics; how much 
will elevate numbers of “blended” tumors continue to shed light 
on our knowledge of this disease? We argue there is an entire 
universe to explore within a single tumor sample and that every 
tumor is unique. It is time to put into practice and pursue new 
paradigms devoted toward single-cell proteomics (58), these 
results could ultimately lead to a better comprehension on the 
cellular networks that drive tumors and demystify what appears 
to be a chaotic heterogeneity. Indeed, many say cancer is a loss 
of cellular control, chaos. Yet, according to José Saramago, a 
Portuguese writer and Nobel laureate in literature (1988), “chaos 
is merely order waiting to be deciphered.” Likewise, science 
argues that heterogeneity, by itself, could be a biomarker as 
more heterogeneous tumors have a higher chance of containing 
treatment-resistant subclones (59). So is this heterogeneity really 
chaos? A loss of order? Or is it a smokescreen camouflaging 
answers to the very basic questions such as what is the role of 
cancer in life. Be as it may, if life really emerged from chaos, let 
the words of Sun Tzu describe its origin: “In this midst of chaos, 
there is also opportunity.”
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