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Malignancies of the central nervous system (CNS), particularly glioblastoma and brain 
metastases from a variety of disease sites, are difficult to treat despite advances in 
multimodality approaches consisting of surgery, chemotherapy, and radiation therapy 
(RT). Recent successes of immunotherapeutic strategies including immune checkpoint 
blockade (ICB) via anti-PD-1 and anti-CTLA-4 antibodies against aggressive cancers, 
such as melanoma, non-small cell lung cancer, and renal cell carcinoma, have presented 
an exciting opportunity to translate these strategies for CNS malignancies. Moreover, 
via both localized cytotoxicity and systemic proinflammatory effects, the role of RT in 
enhancing antitumor immune response and, therefore, promoting tumor control is being 
re-examined, with several preclinical and clinical studies demonstrating potential syner-
gistic effect of RT with ICB in the treatment of primary and metastatic CNS tumors. In this 
review, we highlight the preclinical evidence supporting the immunomodulatory effect of 
RT and discuss the rationales for its combination with ICB to promote antitumor immune 
response. We then outline the current clinical experience of combining RT with ICB in the 
treatment of multiple primary and metastatic brain tumors. Finally, we review advances 
in characterizing and modifying tumor radioimmunotherapy responses using biomarkers 
and microRNA (miRNA) that may potentially be used to guide clinical decision-making 
in the near future.

Keywords: immune checkpoint blockade, immunotherapy, radiotherapy, CTLA-4, PD-1, glioblastoma, brain 
metastases, brain neoplasms

inTRODUCTiOn

Recent advances in the field of tumor immunology, such as the discovery of monoclonal antibodies 
targeting immune checkpoints, have opened a new frontier in the fight against cancer. These 
monoclonal antibodies recognize and inhibit immune suppressive functions mediated by cytotoxic 
T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) recep-
tors to promote immune-mediated antitumor activity (1–5). In the setting of metastatic melanoma, 
non-small cell lung cancer (NSCLC), Hodgkin’s lymphoma, and renal cell carcinoma (RCC), these 
agents achieved significant improvement in clinical responses and survival as monotherapies, 
but only in limited subsets of patients (1, 6–8). In order to broaden clinical utility and efficacy, 
recent investigations have focused on combination schemes that provide immune activation, 
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while counteracting inhibitory checkpoint signals. Radiation 
therapy (RT) has traditionally been perceived to be a local 
treatment strategy with potentially immunosuppressive effects 
(1, 9). However, recent data suggests that RT can trigger the 
“abscopal effect,” which describes treatment response in tumors 
outside the radiation fields through systemic immune-mediated 
antitumor effects (1, 10–14). Other types of immunostimulatory 
effects of RT have been observed in preclinical studies, and 
recent clinical studies exploring the role of RT in combination 
with immunotherapy have shown synergism between these two 
treatment modalities (15–17).

The brain has traditionally been considered an immunoprivi-
leged entity with most systemic therapies demonstrating mini-
mal to no intracranial activity. While recent advances in systemic 
therapy have significantly improved patient outcomes including 
survival, treatment of brain metastasis continues to represent 
a unique challenge, particularly for patients with neurotropic 
primaries, such as melanoma, NSCLC, and breast cancer (18). 
Similar challenges exist in the treatment of primary central nerv-
ous system (CNS) malignancies, such as glioblastoma, which is 
highly invasive and carries a 5-year survival rate of less than 10% 
(19, 20).

Fortunately, recent data have suggested that the CNS does 
indeed interact with the immune system and is subject to a 
dynamic regulation via proinflammatory and immunosuppres-
sive forces (21–23). With the development of immune checkpoint 
blockade (ICB), studies investigating combination therapy of ICB 
with traditional standard treatment, including RT, have suggested 
potential synergistic effects in the brain (24–27). In this review, 
we provide an overview of the immune modulatory effect of RT 
and rationales for radioimmunotherapy using ICB. We also aim 
to explore the future outlook of this emerging paradigm as well as 
the development of new biomarker platforms that can help har-
ness the full potential of this combined approach in the treatment 
of CNS malignancies.

PReCLiniCAL RATiOnALeS

immunostimulatory and Systemic 
Antitumor effects of Radiation Therapy
Although radiation has traditionally been considered an immu-
nologically inert process, the recent discovery of immunogenic 
cell death (ICD), a unique mode of cell death induced by RT 
or chemotherapy via potent host-mediated antitumor response 
(28), has suggested otherwise. Cell death occurs differently 
depending on the identity and maturity of the phagocytic cell, 
location and manner of phagocytosis, the availability of helper 
T-lymphocytes, type of death pathway that is triggered, release 
of immunosuppressive mediators (TGF-β, IL-10), and the 
immune cells that are exposed to antigens (29). ICD in particular 
is primarily defined by unique molecular processes, including 
the translocation of calreticulin (CRT) to the cell surface, ATP 
release, upregulation of costimulatory molecules, and the extra-
cellular release of high-mobility group protein B1 (HMG-B1), 
which enhances antigen cross-presentation and secretion of 
proinflammatory cytokines (28, 30).

Although RT has been speculated to exert immunosuppres-
sive effects via increased TGF-beta expression, M2 macrophage 
polarization, and T-regulatory (T-reg) cell recruitment, its 
immunostimulatory effect is beginning to be understood 
(31–34). Ionizing radiation has been shown to increase 
translocation and expression of CRT (35) and promote gene 
transcription of proinflammatory factors via HMG-B1 (36, 
37), which are the essential components of ICD, as well as 
reduce production of immune suppressive cytokines and 
increase expression of MHC-I and synthesis of novel peptides 
for cytotoxic T cell recognition (38). Moreover, RT has been 
shown to promote re-oxygenation and decrease interstitial 
fluid pressure within the tumor microenvironment, improving 
immune cell recruitment and infiltration into irradiated tumor 
(39). Finally, RT induces the release of tumor-associated anti-
gens (TAAs), diversifying the TCR (T-cell receptor) repertoire 
of infiltrating CTLs and leading to increased efficacy of CTLs 
(27, 40). Notably, these cancer-specific and stromal-associated 
responses occur simultaneously and define radiation-induced 
immunogenicity of the tumor cells. Preclinical studies have 
clearly suggested that radiation, although conventionally 
perceived as a local therapy, can potentially exert systemic 
antitumor effects at least through both cancer cell intrinsic and 
tumor microenvironmental modulations. These mechanisms 
are illustrated in Figure 1.

immune Checkpoint Blockade  
and CnS Tumors
While the brain has traditionally been considered an immu-
noprivileged organ system, it is now commonly accepted that 
dysregulation of immune surveillance may be involved in the 
pathogenesis and progression of multiple CNS malignancies (41). 
Similar to other types of cancers, primary brain tumors can evade 
immune system detection through multiple immunosuppressive 
mechanisms, including upregulation of immune checkpoints. For 
example, PD-L1 has been shown to be upregulated in glioblastoma 
cells as well as circulating monocytes and macrophages through 
oncogenic signaling resulting from PTEN loss and modulation 
of autocrine–paracrine IL-10 signaling (42–44). Increased PD-1 
and PD-L1 expression has also been observed in brain metastases 
and primary CNS lymphomas (45, 46). These findings warrant 
further exploration of ICB, in particular PD-1 or PD-L1 blockers, 
in the pathogenesis and treatment of primary and metastatic CNS 
malignancies.

Radiation therapy is the pillar of standard therapy for primary 
and secondary brain tumors. The immunostimulatory effects of 
RT make it a natural candidate as a synergistic partner with ICB. 
Indeed, prior preclinical studies have shown survival benefits of 
radiation with tumor vaccination in glioma mice models (20). 
In melanoma, RT has been shown to diversify TCR repertoire 
of infiltrating CTLs and enhance their function via RT-induced 
release of TAAs (27). This mechanism worked in concert with 
an anti-CTLA-4 agent leading to inhibition of T-reg cell function 
and increased CD8+ T cell/T-reg ratio. Interestingly, the addition 
of an anti-PD-L1 agent further prevented T cell exhaustion (40). 
In murine glioma models, combining radiation concurrently 
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FiGURe 1 | immunostimulatory effects of radiation therapy (RT) in combination with immune checkpoint blockade (iCB) in the CnS. RT and ICB work 
synergistically to create an immunogenic tumor microenvironment and promote systemic antitumor response. Anti-PD-1 and PD-L1 agents reduce tumor 
cell-mediated exhaustion signals to CD8+ CTLs, while anti-CTLA-4 agents block competing co-inhibitory activity of CTLA-4, resulting in increased and persistent 
T-cell activation. RT triggers immunogenic cell death (ICD) of tumor cells, displacement of calreticulin (CRT) to the cell surface, release of HMG-B1, increased MHC-I 
expression, and release of tumor-associated antigens (TAAs), with consequent increase in TCR repertoire of infiltrating T-cells. In addition, RT has stromal effects on 
the tumor microenvironment: increasing oxygenation, infiltration of TILs, and permeability of the blood–brain barrier (BBB), while decreasing interstitial fluid pressure. 
In combination with ICB, RT also reduces activity of T-regs and MDSCs. SRS, stereotactic radiosurgery; WBRT, whole brain radiation therapy; CTL, cytotoxic 
T-lymphocyte; PD-1/L1, programmed cell death protein 1/ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DC, dendritic cell; TIL, tumor-infiltrating 
lymphocyte; TAA, tumor-associated antigen; MHC, major histocompatibility complex; TCR, T-cell receptor; MDSC, myeloid-derived suppressor cell; HMG-B1, high 
mobility group box 1.
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with anti-PD-1 and anti-CTLA-4 or 4-1BB (a costimulatory 
molecule) agonist yielded improved survival and increased 
tumor-infiltrating leukocyte (TIL) population, compared with 
either modality alone (24, 47). The rationale for combining RT 
with PD-1/PD-L1 blockers is further supported by the observa-
tion that local inflammation mediated by RT results in PD-L1 
upregulation on cancer cells, macrophages, and dendritic cells 
(DCs) (48). Moreover, a recent study in murine melanoma brain 
metastases (MBM) showed that increasing radiation dose with 
concurrent immunotherapy improved median and long-term 
survival and prolonged tumor dormancy (49). Finally, while the 
penetrance of ICB agents into the CNS via the blood–brain bar-
rier (BBB) is not fully known, RT has been shown to increase BBB 
permeability (50), further facilitating the penetrance of activated 
antitumor immune cells and possibly the access of ICB agents as 

well – providing another compelling rationale for combination 
RT-ICB therapy in the treatment of primary and metastatic CNS 
tumors (Figure 1).

CLiniCAL STUDieS AnD eXPeRienCe

The combination of RT and ICB has been reported to improve 
clinical outcomes in multiple metastatic cancers. In metastatic 
melanoma, potential radiation-induced abscopal responses have 
been reported in the setting of CTLA-4 blockade (10, 51, 52). The 
first of such reports was by Postow et al., who described a patient 
with paraspinal, splenic, and right hilar metastatic disease receiv-
ing palliative radiation to the paraspinal lesion with concurrent 
ipilimumab. Five months after treatment, all lesions demonstrated 
regression on restaging CT scans (10). Similar case studies have 
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reported potential clinical benefits of combining radiation with 
ICB in metastatic melanoma (51, 52) as well as NSCLC (53).

In addition to immunogenic tumors, such as melanoma and 
NSCLC, the role of radiation combined with ICB has also been 
investigated in metastatic, castration-resistant prostate cancer. 
A recently completed phase I/II trial looked at combining ipili-
mumab and palliative RT to bony disease and found a complete 
response rate of 2% and stable disease in 12% of patients (54). 
Although no difference in overall survival was noted, there were 
signs of enhanced antitumor activities in the ipilimumab arm 
with decreased PSA and improved progression-free survival 
(PFS). It is, however, questionable, whether radiation contrib-
uted to these benefits as both the ipilimumab and placebo arms 
received RT. Another early trial attempted to ask this question 
by looking at ipilimumab vs. ipilimumab plus RT in metastatic 
prostate cancer and demonstrated promising clinical response 
(55). However, a phase III trial of this regimen in men with previ-
ously treated CRPC failed to demonstrate a significant overall 
survival benefit (56).

In the metastatic disease setting, there are multiple ongoing 
trials combining RT, particularly stereotactic radiosurgery (SRS) 
or hypofractionated radiation, with immunotherapy in multiple 
cancer types. At MD Anderson, we are currently investigating 
different combinations of immune checkpoint blockers with ste-
reotactic body radiation therapy (SBRT) for lung and liver metas-
tasis from multiple primary sites (NCT02239900, NCT02402920, 
NCT02444741).

Brain Metastases
Clinical evidence supporting the efficacy of combining RT and 
ICB in the treatment of CNS tumors is primarily garnered from 
melanoma patients with metastatic disease and is retrospective 
in nature. Three retrospective single-institution studies have 
suggested that ipilimumab in combination with RT may be more 
effective than RT alone in MBM (57–60). Knisely et al. reviewed 
the outcomes of 77 patients with MBM who received SRS as well as 
ipilimumab. Patients who received combination therapy demon-
strated improved survival compared with those who received SRS 
alone (58). Moreover, a study by Silk et al. explored the benefits 
of combination therapy vs. RT alone in 70 MBM patients who 
received brain radiation (either SRS or WBRT) with ipilimumab. 
Retrospective analysis demonstrated an OS benefit of 19.9 months 
with combination therapy vs. 4.0 months for SRS alone, with no 
associated increase in toxicity with addition of ipilimumab to SRS 
(59). An interesting study by Kiess et al. investigated the impact 
of timing in administration of SRS for brain metastases and ICB 
on patient outcome. Patients who received SRS before or concur-
rently with ipilimumab appeared to exhibit improved outcomes 
in OS and distant intracranial control compared to patients who 
received radiation after immunotherapy (60). Notably, responses 
to ipilimumab therapy in the brain, as in extracranial disease, can 
be quite durable with some reported response beyond 4  years 
(61). Given the retrospective and single institutional nature of 
these studies, caution needs to be taken regarding interpretation 
of their results. Several prospective early phase clinical trials at 
multiple institutions are investigating different combination 
regimens of RT with immune checkpoint blockers in the setting 

of brain metastases (Table 1). Results from these studies will one 
day shed light on the clinical benefit of combining radiation with 
immunotherapy for the treatment of brain metastases.

Primary Brain Tumors and Ongoing 
Clinical Trials
For primary CNS tumors, such as glioblastoma, several combina-
tion approaches with radiation have been explored clinically (62). 
For example, immunotherapy in the form of vaccines derived 
from autologous DCs and pulsed with tumor lysate and various 
tumor antigens (such as the EGFRvIII vaccine Rindopepimut) 
have shown some promise in the clinical setting (20). A rand-
omized phase II trial testing ICT-107, a vaccine composed of 
autologous DCs and tumor antigens, administered with radiation 
and temozolomide for newly diagnosed glioblastoma, demon-
strated benefit in terms of OS and PFS for a subset of HLA-A2 
positive patients (63).

Although evidence supporting the combination of ICB and 
RT for glioblastoma is currently lacking, several clinical trials 
are underway examining this combination for newly diagnosed 
and recurrent glioblastoma (Table  1). Two of these are large 
multi-institutional trials in phases II and III (NCT02667587, 
NCT02617589) examining OS in patients given nivolumab in 
combination with radiation (with/without concurrent temozolo-
mide) for newly diagnosed glioblastoma, while another smaller 
trial is examining similar combinations with pembrolizumab 
(NCT02530502). A phase II trial sponsored by the Ludwig Institute 
is investigating OS in monotherapy with the PD-1 inhibitor dur-
valumab (MEDI4736) in comparison to combination approaches 
with standard RT or the VEGF inhibitor bevacizumab. Finally, a 
phase I trial is examining maximum dosage of pembrolizumab 
when it is used with combination therapy with bevacizumab and 
a hypofractionated radiation regimen given over 5 days for recur-
rent glioma. Additional clinical trials investigating combination 
approaches in the context of primary CNS malignancy will soon 
be underway.

Future Outlook
Glioblastoma is notorious for employing a wide variety of 
immunosuppressive strategies to disrupt the function of immune 
cells, lower immunoglobulin levels, and generate a plethora 
of immunosuppressive processes, involving TGF-beta, IL-10, 
MHC-I downregulation, T-regs recruitment, and increased 
expression of PD-L1 (20, 64–68). Development of therapeutics 
for glioblastoma is complicated by the variability in antigen 
expression within individual tumors and subtypes. The ability 
to target the unique signature of tumor-specific mutations and 
antigens (“neoantigens”) is crucial in effective tumor control, and 
the expression of these neoantigens has been shown to predict 
long-term response to ICB in metastatic melanoma and NSCLC 
(69, 70). Strategies such as biomarker and microRNA (miRNA) 
development are under investigation to predict and modulate 
tumor response to immunotherapy and RT.

Biomarker identification
Along with clinical trials, current translational research efforts 
are exploring potential predictive biomarkers for response to 
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TABLe 1 | Current clinical trials of immunotherapy with radiation for primary and metastatic CnS malignancy.

Study 
phase

institution/ 
group

ClinicalTrials.
gov iD

Disease site Cohorts Planned 
accrual

iT mechanism est. 
completion 
date

Primary 
outcome 
measure

II Multi-institutional 
(CheckMate548)

NCT02667587 Newly diagnosed 
glioblastoma

Nivolumab + temozolomide + 
RT vs. placebo + temozolomide 
+ RT

n = 320 anti-PD-1 May 2017 OS

III Multi-institutional 
(CheckMate498)

NCT02617589 Newly diagnosed 
glioblastoma

Nivolumab + RT vs. 
temozolomide + RT

n = 550 anti-PD-1 October 2019 OS

II Ludwig Institute 
for Cancer 
Research

NCT02336165 Newly diagnosed, 
recurrent  
glioblastoma

MEDI4736 vs. MEDI4736 + 
standard RT vs. MEDI4736 + 
bevacizumab

n = 108 anti-PD-1 July 2017 OS, PFS

I/II Northwestern  
University

NCT02530502 Newly diagnosed 
glioblastoma

RT + temozolomide + 
pembrolizumab → temozolomide 
+ pembrolizumab

n = 50 anti-PD-1 March 2018 Dosage, 
PFS, OS

I H. Lee Moffitt  
Cancer Center

NCT02313272 Recurrent glioma HFSRT + pembrolizumab + 
bevacizumab

n = 32 anti-PD-1 June 2017 Dosage

I/II MD Anderson 
Cancer Center

NCT02696993 NSCLC BM Nivolumab + SRS; nivolumab + 
WBRT; nivolumab + ipilimumab 
+ SRS; nivolumab + ipilimumab 
+ WBRT

n = 130 anti-PD-1; 
anti-CTLA-4

April 2020 Dosage; 
PFS

II Grupo Español 
Multidisciplinar de 
Melanoma (GEM)

NCT02115139 Melanoma BM Ipilimumab + WBRT n = 66 anti-CTLA-4 October  
2016

1-year 
survival rate

II University of 
Michigan Cancer 
Center

NCT02097732 Melanoma BM Ipilimumab → SRS → ipilimumab 
vs. SRS → ipilimumab

n = 40 anti-CTLA-4 May 2017 Local 
control rate

I Thomas Jefferson 
University

NCT01703507 Melanoma BM Ipilimumab + WBRT vs. 
ipilimumab + SRS

n = 24 anti-CTLA-4 November 
2017

Dosage

I Sidney Kimmel 
Comprehensive 
Cancer Center

NCT01950195 Melanoma BM Ipilimumab + SRS n = 30 anti-CTLA-4 December 
2016

Adverse 
events and 
safety

II University  
Hospital, Lille

NCT02662725 Melanoma BM Ipilimumab + SRS n = 73 anti-CTLA-4 December 
2015

OS

RT, radiation therapy; PD-1, programmed cell death protein 1; OS overall survival, PFS, progression-free survival; HFSRT, hypofractionated stereotactic radiotherapy; IMRT, intensity-
modulated radiation therapy; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; irRC, immune-related response criteria; WBRT, whole brain radiation therapy; NSCLC, non-small 
cell lung cancer; BM, brain metastases; SRS, stereotactic radiosurgery; MM, metastatic melanoma; SBRT, stereotactic body radiation therapy.
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immunotherapies in glioblastoma (71). Increased PD-L1 expres-
sion in circulating monocytes has been identified as a biomarker 
for tumor-induced immunosuppression and a prognostic factor 
for poor survival. For example, in one study of glioblastoma 
patients, the median overall survival for high-expressers of 
PD-L1 was 18.0  months compared with 44.7  months for low 
PD-L1 peripheral monocyte expressers (5). Another example is 
level of tumor EGFRvIII expression as a biomarker for response 
to the EGFRvIII vaccine in glioblastoma (72). Increased periph-
eral blood levels of CD33+HLA-DR− myeloid-derived suppressor 
cells (MDSCs), with the potential to induce T-regs and apoptosis 
in activated lymphocytes as well as secrete immunosuppressive 
cytokines and oxidizing molecules, have also been reported 
patients with glioblastoma. RT in combination with ICB has been 
shown to reduce tumor-associated MDSCs in comparison to 
single therapy via the activity of CD8+ T cells and tumor necrosis 
factor (TNF) signaling in vivo (48). Moreover, a diminution in the 
level of circulating T-regs has shown promise as a biomarker for 
treatment response to immunotherapies (73).

MicroRNAs can act as oncogenes or tumor suppressors 
through controlling target gene expression and binding of 
mRNA, and also carry promise as biomarkers (74). In glio-
blastoma, tumor miR-21 has been a promising candidate as a 
biomarker in diagnosis and response to chemotherapies (75). 
In the serum, levels of miR-128, miR-320, and miR-574-3p have 
been found to be elevated (76, 77). Interestingly, the presence 
of metastatic disease in the brain can be distinguished from 
glioblastoma via the identification of the miR-200 family in cer-
ebrospinal fluid (78). miRNA can also serve as targets for therapy. 
Double-stranded miRNA mimics can reinstate activity of tumor 
suppressor miRNA, and oncogenic miRNAs can be disenabled by 
single-stranded antisense nucleotides known as “antimiRs” (79). 
One example in the CNS is miR-296, which led to reduced tumor 
volume and angiogenesis in a murine glioma model (80). Another 
miRNA, miR-221/222, demonstrated reduced tumor volume in 
murine melanoma (79). A potential target for an miRNA mimic 
in ICB is miR-138, which has been demonstrated to target both 
CTLA-4 and PD-1, inhibiting tumor-infiltrating T-regs and 
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subsequently releasing the brake set by these immunosuppressive 
cells within the glioblastoma microenvironment (81). Whether 
specific miRNA can be used to predict treatment responses to 
immunotherapy warrants further investigation.

Newer techniques, such as multi-parameter flow cytometry, 
time-of-flight mass cytometry (CyTOF) and whole-repertoire 
T and B receptor amplification, can be used to characterize the 
immunologic cellular makeup of primary and metastatic brain 
lesions at baseline and changes in circulatory immune cell profile 
during treatment (1, 72, 82, 83). RNAseq transcriptome profiling 
of tumor samples can quantify the presence of markers, tumor 
antigens, and certain genes. The latter has demonstrated utility 
in predicting survival in neuroblastoma and treatment response 
in breast cancer (84). Finally, “imaging genomics” or “radiomic” 
analysis may be a cost-effective and non-invasive strategy to link 
the radiophenotype of a tumor it its underlying genomic and pro-
teomic characteristics, via the high-throughput extraction and 
analysis of large amounts of radiographic imaging for distinctive 
features, which can then be mapped to certain genomic and prot-
eomic patterns such that predictive and prognostic classifications 
may be made (85–88). Radiomic analysis may be particularly 
useful to characterize and distinguish radiation necrosis (RN), a 
potential late adverse effect of high-dose focal irradiation to the 
brain occurring more frequently in patients receiving ICB (89), 
from tumor progression or recurrence and the phenomenon 
of pseudoprogression. Furthermore, this strategy may be used 
with traditionally measured biomarkers and miRNA profiles to 

construct multi-dimensional schemes for prediction of response 
to combining ICB and RT, development of tailored treatment 
plans, and assessment of adverse effects of such therapy.

COnCLUSiOn

A new generation of immunotherapeutics, most prominently the 
immune checkpoint inhibitors, has ushered in a new era of cancer 
treatment strategies. Despite the effectiveness of these agents, sig-
nificant limitations remain. Multiple studies have begun to reveal 
a synergistic effect between ICB and RT, with numerous clinical 
trials exploring combinatorial strategies in diverse sites of disease. 
Primary CNS malignancies, such as glioblastoma, and far more 
commonly metastatic lesions, carry a grim prognosis and stand to 
gain much benefit from novel combination approaches utilizing 
RT and ICB. Benefits in terms of survival and intracranial control 
have been shown in the preclinical setting and are now being tested 
in various trials. However, many important questions remain to 
be answered. Nevertheless, with improved understanding of how 
RT interacts with the immune system, combined strategies that 
utilize RT with ICB may provide a new and effective to treat CNS 
malignancies.
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