
November 2016 | Volume 6 | Article 2411

Review
published: 14 November 2016
doi: 10.3389/fonc.2016.00241

Frontiers in Oncology | www.frontiersin.org

Edited by: 
José - Bines,  

Instituto Nacional de Câncer, Brazil

Reviewed by: 
Tomas Reinert,  

Instituto do Câncer Mãe de Deus e 
Instituto DeVita, Brazil  

Paul N. Mainwaring,  
ICON Cancer Care, Australia

*Correspondence:
Wendy V. Ingman 

wendy.ingman@adelaide.edu.au

Specialty section: 
This article was submitted to 

Women's Cancer,  
a section of the journal  

Frontiers in Oncology

Received: 30 August 2016
Accepted: 27 October 2016

Published: 14 November 2016

Citation: 
Bernhardt SM, Dasari P, Walsh D, 

Townsend AR, Price TJ and 
Ingman WV (2016) 

Hormonal Modulation of Breast 
Cancer Gene Expression: 

Implications for Intrinsic Subtyping 
in Premenopausal Women. 

Front. Oncol. 6:241. 
doi: 10.3389/fonc.2016.00241

Hormonal Modulation of Breast 
Cancer Gene expression: 
implications for intrinsic Subtyping 
in Premenopausal women
Sarah M. Bernhardt1,2, Pallave Dasari1,2, David Walsh1, Amanda R. Townsend1,3,  
Timothy J. Price1,3 and Wendy V. Ingman1,2*

1 Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia, 
2The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia, 3 Department of Medical Oncology, The 
Queen Elizabeth Hospital, Woodville, SA, Australia

Clinics are increasingly adopting gene-expression profiling to diagnose breast cancer 
subtype, providing an intrinsic, molecular portrait of the tumor. For example, the PAM50-
based Prosigna test quantifies expression of 50 key genes to classify breast cancer 
subtype, and this method of classification has been demonstrated to be superior over 
traditional immunohistochemical methods that detect proteins, to predict risk of disease 
recurrence. However, these tests were largely developed and validated using breast 
cancer samples from postmenopausal women. Thus, the accuracy of such tests has not 
been explored in the context of the hormonal fluctuations in estrogen and progesterone 
that occur during the menstrual cycle in premenopausal women. Concordance between 
traditional methods of subtyping and the new tests in premenopausal women is likely to 
depend on the stage of the menstrual cycle at which the tissue sample is taken and the 
relative effect of hormones on expression of genes versus proteins. The lack of knowledge 
around the effect of fluctuating estrogen and progesterone on gene expression in breast 
cancer patients raises serious concerns for intrinsic subtyping in premenopausal women, 
which comprise about 25% of breast cancer diagnoses. Further research on the impact 
of the menstrual cycle on intrinsic breast cancer profiling is required if premenopausal 
women are to benefit from the new technology of intrinsic subtyping.
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iNTRODUCTiON

Approximately 25% of breast cancers are diagnosed in women under the age of 50 (1). When breast 
cancer is diagnosed in young women it carries a high burden, with reduced 5-year survival rates 
compared to breast cancer in older women (2, 3), and a devastating impact on young families. Breast 
cancer is considered a chronic disease, with increased mortality extending over the next 40 years, 
even if the breast cancer is diagnosed at an early stage (3).

In premenopausal women, cyclical production of ovarian hormones estrogen and progesterone 
occur over the course of the menstrual cycle, causing the mammary gland epithelium to undergo 
cycles of proliferation, differentiation, and apoptosis (4, 5). Estrogen and progesterone play key 
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roles in the development of breast cancer, with the relative risk of 
breast cancer related to the breast’s cumulative exposure to these 
hormones (6, 7).

Breast cancer is not a single disease. There are many mutated 
genes that can drive tumor development, and biomarkers are 
essential to classify breast cancer into its different subtypes, each 
of which responds best to different therapies. Currently, immuno-
histochemical assays that detect abundance of proteins are used 
to identify expression of estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor receptor 2 
(HER2) and determine the rate of proliferation of the cancer 
cells (Ki67). These biomarkers are used collectively to diagnose 
subtype and thus determine the best treatment option for an 
individual patient.

Now, clinics are increasingly adopting gene-expression profil-
ing to diagnose breast cancer subtype, providing an intrinsic, 
molecular portrait of the tumor. For example, the PAM50-based 
Prosigna test quantifies expression of 50 key genes to classify 
breast cancer subtype. Tests that diagnose intrinsic breast cancer 
subtype must be robust, and relatively resistant to fluctuations 
in gene expression. Generally, good concordance is observed in 
gene expression between pairs of diagnostic and surgical samples 
and between classification of subtype by gene expression and 
traditional immunohistochemical techniques.

However, despite their availability for diagnosing breast 
cancer subtype in premenopausal women, tests that utilize gene-
expression profiling were largely developed and validated using 
breast cancer samples from postmenopausal women. Fluctuations 
in ovarian hormones estrogen and progesterone across the 
menstrual cycle may affect expression of genes currently used 
in intrinsic subtyping tests. Indeed, studies have found poor 
concordance between classification of subtype by intrinsic tests 
and traditional immunohistochemistry in premenopausal breast 
cancer patients (8, 9).

Here, we outline the role of ovarian hormones in regulation 
of gene expression in the breast and highlight the deficiencies in 
knowledge around intrinsic subtyping in premenopausal breast 
cancer. As different therapeutic strategies are required depend-
ing on the tumor type, effective subtyping of breast cancers is 
necessary to help guide treatment decisions and provide accurate 
prognostic information for each patient. Intrinsic subtyping offers 
some significant advantages over traditional subtyping methods; 
however, the current tests have not been sufficiently validated 
in the context of premenopausal breast cancers, where there are 
significant fluctuations in estrogen and progesterone. There is a 
pressing need for more research into hormonal modulation of 
breast cancer gene expression in order to provide the optimal 
subtype diagnosis for premenopausal women.

HORMONALLY DRiveN CHANGeS 
iN THe BReAST DURiNG THe 
MeNSTRUAL CYCLe

During the follicular phase of the menstrual cycle, increasing 
levels of FSH produced by the pituitary stimulate maturation of 
estrogen-secreting ovarian follicles. Estrogen acts on the pituitary 

to further increase the production of FSH and LH. Eventually, 
the concentration of estrogen peaks, stimulating a peak in LH 
secretion that triggers ovulation. Following ovulation, LH pro-
motes differentiation of the ovarian follicle into the progesterone 
producing corpus luteum. The luteal phase is characterized by 
a high concentration of progesterone and is accompanied by a 
smaller second rise of estrogen. Progesterone supresses FSH and 
LH production, resulting in a decrease in estrogen concentration. 
Levels of progesterone begin to decrease as the corpus luteum 
ceases to produce progesterone and collapses. Consequently, the 
end of the menstrual cycle is characterized by low circulating 
hormones, which, in turn, relieve the negative inhibition of FSH 
and LH (10, 11) (Figure 1), allowing progression into the next 
menstrual cycle.

Fluctuations in estrogen and progesterone across the men-
strual cycle direct the mammary gland epithelium to undergo 
sequential waves of proliferation, differentiation, and apoptosis 
(4, 5, 12, 13). Histological analysis of breast tissue by Vogel et al. 
identified distinct morphological changes in the mammary gland 
in accordance with different phases of the cycle (14). Five separate 
phases of breast morphology have been identified, associated 
with differing concentration of circulating estrogen and proges-
terone. Each phase has distinct morphological criteria based on 
the appearances of the luminal cells, myoepithelial vacuolization, 
intraluminal secretion, stromal edema, and events of cell turnover 
(5, 14), as summarized in Table 1.

The highest proliferative activity of mammary epithelium is 
observed in the luteal phase, with rising levels of progesterone 
(Figure 1). As the concentration of progesterone rises, there is 
an increase in secondary branching, alveoli budding, and stro-
mal development, accompanied by changes to the extracellular 
matrix (10, 14). Consistent with this, studies in rodents have 
shown that administration of exogenous progesterone promotes 
side-branching and normal secretory alveolar development, 
whereas estrogen stimulates ductal elongation (15). Ferguson and 
Anderson showed that epithelial apoptosis increases at the end of 
the cycle, with decreasing circulating concentration of estrogen 
and progesterone (16); causing an atrophy of the epithelium, clos-
ing of the alveolar lumen, condensation of intralobular stroma, 
and a variable inflammatory infiltrate (14).

Hormonally driven morphological changes are associated 
with gene expression changes. Estrogen regulates many genes 
involved in cell cycle progression; such as Cyclin D (17), and 
c-MYC (18, 19), and is involved in activation of Cyclin E com-
plexes (20). Estrogen also induces cyclin dependant kinases 
(Cdk) activation and Rb phosphorylation (20, 21) to promote 
cell cycle progression. In addition, estrogen treatment inhibits 
genes responsible for the suppression of cell growth, such as p21 
(22). Estrogen is also an inhibitor of apoptosis and increases the 
expression of antiapoptotic proteins, such as Bcl-2 and Bcl-xL 
(23). Consistent with this, Bcl-2 is expressed almost exclusively 
in ER-positive breast cancers and is associated with a good 
prognosis (24).

Progesterone also plays an important role in cell prolifera-
tion and differentiation in the breast, specifically acting during 
the luteal phase of the menstrual cycle. The proliferative role of 
progesterone is likely mediated by regulation of cell cycle genes, 
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FiGURe 1 | Changes in hormonal levels in accordance with the menstrual cycle. The fluctuations of estrogen (green) and progesterone (blue) during the 
human menstrual cycle. Net apoptosis (red) and proliferation (purple) in the mammary gland in accordance with the menstrual phase.
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growth factors, and growth factor receptors. Musgrove et al. illus-
trated that progesterone treatment of PR-positive breast cancer 
cells results in an increase in cell cycle progression, which is cor-
related with an induction of cell cycle genes; including cyclin D1 
(25, 26), and c-Myc (25–27). Progesterone also regulates activity 
of Cdks (28). In addition to stimulating genes associated with 
cell cycle progression, progesterone has been suggested to inhibit 
expression of genes responsible for suppression of cell growth, 
such as tumor suppressor protein p53 (29) and retinoblastoma 
protein (30). Decline in ovarian hormones also effects gene 
expression. The fall in estrogen and progesterone at the end of the 
luteal phase is associated with an increase in apoptotic proteins, 
such as BAX (10) and FasL (31), and a decrease in antiapoptotic 
proteins, such as Bcl-2 (10).

In the mammary gland, progesterone elicits its function 
mainly through a paracrine mechanism. Recently, RANKL has 

been identified as an important paracrine mediator of progester-
one-induced proliferation in the mammary gland (32, 33) and 
is implicated upstream of Cyclin D (32). Consistent with this, 
RANKL is required for mammary gland development (34) and 
was shown to be essential for ductal side branching and alveolo-
genesis in mice (35). In addition, overexpression of its receptor, 
RANK, in mice resulted in increased proliferation of mammary 
epithelial cells (36). Wnt-4 has also been identified as a paracrine 
mediator of progesterone signaling (32, 37), and is important 
for side-branching of the mammary ductal epithelium (37). 
To promote optimal proliferation of mammary epithelial cells, 
estrogen induces expression of the PR. This leads to proliferation 
of mammary epithelial cells through elevated expression of cell 
cycle genes, when both estrogen and progesterone are present 
(38). Conversely, progesterone downregulates its receptor and 
inhibits synthesis of the ER (39).
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FiGURe 2 | The interplay between eR, PR, and eGFR. Hormone 
receptors regulate gene transcription either by binding directly to DNA 
response elements or by recruiting transcription factors and co-regulators. In 
addition, cross talk occurs between ER, PR, and EGFR to regulate gene 
expression. The estrogen and progesterone receptor can regulate epidermal 
growth factor receptor activity by either: (i) directly interfering with their 
transduction pathways, to activate MAPK, JAK/STAT, SRC, PI3K signaling 
downstream of EGFR, or (ii) by inducing expression and secretion of 
paracrine growth factors, such as AREG, TGFβ, or EGF, which act on EGFR 
to activate pathways involved in cell proliferation, survival, and metastasis. In 
parallel, EGFR can, in turn, phosphorylate and activate ER and PR. Adapted 
from Tanos et al. (45).

TABLe 1 | Morphological changes in the mammary gland in accordance with the menstrual cycle as described by vogel et al. (14).

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Follicular phase (days 3–14) Luteal phase (days 15–27) Menstrual phase (days 28–2)

Proliferation Follicular phase of 
differentiation

Luteal phase of 
differentiation

Secretory phase Menstrual phase

Dense cellular stroma Dense collagenous stroma Loose broken stroma Loose fluid-filled stroma Dense cellular stroma
Tight closed lumen (no 
stratification)

Defined lumen (radial 
orientation)

Open lumen (radial 
orientation)

Open lumen (radial orientation) Swollen lumen (radial orientation)

No active secretion No active secretion No active secretion Active apocrine secretion from 
lumen cell

Rare secretion

High levels of apoptotic bodies Apoptotic bodies rare Apoptotic bodies rare Apoptotic bodies rare Apoptotic bodies rare
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Progesterone and estrogen also regulate growth factors and 
growth factor receptors in the breast, such as epidermal growth 
factor (EGF) (40) and EGF receptor (EGFR) (41, 42). Many key 
genes associated with EGFR signaling are upregulated in response 
to progesterone treatment (41, 43). Furthermore, EGFR signaling 
has been implicated downstream of estrogen in the mammary 
gland (44). Estrogen can induce phosphorylation of EGFR, 
and can directly interact with signal transduction pathways, to 
activate MAPK, JAK/STAT, SRC, and PI3K signaling pathways 
downstream of EGFR. In parallel, EGFR can, in turn, phospho-
rylate and activate ER and PR (45). It has also been shown that 
EGF family members are induced by estrogen; including EGF 
(46), TGFα (46, 47), and amphiregulin (Areg) (48, 49), and act as 
an important mediator of paracrine estrogen-induced prolifera-
tion (Figure 2). However, estrogen inhibits EGFR expression in 
ERα positive cells. In ERα negative cells, secreted amphiregulin 
activates EGFR signaling to promote cell proliferation (50). 
Recent studies have also indicated that estrogen treatment 
induces expression of vascular epithelial growth factor receptor 
(VEGF), a receptor involved in tumor growth, both in vitro (51) 
and in vivo (52).

In breast cancer, increased EGFR signaling is associated with 
a more aggressive phenotype. Overexpression of growth factor 
receptors has been associated with increased metastasis and poor 
survival, together with a lack of response to endocrine therapy 
(53, 54). As estrogen and progesterone play critical roles in 
regulation of growth factors, it is possible that the fluctuations 
of these hormones during the menstrual cycle are sufficient to 
modulate expression of EGFR and affect downstream signaling. 
In the luteal phase when progesterone is high and estrogen is 
present, signaling through growth factor pathways may be 
increased compared to the follicular phase when progesterone 
concentration is low. Consistent with this, breast tumors in 
young women often have significantly higher EGFR expression 
and worse prognosis (55, 56).

CLASSiFiCATiON OF BReAST CANCeR 
SUBTYPeS

Breast cancer is a heterogeneous disease, due to its diverse 
molecular and cellular features, with different therapeutic strate-
gies required depending on the tumor type and stage. The deci-
sion to treat patients with adjuvant therapy has been guided by 

clinical and pathological features of the tumor. With no adjuvant 
therapy, 12–58% of women will experience a reoccurrence within 
5  years (57–59). Of women diagnosed with breast cancer, the 
majority (approximately 75–92%) receive adjuvant therapy (57, 
60, 61), suggesting that many women receive a treatment that may 
not provide benefit, exposing them to unnecessary side effects. 
Ideally, the decision to use adjuvant therapy should be based on 
the prediction of the degree of benefit, to minimize the number 
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of patients receiving unnecessary treatment. Traditionally, evalu-
ation of ER, PR, HER2, and Ki67 immunoreactivity, together 
with clinicopathological variables including tumor size, type, 
and grade, are used to classify breast tumors and guide clinical 
decisions. Breast cancer can be classified into five major subtypes, 
i.e., Luminal A, Luminal B, HER2 enriched, Basal-like, and nor-
mal breast-like, which show significant differences in incidence, 
survival, and clinical outcomes (9, 62–64).

Luminal A tumors are the most common, representing 
50–60% of all breast cancers (65). Patients with Luminal A breast 
cancer have a good prognosis; displaying significantly increased 
overall and disease-free survival compared to other breast cancer 
subtypes (9, 63, 64). Treatment of early-stage Luminal A breast 
cancer is based mainly on hormonal therapies, with the addition 
of adjuvant chemotherapy dependant on the clinical stage. The 
immunohistochemical profile of Luminal A tumors is character-
ized by high expression of ER, PR, and luminal cytokeratins 8 and 
18, an absence of HER2 expression, and low rate of proliferation 
measured through Ki67 (65, 66).

Luminal B tumors account for 15–20% of all breast cancers 
(65). Patients with Luminal B breast cancer have poorer outcomes 
from endocrine therapy, however, have a better response to 
chemotherapy, achieving pathological complete response (pCR) 
to neoadjuvant chemotherapy in 16% of tumors compared to 6% 
in Luminal A tumors (67). From the immunohistochemical point 
of view, Luminal B tumors are characterized by a lower expression 
of ER and PR, and higher Ki67 index, and display a higher histo-
logical grade, compared to Luminal A tumors (66). Like Luminal 
A tumors, they express luminal cytokeratins 8 and 18 (65, 66).

Human epidermal growth factor receptor 2-enriched tumors 
represent 15–20% of breast cancer subtypes (65). Patients with 
HER2-enriched tumors have poor prognosis and overall survival 
(9, 63, 64). The immunohistochemical profile of HER2-enriched 
tumors is characterized by variable ER or PR expression and 
overexpression of HER2 (66). Consequently, treatment of 
HER2-enriched tumors includes monoclonal antibodies which 
directly target the HER2 receptor given in conjunction with 
chemotherapy (68).

Basal-like tumors comprise 15–20% of all breast cancers 
(66), and are associated with an aggressive clinical behavior and 
a high rate of metastasis (69). Patients with Basal-like tumors 
have a poor prognosis, displaying lower overall and disease free 
survival compared to other subtypes (9, 63, 64). Treatment of 
basal-like tumors involves systemic chemotherapy. The immu-
nohistochemical profile of basal-like tumors is characterized by a 
triple-negative phenotype; ER, PR, and HER2 negative.

Normal breast-like tumors account for 5–10% of all breast 
cancers (65). They lack the expression of ER, PR, and HER2, 
however, are not considered basal-like tumors as expression of 
basal cytokeratin 5 and EGFR is absent (66). However, normal 
breast-like tumors are poorly defined, and it is argued that they 
are an artifact of having a high percentage of normal cells in the 
tumor specimen (70, 71). It has been suggested that these tumors 
could be grouped into the recently discovered claudin-low 
subtype, which also displays basal-like characteristics, while also 
sharing biomarkers in common with normal-like breast epithelial 
cells. Similar to the basal-like subtype, claudin-low tumors have 

been associated with therapeutic resistance and poor survival 
outcomes (72), due to their highly migratory nature.

In clinical practice, identifying triple-negative and HER-2-
positive breast cancers can be achieved with standard pathological 
testing, and recommendations for appropriate adjuvant therapy 
in early-stage disease are well defined. However, for patients with 
ER-positive and HER-2-negative disease, distinguishing between 
those with Luminal A disease and those with Luminal B disease 
is more challenging and has implications for treatment recom-
mendations (73). Identifying those patients with good prognosis 
Luminal A disease who will have a small absolute benefit from 
adjuvant chemotherapy can avoid unnecessary chemotherapy 
and its associated side effects, while identifying those with 
Luminal B disease and a higher risk of relapse can prevent under 
treatment in this group (73, 74).

GeNe-eXPReSSiON PROFiLiNG 
iN BReAST CANCeR

In 2000, Perou et al. (62) proposed a new classification system for 
breast cancer subtypes, separating them into distinct subgroups 
based on gene-expression profiles, as opposed to protein expres-
sion signatures used in traditional subtyping methods. Intrinsic 
subtyping by gene-expression profiling is predictive of overall and 
relapse-free survival (8, 9, 63, 64, 75) and can predict the relative 
risk of relapse and the patient benefit from hormonal therapy and 
chemotherapy (71). Therefore, gene-expression profiling can be 
used to inform risk prediction and help guide treatment deci-
sions, to decrease the number of patients receiving unnecessary 
treatment. The main genes associated with each subtype, together 
with pathological characteristics and prognosis, are summarized 
in Table 2.

Each subtype displays a distinct gene-expression profile. 
Luminal A tumors are characterized by a high level of ER, and 
as such display an increased expression in genes associated 
with ER function, such as Bcl2, EsR1, PgR, and FOXA1 (62, 63). 
Compared to Luminal A, Luminal B tumors display an increase 
in expression of proliferative genes, and consequently possess a 
more aggressive phenotype, higher proliferative index, and worse 
prognosis (9, 63, 64, 67, 79). Like Luminal A tumors, Luminal B 
tumors also express genes associated with ER activation, includ-
ing Bcl2, FOXA1, CCND1, and GATA3 (79); however, increased 
expression of proliferative genes, such as CCNB1, CCND1, 
CCNE1, MYBL2, and MKi67, appears to be the hallmark of 
luminal B tumors (63, 64, 79).

HER-2-enriched tumors are characterized by a high expres-
sion of human epidermal growth factor receptor-2, ErbB2, and 
other genes associated with the HER2 pathway (65, 80). HER2 
functions as a receptor tyrosine kinase and signals through 
PI3K/AKT/mTOR, JAK/STAT, MAPK and Ras/Raf pathways 
to promote cell survival, proliferation, and migration (66). 
Consequently, a dysregulation of signaling in HER-2-enriched 
tumors can lead to sustained proliferative signaling, a hallmark 
of cancer. HER-2-enriched tumors also overexpress GRB7, an 
adaptor protein involved in receptor tyrosine kinase signaling, 
which can also promote activation of PI3K/AKT/mTOR, JAK/
STAT, and MAPK signaling pathways to allow for sustained 
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TABLe 2 | Summary of clinical and pathological characteristics, prognosis, and gene-expression changes of breast cancer subtypes.

Subtype
incidence  

(%)

Biomarker profile Prognosis

Gene-expression 
changes Treatment

eR PR HeR-2 Ki67 Other OS (%) 5 years 
DFS (%)

10 years 
DFS (%)

Luminal A 50–60 + + − Low Luminal  
epithelial 
cytokeratins 
8 and 18

89–95 79–85 70–78 Increased expression in 
genes associated with ER  
function: FOXA1, PgR, 
BCL2, EsR1, LIV1, ZIP6, 
SLC39A, XBP1, GATA3, 
ERBB3/4, and TFF1

Hormonal therapies 
+/− chemotherapy

Low  
histological 
grade

Luminal B 15–20 + + − Mod Luminal  
epithelial 
cytokeratins 
8 and 18

71–85 60–75 50–60 Increased expression in 
genes associated with ER 
function: FOXA1, PgR, 
BCL2, EsR1, GATA3

Poorer outcomes 
from hormone therapy 
(Low levels of HRs); 
better pCR to  
neoadjuvant 
chemotherapy

High  
histological 
grade

Increased expression of 
proliferative genes CCNB1, 
CCND1, CCNE1, MYBL2, 
MKI67, v-MYB

HER-2 15–20 − − + High Luminal 
cytokeratins

43–78 41–65 45–51 Amplification of ERBB2 and 
GRB7

HER-2-targeted therapy 
and chemotherapy

PI3K pathway activation 
(AKT, pS6, and p4EBP1) 
correlated with INPP4B and 
PTEN loss
Increased expression of 
proliferative genes BIRC5, 
CCNE1, CCND1, ORC6L, 
MYBL2, MKi67

Basal-like 15–20 − − − High Basal 
cytokeratins 
5, 14,  
and 17

53–73 48–72 48–65 Increased expression of 
EGFR

Chemotherapy

High EGFR Dysregulation of MAPK/
AKT/PI3K and Ras/Raf/  
and JAK/STAT

Future: EGFR (Gefitinib/
Cetuximab), VEGF, or AR 
inhibition

Increased expression of 
FOXM1, cMYC, CCNE1, 
CCND1, CDC20, CDC6, 
BIRC5, ORC6L

Claudin-
low

12–14 − − − Low Low luminal 
markers  
and high 
mesenchymal 
markers

× ~67 × Loss of tight junction 
proteins: claudin 3,4,7, 
E-cadherin and CDH1 
(and highest expression 
of transcript repressors 
of CDH1 vimentin, SNAI1 
and 2, TWIST1/2,  
and ZEB1/2)

Chemotherapy

Enrichment for EMT 
markers: SNAI1/2, 
TWIST1/2, ZEB2

Normal-
like

5–10 − − − High Negative for  
CK5 and  
EGFR

~93 79–87 ~85 Loss of tight junction 
proteins: claudin 3,4,7, 
E-cadherin

Chemotherapy

Reference (65, 66) (66) (66) (66) (9, 67, 72, 76, 77) (65, 66, 71, 72, 78) (66)

The italics refers gene names.
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proliferative signaling (66). HER-2-enriched tumors have 
increased expression of proliferative genes, including BIRC5, 
CCND1, CCNE1, ORC6L, and MKi67, and are often associated 
with a more aggressive and highly proliferative tumor (80).

Basal-like tumors express high levels of basal cytokeratins 5, 
14, and 17, and do not express ER, PR, and HER2. Consequently, 
basal-like tumors cannot be treated with many conventional 
therapies, however, have a better response to chemotherapy 
compared to other subtypes. The EGFR is often overexpressed in 
basal-like tumors, where increased EGFR expression correlates 
with poor patient survival. Basal-like tumors display a dysregula-
tion in PI3K/AKT, JAK/STAT, and ERK/MAP signaling pathways 
and a high expression of proliferative genes, such as FOXM1, 
c-MYC, CCNE1 BIRC5, and CCND1 (66). In addition, basal-like 
tumors overexpress genes involved in the progression through 
the cell cycle (CDC20, CDC6) (66) and genes associated with 
the EGFR pathway (43). Absence of ER expression results in low 
expression of estrogen-related genes, EsR1, Bcl2, and PgR (66).

Claudin-low tumors are enriched for epithelial-to-mesen-
chymal transition markers, such as SNAI1/2, TWIST1/2, and 
ZEB2 (72), with low expression of tight junction proteins, 
such as claudin 3, 4, and 7, E-cadherin, and CDH1 (72). The 
claudin-low subtype is highly migratory and therefore has a 
poor prognosis (76).

PAM50
PAM50 is a list of 50 genes that classify breast cancers into one of 
five intrinsic subtypes from formalin-fixed, paraffin-embedded 
tissues by real time polymerase chain reaction (RT-PCR) (62). 
These 50 genes identified were refined from a list of 1,906 genes, 
which were found in four previous microarray studies. The list 
was minimized to genes that have passed previously established 
formalin-fixed paraffin-embedded (FFPE) performance criteria, 
and were further refined through statistical analyzes, allowing 
for identification of genes which showed a highest correlation 
to each intrinsic subtype. Differential gene expression between 
subtypes is shown by microarray in Figure 3. Subsequent stud-
ies have shown that classification of intrinsic subtypes using the 
PAM50 test retains the prognostic and predictive significance 
characteristic to breast cancer subtypes (9, 70, 74, 81, 82). 
Furthermore, several studies have shown that the PAM50 clas-
sification method provides better information on prognosis than 
immunohistochemistry-based surrogates (8, 9, 64). This suggests 
that subtyping by immunohistochemistry is inferior to genomic 
profiling, identifying a requirement for gene-expression profiling 
in a clinical setting.

Accurate testing of predictive biomarkers is important, as 
discrepancies between IHC and intrinsic classification of breast 
tumors may lead to differences in treatment decisions and patient 
outcomes. To address this, ER, PR, and HER2 concordance 
between immunohistochemistry and gene profiling has been 
investigated. A number of studies have reported a discordance of 
below 10% for ER and PR status (8, 9, 70, 83, 84). Cheang et al. 
evaluated concordance in subtype classification between PAM50 
and immunohistochemistry, finding that of Luminal tumors as 
defined by PAM50, 8% did not stain positive for ER through 
immunohistochemistry (8). Consistent with this, Chia et  al. 

identified 8% of Luminal tumors instead being classified as either 
HER-2-positive, or triple-negative through immunohistochem-
istry (9). As patients with ER negative or HER-2-positive tumors 
will receive chemotherapy, any discordances in classification 
of luminal tumors can have critical implications on treatment 
options, where women may receive unnecessary chemotherapy 
with no benefit.

Although several studies have reported high overall concord-
ance in HER-2 expression between gene profiling and immuno-
histochemistry (85–88), others report low concordance (70, 81). 
Chia et al. (9) found that of HER-2-enriched tumors identified 
by PAM50, only 66% of these stained positive for HER2 expres-
sion by immunohistochemistry. Instead, 31% of HER2-enriched 
tumors were classified as Luminal A or B tumors, and 4% clas-
sified as basal-like through immunohistochemistry. Cheang 
et  al. (8) also identified a low concordance of 69% in HER2 
status between PAM50 and immunohistochemistry, with 6% 
of tumors instead classified as Luminal A tumors, and 16% as 
triple-negative.

As different subtypes each respond best to different treat-
ments and the absolute benefit of adjuvant therapies depends 
on the risk of relapse, this poses the question; in discordant cases 
which result should be used to guide treatment decisions, and is 
it appropriate to deny a patient treatment that would otherwise 
be indicated by a different subtyping method? Studies by Chia 
et  al. (9) and Cheang et  al. (8) included only premenopausal 
women and described low concordance between immunohis-
tochemistry and gene profiling. This low concordance may 
be due to the fluctuations in circulating hormones during the 
menstrual cycle and the relative effect of hormonal stimula-
tion on gene versus protein expression. While it is believed 
that PAM50 is more reflective of the true biology of the tumor 
than protein-based immunohistochemistry, the paucity of data 
on premenopausal women makes it difficult to determine the 
efficacy of the PAM50 test compared to the traditional gold 
standard for tumor subtyping.

Prosigna is an in vitro diagnostic assay which is based on the 
PAM50 gene signature assay. The Prosigna test is performed on 
FFPE tissue and identifies the patient’s risk of distant reoccur-
rences of disease; it aims to aid clinicians and patients in treat-
ment decisions. The development of Prosigna from PAM50 is 
summarized in Table 3. Of note, the validation of the Prosigna 
test – necessary for FDA approval – was based on two clinical trials 
(the TransATAC and ABCSG-8 clinical trials) incorporating data 
from over 2,400 postmenopausal women enrolled in adjuvant 
aromatase inhibitor trials. Although studies have examined the 
use of PAM50 in managing adjuvant therapy in premenopausal 
breast cancer (8, 9), there have been no large-scale clinical trials 
into the efficacy of the Prosigna test for premenopausal women. 
Thus, the accuracy of the Prosigna test has never been properly 
validated in the context of the hormonal fluctuations that occur 
during the menstrual cycle in premenopausal women.

Oncotype DX
Oncotype DX evaluates the expression of 21 genes associated 
with tumor proliferation, invasion, and estrogen signaling (94) 
(Table 4). In 2004, Paik et al. selected 250 candidate genes from 
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FiGURe 3 | Microarray heatmap of PAM50 genes expression in “intrinsic” breast cancer subtypes. Molecular profiles have distinct gene expression. 
Expression values of genes included in the PAM50 signature are shown as red/green according to their relative expression level for each subtype. Highest gene 
expression (red), lowest (green), and average (black) (71).
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published literature and genomic databases that have been 
shown to be correlated with disease outcome. The list of genes 
was reduced to 16 genes, which showed the highest correlation 
to distant recurrence after 10 years. Relative expression of these 
genes, in relation to expression of five reference genes, provide 
a reoccurrence score which is significantly correlated with 
likelihood of breast cancer reoccurrence in 10  years (94–98). 
Oncotype DX, therefore, impacts adjuvant treatment decisions 
and influences treatment recommendations. The development of 
Oncotype DX is summarized in Table 5. Like the PAM50 gene 
set, the genes used in the Oncotype DX test rely heavily on genes 
related to ER and growth factor signaling and proliferation, which 
are differentially expressed by normal breast epithelial across the 
menstrual cycle, as discussed above.

endoPredict
EndoPredict is an RT-PCR-based diagnostic test which 
evaluates the expression of eight proliferative and hormone 

receptor-associated genes. In conjunction with the tumors clin-
icopathological factors, it identifies the risk of distant metastasis 
within 10  years (105). EndoPredict is used to guide treatment 
decisions for both chemotherapy and hormonal therapy in 
ER-positive, HER-2-negative breast cancer.

The EndoPredict gene signature was identified from gene 
expression profiles of breast cancer samples taken predominantly 
from postmenopausal women (105). Similar to Prosigna, initial 
clinical validation of EndoPredict was based on two clinical trials 
(ABCSG-6 and ABCSG-8 clinical trials), which incorporated data 
exclusively from postmenopausal women, who were enrolled in 
aromatase inhibitor trials (105). In 2014, results of EndoPredict 
prognostic validity from a third clinical study were published. 
This study included both pre- and postmenopausal women, 54 
and 46% of patients, respectively, and suggested that EndoPredict 
is prognostic in both pre- and postmenopausal women with 
breast cancer (106). The development of EndoPredict is sum-
marized in Table 6. There are a lack of studies which validate the 
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TABLe 4 | Panel of 21 genes used in the Oncotype DX assay to determine 
the risk of distant recurrence.

Proliferation invasion HeR-2 estrogen Other Reference

Ki67 MMP11 GRB7 ER GSTM1 ACTB
STK15 CTSL2 HER-2 PgR CD68 GADPH
Survivin BCL2 BAG1 RPLPO
CCNB1 SCUBE2 GUS
MYBL2 TRFC

Genes are grouped on the basis of function, correlated expression, or both. The 
recurrence score is derived from gene expression normalized to reference genes.

TABLe 3 | Development of Prosigna, a PAM50-based subtype classifier.

Menopausal status Receptor status

Reference Total Premenopausal Postmenopausal Unknown eR +  eR−

Development of prosigna
Parker et al. (71) 761 – – 761 544 195
Neilsen et al. (81) 786 20 752 14 768 9
Bastien et al. (70) 154 49 101 4 100 49
Chia et al. (9) 398 398 0 – 291 107
Cheung et al. (8) 476 476 0 – 300 168
Martin et al. (89) 820 443 377 – 645 172
Liu et al. (90) 1094 757 337 – 638 456
Nielsen et al. (91) 43 – – 15 43 0
Sestak et al. (92) 2137 0 2137 – 213 0
Wallden et al. (82) 746 91 433 222 547 177

Clinical validation of prosigna
TransATAC (93) 1007 0 1007 1007 0
ABCSG-8 (74) 1478 0 1478 1464 17

Following the development of a 50-gene subtype classifier by Parker et al. in 2009, subsequent studies by the same group clinically and analytically validated the prognostic value 
of the 50-gene signature. TransATAC and ABCSG-8 trials provided evidence of the clinical validity of Prosigna. Currently in recruitment, is a study evaluating the treatment impact of 
Prosigna. The numbers of pre- and postmenopausal women included in the studies are indicated. In studies where menopausal status was not given, women under the age of 50 
were defined as premenopausal and women over the age of 50 as postmenopausal.
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efficacy of EndoPredict in premenopausal women, and whether 
EndoPredict is an appropriate tool for guiding treatment deci-
sions in premenopausal women has not yet been sufficiently 
investigated.

MammaPrint
MammaPrint is a diagnostic test which evaluates the expression 
of 70 genes associated with metastasis, proliferation, invasion, 
survival, and angiogenesis (113). The list of 70 genes was identi-
fied from whole-genome expression arrays, and selected for 
on the basis of those which were significantly correlated with 
disease outcome (113). Interestingly, MammaPrint does not 
measure expression of commonly used diagnostic markers ER, 
PR, or HER2.

Through the relative expression of these 70 genes, MammaPrint 
classifies tumors into high or low risk groups, which corresponds 
with patient’s clinical outcome. Studies have shown that risk 
groups identified by MammaPrint correspond with patients 
overall survival (114), disease-free metastasis (75, 115), and the 
benefit from adjuvant chemotherapy (116, 117). Most studies 
validating the diagnostic capabilities of MammaPrint were 
small-scale retrospective studies, which included both pre and 
postmenopausal women, as summarized in Table 7. MammaPrint 
had initially been developed and validated in patients under the 

age of 55, suggesting that MammaPrint is targeted toward the 
younger population. Furthermore, the first prospective study 
which evaluated the impact of MammaPrint in assisting with 
treatment decisions included patients under the age of 55 (118, 
119). As MammaPrint was developed in a younger population, 
and does not measure the gene expression of ER or PR, it is likely 
that MammaPrint is appropriate for diagnosing breast cancer in 
premenopausal women.

In 2016, results from a second prospective study were pub-
lished, comparing MammaPrint to clinicopathological tools 
for selecting patients for adjuvant chemotherapy (124). The 
median age of the patients was 55  years. The study found that 
approximately 46% of patients, who were classified as high risk 
by clinicopathological features, were also classified as a low risk 
of metastasis by MammaPrint. Although these tumors presented 
with a high clinical risk, the results from the study suggested that 
these patients received no significant benefit from chemotherapy. 
Therefore, the authors concluded that using MammaPrint to 
guide treatment can reduce the number of patients receiving 
unnecessary chemotherapy.

Breast Cancer index
The Breast Cancer Index is an RT-PCR based assay which classi-
fies patients into risk groups to predict the likelihood of benefit 
from endocrine therapy, and the risk of early or late recurrence 
(125–128). The Breast Cancer Index evaluates two independent 
biomarkers; the HOXB13:IL17BR gene ratio, which is associated 
with endocrine therapy response (129), and the molecular grade 
index, which is determined by the expression of five proliferative-
related genes (130). Classification of breast cancer through the 
expression of these seven genes aims to identify patients which 
are most likely to benefit from adjuvant therapy. The development 
of the Breast Cancer Index is summarized in Table 8. Similar to 
Prosigna, the clinical validation of the Breast Cancer Index was 
based on retrospective studies which used samples exclusively 
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TABLe 7 | The development of MammaPrint.

Reference Total

Menopausal status

Premenopausal Postmenopausal Unknown

Development and validation of  
MammaPrint
van’t Veer et al. (113) 97 66 31
Van de Vijver et al. (75) 295 246 49
Buyse et al. (115) 302 203 99
Bueno-de-Mesquita et al. (118) 427 292 135
Wittner et al. (120) 100 24 76
Bueno-de-Mesquita et al. (114) 123 83 40
Mook et al. (121) 241 125 116
Mook et al. (122) 148 0 148
Knauer et al. (117) 541 231 310
Straver et al. (116) 167 119 39 9
Drukker et al. (119) 427 292 135
Drukker et al. (123) 295 246 49
Cardoso et al. (124) 6693 2226 4467

The numbers of pre- and postmenopausal women included in the studies are indicated. In studies where menopausal status was not given, women under the age of 50 were 
defined as premenopausal and women over the age of 50 as postmenopausal.

TABLe 6 | The development and clinical validation of endoPredict.

Reference Total

Menopausal status

Premenopausal Postmenopausal Unknown

Development of endoPredict
Filipits et al. (105) 964 245 589
Muller et al. (107) 80 – – 80
Dubsky et al. (108, 109) 1702 0 1702
Muller et al. (110) 167 – – 167
Martin et al. (106) 566 300 255
Buus et al. (111) 928 0 928

Clinical validation of endoPredict
ABCSG-6 (105) 1324 0 1324
ABCSG-8 (105) 378 0 378
GEICAM-9906 (112) 566 300 255

The numbers of pre- and postmenopausal women included in the studies are indicated. In studies where menopausal status was not given, women under the age of 50 were 
defined as premenopausal and women over the age of 50 as postmenopausal.

TABLe 5 | The development of Oncotype DX, a 21-gene assay which identifies patient benefit from chemotherapy.

Reference Total

Menopausal status Receptor status

Premenopausal Postmenopausal eR +  eR−

Development of oncotype DX
Paik et al. (94) 668 194 474 668 0
Esteva et al. (99) 149 122 27 103 46
Gianni et al. (100) 89 – – 52 31
Habel et al. (101) 790 209 581 682 108
Albain et al. (102) 367 0 367 367 0

Clinical validation of oncotype DX
NSABP B20 (97) 651 289 362 651 0
E2197 (103) 465 193 272 465 0
NSABP B14 (96) 1023 298 725 1023 0
TransATAC (93) 1231 0 1231 1231 0
Tailorx (104) 1623 480 1143 1621 5

Following the identification of 21-genes which showed high correlation to distant reoccurrence of breast cancer at 10 years, subsequent studies verified its predictive and prognostic 
value. The numbers of pre- and postmenopausal women included in the studies are indicated. In studies where menopausal status was not given, women under the age of 50 were 
defined as premenopausal and women over the age of 50 as postmenopausal.
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TABLe 8 | The development of the Breast Cancer index.

Reference Total

Menopausal status

Premenopausal Postmenopausal Unknown

Development and validation of the Breast Cancer index
Ma et al. (131) 80 2 78
Ma et al. (130) 836 81 327 428
Jankowitz et al. (132) 265 80 185
Jerevall et al. (128) 588 0 588
Mathieu et al. (133) 150 66 84
Sgroi et al. (126) 665 0 665
Zhang et al. (125) 958 0 958
Habel et al. (134) 608 162 446
Sanft et al. (135) 96 13 76
Sgroi et al. (127) 292 0 292

The numbers of pre- and postmenopausal women included in the studies are indicated. In studies where menopausal status was not given, women under the age of 50 were 
defined as premenopausal and women over the age of 50 as postmenopausal.
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from postmenopausal women and, therefore, results cannot be 
generalized to premenopausal women.

HORMONAL MODULATiON OF BReAST 
CANCeR BiOMARKeRS

The abundance of ER fluctuates in normal breast tissue during the 
menstrual cycle, with ER positivity higher during the follicular 
phase, compared to the luteal phase (136, 137). Similarly, ER 
positivity in breast cancers is significantly higher in the follicular 
phase, when progesterone is absent, compared to the luteal phase 
(138, 139). This suggests that hormonal fluctuations during the 
menstrual cycle alter expression of hormone receptors and are 
highly likely to affect expression of genes associated with hor-
mone signaling.

If menstrual cycle stage affects hormonal receptor signaling 
and the expression of genes and proteins used in subtype diag-
nosis, it is expected that there would be discrepancies between 
diagnostic and surgical breast cancer samples, which would be 
taken from the woman at different times and, therefore, different 
stages of the menstrual cycle. However, studies on concord-
ance between biopsy and surgical samples have not specifically 
investigated premenopausal women. In 2013, Dekker et  al. 
assessed the concordance of ER and HER2 expression between 
core needle biopsy and surgical resections (140). A concordance 
of ER was found in 99.1% of patients, and in 96.4% of cases for 
HER2. The menopausal status of women was not specified in the 
study; however, the mean age of women enrolled was 63 years old, 
which suggests that a majority of patients were postmenopausal. 
In a pooled study of 2507 invasive breast tumors, predominantly 
from postmenopausal women, concordance of ER was found for 
93.4% of patients, and 97.8% for HER2 (140). This high concord-
ance in receptor status led the authors to conclude that ER and 
HER2 status can be reliably determined from the core needle 
biopsy. However, these studies focused primarily on postmeno-
pausal women, and the effect of premenopausal factors was not 
investigated.

In addition to studies investigating concordance in traditional 
biomarkers, several studies have evaluated the gene expression 

changes between core biopsies and surgical excisions (141–143). 
In 2012, Riis et  al. compared whole gene-expression profiles 
of 13 women (1/13 premenopausal; 12/13 postmenopausal) 
and identified 228 genes differentially expressed, a majority of 
which are immunoregulatory or stress related (142). Two genes 
from the PAM50 signature gene list had differential expression 
between samples; GRB7 and ACTR3B. From the Oncotype 
DX test, only one gene showed differential expression, GRB7. 
Additionally, Jeselsohn et al. compared gene expression between 
core biopsies and surgical excisions in postmenopausal women 
with ER-positive breast cancer (141). The authors identified 
significant changes in the expression level of 14 genes, a major-
ity of which are immunoregulatory. Two genes involved in the 
Oncotype DX test and PAM50 intrinsic classification, MYC and 
CCNB1, showed differential expression between core biopsies 
and surgical excisions. A recent study utilized a genome-wide 
approach to determine gene expression changes between core 
biopsies and surgical excisions. The authors collected 56 paired 
core-cuts from postmenopausal breast cancer patients, and 
classified tumors into one of the five intrinsic subtypes based on 
the PAM50 gene signature (143). No systematic differences in 
categorization of the tumors into intrinsic subtypes were identi-
fied; however, discordances were identified between the Luminal 
A versus Luminal B subtype. While these studies have gener-
ally found good concordance between diagnostic and surgical 
samples, concordance in premenopausal women has not been 
specifically investigated.

A change in biomarker status can have important clini-
cal consequences for adjuvant treatment. Studies evaluating 
the concordance of hormone receptors and gene expression 
profiles between core biopsies and surgical excisions suggest 
that biopsies taken at diagnosis are representative of the whole 
tumor. However, these studies were performed predominantly 
again in postmenopausal women, and it is possible that hor-
monal fluctuations in premenopausal women may alter the 
expression of these biomarkers. As such, the biopsy taken at 
diagnosis or during surgery may be influenced by fluctuating 
concentrations of estrogen and progesterone and, therefore, not 
represent the true tumor profile. This can lead to an incorrect 
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diagnosis and risk prediction and sub-optimal treatment of 
premenopausal women.

A recent study compared the expression of estrogen-related 
genes between pre- and postmenopausal women with ER-positive 
breast cancer (144). It was suggested that the different hormonal 
environments of pre- and postmenopausal women may affect 
the biological characteristics of the breast tumor. The authors 
found that expression of estrogen-related genes PgR, TFF1, and 
GATA3, were significantly higher in premenopausal women 
compared to in postmenopausal women. Consistent with this, 
studies have also shown that expression of estrogen-regulated 
genes is significantly associated with the level of estrogen in the 
blood (145, 146). It is likely that the fluctuating concentration 
of estrogen during the menstrual cycle affects the expression of 
these estrogen-related genes. In 2013, Haynes et  al. compared 
the expression of estrogen-related genes between women at dif-
ferent stages of the menstrual cycle (145). They found that the 
expression of key estrogen-related genes was highest during the 
follicular phase of the menstrual cycle when estrogen concentra-
tion peaks. However, it remains unknown how menstrual cycling 
can affect the expression of these genes within the same tumor. 
As Oncotype DX and Prosigna rely heavily on the expression of 
estrogen-related genes for diagnosing breast cancer, changes in 
expression of these genes across the menstrual cycle may affect 
the diagnosis of breast cancer by these tests.

Despite the known role of estrogen and progesterone on the 
function of the breast and on breast cancer risk, the effect of 
menstrual cycling on breast tumors remains unknown. In sup-
port of the possibility that menstrual cycle critically affects the 
gene-expression profile of breast cancers, a recent in vitro study 
has suggested that the combination of estrogen and progesterone 
results in the switching from a Luminal A to Basal-like intrinsic 
subtype in breast cancer cells, and increases the Oncotype DX 
Recurrence Score (43) compared to estrogen treatment alone. 
Tests that utilize gene expression profiling in breast cancer classifi-
cation were developed and validated from studies predominantly 
in postmenopausal women, and there is a scarcity of research on 

how applicable these biomarkers are to premenopausal women, 
and the extent to which this impacts on treatment response. It 
is important to understand how hormonal fluctuations affect 
predictive and prognostic biomarkers, to provide premenopausal 
women with the optimal treatment for their individual cancer.

CONCLUSiON

Breast cancer clinics are increasingly adopting gene expression 
profiling to subtype tumors and identify the best therapies. 
However, despite their availability to young women, such 
tests were largely developed and validated in postmenopausal 
women – patients in whom fluctuations in estrogen and pro-
gesterone associated with the menstrual cycle are absent. Yet, 
these hormones are highly likely to affect breast cancer gene 
expression in premenopausal women – and the diagnosis and 
treatment trajectories that stem from its measurement – could 
fundamentally depend on a patient’s menstrual cycle stage at 
the time of tissue sampling. Leading diagnostic tests harness 
intrinsic subtyping of breast cancers, but whether these tests are 
accurate for premenopausal women remains a startlingly open 
question. Quite simply, young women may be at risk of receiv-
ing inaccurate subtype diagnoses; with ramifications spanning 
inaccurate prognoses, suboptimal and unnecessary treatments, 
and reduced survival.
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