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Epithelial ovarian cancer remains the leading cause of death from gynecologic malig-
nancy among women in developed countries. New therapeutic strategies evaluated with 
relevant preclinical models are urgently needed to improve survival rates. Here, we have 
assessed the effect of pantethine on tumor growth and metabolism using magnetic 
resonance imaging and high-resolution proton magnetic resonance spectroscopy (MRS) 
in a model of ovarian cancer. To evaluate treatment strategies, it is important to use 
models that closely mimic tumor growth in humans. Therefore, we used an orthotopic 
model of ovarian cancer where a piece of tumor tissue, derived from an ovarian tumor 
xenograft, is engrafted directly onto the ovary of female mice, to maintain the tumor 
physiological environment. Treatment with pantethine, the precursor of vitamin B5 and 
active moiety of coenzyme A, was started when tumors were ~100 mm3 and consisted 
of a daily i.p. injection of 750 mg/kg in saline. Under these conditions, no side effects 
were observed. High-resolution 1H MRS was performed on treated and control tumor 
extracts. A dual-phase extraction method based on methanol/chloroform/water was 
used to obtain lipid and water-soluble fractions from the tumors. We also investigated 
effects on metastases and ascites formation. Pantethine treatment resulted in slower 
tumor progression, decreased levels of phosphocholine and phosphatidylcholine, and 
reduced metastases and ascites occurrence. In conclusion, pantethine represents a 
novel potential, well-tolerated, therapeutic tool in patients with ovarian cancer. Further 
in vivo preclinical studies are needed to confirm the beneficial role of pantethine and to 
better understand its mechanism of action.

Keywords: choline metabolism, pantethine, ovarian cancer, orthotopic model, ascites, metastasis,  
high-resolution Mrs

Abbreviations: FAS, fatty acid synthase; IHC, immunohistochemistry; MRI, magnetic resonance imaging; MRS, magnetic 
resonance spectroscopy; PC, phosphocholine; PtCh, phosphatidylcholine.
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Table 1 | Front-line treatment for ovarian cancer patients.

Carboplatinum + paclitaxel (1) Platinum-based chemotherapy + anti-mitotic 
chemotherapy

Carboplatinum and pegylated 
doxorubicin (5)

Platinum-based chemotherapy +  
intercalating DNA chemotherapy

Carboplatinum + weekly 
paclitaxel (6)

Platinum-based chemotherapy + anti-mitotic 
chemotherapy

Carboplatinum and 
taxol + bevacizumab (7, 8)

Platinum-based chemotherapy + anti-mitotic 
chemotherapy + angiogenesis inhibitor
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inTrODUcTiOn

Ovarian cancer is the leading cause of death from gynecological 
malignancies with an incidence of 220,000 cases worldwide per 
year (1). Although the prognosis in cases detected at an early 
stage is quite favorable, the vast majority of cases are diagnosed 
at an advanced stage, when 5-year survival rates are only 
30–40%. Median life expectancy for ovarian cancer patients is 
5 years, and about 80% of diagnosed patients will eventually suc-
cumb to it (2). The poor prognosis of epithelial ovarian cancer 
(EOC) is due to a combination of the aggressive characteristics 
of the disease and an unpredictable response to front-line 
therapy, further compounded by late detection of the disease 
and resistance of ovarian cancers to current treatments (3). The 
primary treatment for EOC consists of aggressive cytoreductive 
surgery, followed by chemotherapy with platinum and taxane 
(4). Although platinum and taxane combination remains the 
standard treatment for EOC, new drug combinations (5) as 
well as different administration schedules (6) are being tested 
and might be reasonable options for first-line treatment of 
women with advanced EOC. Recently, the introduction of anti-
angiogenic drug combined to front-line treatment has been also 
proposed (7, 8). Current first-line chemotherapies for advanced 
diseases are listed in Table 1.

Metastases and malignant ascites are complications frequently 
observed in late-stage ovarian cancer. Intraperitoneal seeding is 
the most common route of dissemination (9), although direct 
invasion or dissemination through the lymphatics and vascu-
lature also occur. Malignant ascites function as a permissive 
reactive tumor-host microenvironment and provides sustenance 
for floating tumor cells (10). This results in an abnormal build-up 
of fluid in the abdomen, causing discomfort, pain, problems with 
mobility and breathing, and other symptoms that decrease the 
quality of life. Despite the improvement of surgical approaches 
and drug development, EOC patients have experienced little 
improvement in overall survival in the last 30  years (11). New 
therapeutic strategies exploiting novel targets are urgently needed 
to minimize morbidity, improve survival rates, and to eventually 
cure patients.

In the present study, we applied magnetic resonance imaging 
(MRI) and high-resolution magnetic resonance spectroscopy 
(MRS) to assess the use of pantethine as a therapeutic agent in 
an orthotopic model of ovarian cancer. We used an orthotopic 
model in which the relevant tumor physiological environ-
ment is maintained and that frequently forms metastases and 

malignant ascites. Pantethine is the stable disulfide form of 
pantetheine, the precursor of vitamin B5 (pantothenic acid). 
As a part of the active moiety of coenzyme A (CoA), it is a 
key regulator in lipid metabolism (12–14). Pantethine has the 
advantage of being an anti-inflammatory and hypolipidemic 
agent with very few side effects. Pantethine has been shown 
to prevent the perivascular inflammation and to protect mice 
against the cerebral syndrome associated with malaria (15); 
the protection was associated with a significantly lower level 
of circulating tumor necrosis factor (TNF)-α (15). TNF-α 
has been linked to multiple steps of tumorigenesis, including 
cellular transformation, promotion, survival, proliferation, 
invasion, angiogenesis, and metastasis (16). Pantethine has 
also been shown to inhibit CXCL12/CXCR4-induced cell 
transendothelial migration (17). With its anti-inflammatory 
and hypolipidemic properties, pantethine appeared to be a 
good novel candidate against ovarian cancer progression, 
metastases, and ascites formation.

MaTerials anD MeThODs

cell line and Tumor implantation
NIH: OVCAR3 cells from American Type Culture Collection 
(ATCC, VA, USA) were used in the present study. OVCAR3 
cells are human epithelial ovary adenocarcinoma cells originally 
isolated from a malignant effusion. Cells were cultured in RPMI 
1640 (Sigma Chemical Co., St. Louis, MO, USA) with 10% fetal 
bovine serum (Sigma Chemical Co., St. Louis, MO, USA). Tumor 
implantation was performed using 6- to 8-week-old severe com-
bined immunodeficient (SCID) female mice. We used a two-step 
process for orthotopic tumor implantation (Supplementary 
Material). We first generated subcutaneous tumors by inoculat-
ing a cell suspension of 2 × 106 cells in 0.05 ml of Hanks balanced 
salt solution in the flank of SCID female mice. Once the tumor 
reached a size of 100–200 mm3, it was excised and cut into small 
pieces under sterile conditions. Orthotopic implantation was 
then performed by surgically transplanting a piece of tumor tis-
sue onto the ovaries of a separate group of SCID mice. All surgical 
procedures and animal handling were performed in accordance 
with protocols approved by the Johns Hopkins University 
Institutional Animal Care and Use Committee and conformed to 
the Guide for the Care and Use of Laboratory Animals published 
by the NIH.

Treatment Protocol
The treatment was started when the tumors reached about 
100 mm3 with a daily i.p. injection of saline for the control group, 
and pantethine (Sigma Chemical Co., St. Louis, MO, USA) 
diluted in saline for the treated group (750 mg/kg).

In Vivo Mr examination
Non-invasive MRI was used to assess tumor growth in deep-
seated tissue using T1-weighted imaging and diffusion-weighted 
imaging. All imaging studies were performed on a 4.7-T 
BrukerAvance (Bruker, Billerica, MA, USA) spectrometer 
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using a home-built volume coil placed around the torso of the 
anesthetized mice. Animals were anesthetized with a mixture 
of ketamine (6.25  mg/kg) and acepromazine (62.5  mg/kg) 
administered i.p. A pad circulated with warm water was used 
to maintain animal body temperature. Multi-slice T1-weighted 
images and multi-slice diffusion-weighted images, with an in-
plane spatial resolution of 250 μm × 250 μm (128 × 128 matrix, 
32  mm field of view, b-value of 100  mT/m), were acquired to 
localize the orthotopic tumors that appear hyperintense on these 
images.

Mr spectroscopy of Dual Phase  
extracts
High-resolution proton MRS of tumor tissue extracts was 
applied to assess water phase and lipid phase metabolites 
in tumor extracts. Lipid- and water-soluble fractions were 
obtained from tumors using a dual-phase extraction method 
with methanol/chloroform/water (1/1/1) (18). Briefly, tissues 
were freeze-clamped and ground to powder. Ice-cold methanol 
was added to the powder, and the samples were homogenized. 
Ice-cold chloroform, followed by ice-cold water, was added, 
and the samples were kept at 4°C overnight for phase separa-
tion. Samples were centrifuged for 30  min at 15,000  g at 4°C 
to separate the phases. The water/methanol phase containing 
the water-soluble metabolites was treated with chelex (Sigma 
Chemical Co., St. Louis, MO, USA) for 10 min on ice to remove 
divalent cations. Methanol was removed by rotary evaporation, 
and the remaining water phase was lyophilized and stored 
at −20°C. The chloroform phase containing the lipids was dried 
in a stream of N2 and stored at −20°C. Water-soluble samples 
were dissolved in 0.5 ml of D2O (Sigma Chemical Co., St. Louis, 
MO, USA) containing 3-(trimethylsilyl) propionic-2,2,3,3,-d4 
acid (Sigma Chemical Co., St. Louis, MO, USA) as an internal 
concentration standard (sample pH of 7.4). Lipid samples 
were dissolved in 0.6  ml of CDCl3/CD3OD (2/1) containing 
tetramethylsilane as an internal concentration standard (CDCl3 
and CD3OD premixed with tetramethylsilane by the manufac-
turer, Cambridge Isotope Laboratories, Inc.). Fully relaxed 1H 
MR spectra of the extracts were acquired on a BrukerAvance 
500 spectrometer operating at 11.7 T (BrukerBioSpin Corp., 
Billerica, MA, USA) using a 5-mm HX inverse probe and the 
following acquisition parameters: 30° flip angle, 6,000 Hz sweep 
width, 12.7 s repetition time, time-domain data points of 32k, 
and 128 transients (18). Spectra were analyzed using the Bruker 
XWIN-NMR 3.5 software (BrukerBioSpin). Integrals of the 
metabolites of interest were determined and normalized to the 
tumor weight. To determine concentrations, peak integration 
from 1H spectra for all metabolites studied was compared to the 
internal standard.

Metastases and ascites
Presence of ascites was recorded at necropsy. Lymph nodes, lungs, 
and livers were fixed in formalin, paraffin embedded, sectioned, 
and stained with hematoxylin and eosin (H&E) for further 
analysis. The presence of metastases was checked on H&E stained 
sections of the lymph nodes, liver, and lungs.

immunohistochemistry
The 5-μm thick formalin fixed sections were used for 
Immunohistochemistry (IHC) analysis. Antigen retrieval was 
achieved by boiling sections in citrate buffer solution (pH 6) for 
20 min. Sections were stained for proliferation using Ki-67 (rabbit 
polyclonal, Thermo Fisher, Rockford, IL, USA, 1:100 dilution), 
and for apoptosis using Caspase-3 (8G10, rabbit polyclonal, Cell 
Signaling, Danvers, MA, USA, 1:100 dilution) following standard 
protocols, and further processed by addition of biotinylated 
anti-rabbit IgG and ABC reagent (PK-4001, Vector laboratories, 
Burlingame, CA, USA). Detection was achieved by addition of 
the chromogen DAB (3, 3′-diaminobenzidine, Dako, Carpinteria, 
CA, USA). Images were captured by scanning the immunostained 
sections at high resolution on an Aperio ScanScope® CS System at 
20 × resolution (Leica Biosystems Inc., Buffalo Grove, IL, USA). 
Analysis of the slides was performed using the algorithms and 
protocols developed by the company.

Toxicity analysis
The toxicity analyses were performed in MDA-MB-231 tumor-
bearing mice. The 2 × 106 cells were injected orthotopically into 
the mammary fat pad of 6- to 8-week-old female SCID mice. The 
treatment was started when the tumors reached about 100 mm3 
with a daily i.p. injection of saline for the control group and 
pantethine for the treated group (750 mg/kg) (n = 5). Mice were 
treated for 3 weeks and weighed once a week. At the end of the 
treatment period, mice were sacrificed. Kidney and liver func-
tion were evaluated from serum creatinine, blood urea nitrogen 
(BUN), serum alanine aminotransferase (ALT), and aspartate 
aminotransferase (AST) levels obtained at the Johns Hopkins 
University School of Medicine Phenotyping Core Facility, using 
spectrophotometric measurements obtained with an automated 
Vet Ace Clinical Chemistry system (Alfa Wasserman Diagnostic 
Technologies LLC, NJ, USA).

statistical analysis
Values were displayed as mean  ±  SEM. Statistical significance 
was evaluated using the Student’s t-test; p < 0.05 was considered 
significant.

resUlTs

To assess the efficacy of pantethine on tumor progression, 
metastases, and ascites formation, we used an orthotopic model 
of ovarian cancer. The orthotopic implantation was performed 
to maintain the relevant tumor physiological environment. 
Ovarian cancer cells are typically injected into the peritoneal 
cavity, inducing ascites and peritoneal spread of tumor, but most 
cell lines do not form solid tumors. Instead, here we performed 
microsurgical orthotopic implantation of ovarian cancer tissue 
onto the ovary of female SCID mice. In our model, ascites and 
metastases in the peritoneal cavity, in the liver, on the diaphragm, 
and in distal lymph nodes are frequent, similar to human disease. 
Tumor growth was measured following implantation by imaging 
the mice weekly with MRI (Figure  1). The treatment consist-
ing of daily i.p. injections of pantethine at a dose of 750 mg/kg 
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FigUre 2 | normalized tumor growth curves from control mice and 
pantethine-treated mice (a) and representative T1-weighted images of 
a central slice of tumors imaged at days 0, 15, and 28 of a control 
mouse (left column) and a treated mouse (right column) (b). n = 13 
and 14, respectively; *P < 0.05.

FigUre 1 | representative adjacent T1-weighted images (top row) and diffusion-weighted images (bottom row) of an orthotopically implanted 
OVcar3 tumor-bearing mouse. The tumor is highlighted by a white line. The tumor volume was measured by determining the tumor area on each 1-mm thick 
slice and by adding the areas to calculate the total tumor volume.
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period revealed neither hepatic (Figure  7B) nor renal toxicity 
(Figure 7C), as shown by the absence of significant differences in 
the levels of BUN, creatinine, AST, and ALT between the control 
mice and the pantethine-treated mice.

commenced when tumors were ~100 mm3. Under these condi-
tions, no side effects and no significant weight loss were observed 
in the treated group compared to the control group (20.8 ± 0.9 
versus 22.2 ± 2.8 g, respectively). The control group was injected 
daily with saline. Tumor growth was followed weekly non-
invasively by MRI on a 4.7-T spectrometer. Tumor areas were 
measured for each 1-mm thick slice, and the values were added 
to assess the total tumor volume. We observed a significant 
reduction of tumor growth in the treated group compared to the 
control group (Figure 2).

When we sacrificed the mice after 4 weeks of treatment, we 
observed liver metastases in 86% of control mice (6/7), but only 
in 43% of treated mice (2/7), lungs metastases in 29% of control 
mice (2/7), and none in treated mice and ascites in 86% of control 
mice (6/7), and 29% of treated mice (2/7) (Figure 3). IHC analysis 
of tumor sections did not show any statistically significant dif-
ferences in proliferation rates (Figures  4A,C). Higher levels of 
caspase-3 were measured in the treated tumors compared to 
control tumors (Figures 4B,C).

To assess the effect of the treatment on the tumor metabolism, 
we analyzed tumor extracts with high-resolution 1H MRS. We 
performed dual-phase extraction of the tumors to assess the lipid 
phase and the water phase. Representative water phase 1H MR 
spectra centered around the 3.2 ppm region of a control tumor 
and a pantethine-treated tumor are shown in Figures  5A,B, 
respectively. A significant decrease of phosphocholine (PC) in 
the treated tumors was observed (Figure  5C). No differences 
were observed in the other metabolites measured, including 
lactate.

We next measured the lipid concentration in the lipid phase. 
Representative spectra of a control tumor and a treated tumor 
are shown in Figures 6A,B, respectively. Analysis of the spectra 
revealed a significant decrease of phosphatidylcholine (PtCho) 
in the pantethine-treated tumors compared to the controls 
(Figure  6C). No differences were observed in the other lipids 
assessed (Figures 6C,D).

Renal and hepatic cytotoxicity studies were conducted 
in MDA-MB-231 tumor-bearing mice. We did not observe 
any weight loss following 3  weeks of pantethine treatment 
(Figure 7A). Blood analysis performed at the end of the treatment 
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FigUre 3 | representative h&e stained sections of liver (a) and lungs (b) from a control mouse (top row) and a treated mouse (bottom row). 
(c) Histogram representing the number of control and treated mice with metastases in the lungs, in the liver, and with ascites (n = 7).

FigUre 4 | representative ihc stained sections of control and treated tumors for Ki-67 (a) and caspase-3 (b). (c) Histogram representing the 
percentage of positive cells for each marker in control and treated tumors (n = 3; mean ± SD are represented; ***P < 0.001).
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FigUre 5 | representative water phase 1h Mr spectra centered around the 3.2 ppm region from a control (a) and a treated (b) mice. (c) Metabolite 
quantification from control and treated tumor extracts (n = 5; mean ± SD are represented; *P < 0.05).

FigUre 6 | representative lipid phase 1h Mr spectra from a control (a) and a treated (b) mice. (c,D) Lipid quantification in arbitrary unit (AU) from control 
and treated tumor extracts (n = 5; *P < 0.05).
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DiscUssiOn

The majority of ovarian cancer studies in mouse models use xeno-
grafts that are obtained either after subcutaneous implantation 
(19) or intraperitoneal injection of cancer cells (20). To mimic the 
tumor microenvironment, more recent models involved direct 
injection of cells into the ovarian intrabursa (21, 22). Another 
technique involving the implantation of a preparation of tumor 
solid pellets into the ovarian bursa was recently described (23). 
In this model, a pellet was prepared by embedding tumor cells 
into a collagen matrix to control the number of cells, and to limit 
their leakage during the injection (23). In the present study, we 
engrafted a piece of tumor tissue onto the ovary to avoid spilling 
of cancer cells and to maintain the tumor tissue microenviron-
ment. We have used this technique in the past for prostate cancer 
(24) and for pancreatic cancer (25). In our model, ascites and 
metastases in the peritoneal cavity, in the liver, on the diaphragm, 
and in distal lymph nodes are frequent, similar to human disease, 
since ovarian carcinoma usually metastasizes along the perito-
neum throughout the pelvic and abdominal cavity. In ovarian 
cancer patients, metastases can be found in lung, skin, pleura, 
mediastinal, and lymph nodes, and also in bone, brain, or gastro-
intestinal track (26).

Using our orthotopic model, we identified pantethine as a 
promising new drug against ovarian cancer, targeting not only 

tumor progression but also metastases occurrence, and ascites 
formation. The orthotopic tumor growth could be followed non-
invasively using MRI, and we observed slower tumor progression 
in the treated mice compared to the non-treated ones. While there 
were no differences in cell proliferation, increased caspase-3 was 
observed in the treated tumors, linking the tumor growth reduc-
tion to an increase in apoptosis. High-resolution 1H MRS analysis 
of tumor extracts revealed a significant decrease of PC and PtCho 
concentrations in the tumors from treated mice compared to the 
untreated controls. We used a high dose of pantethine and did not 
observe any side effects. Pantethine is rapidly eliminated into the 
urine allowing its administration in humans at a reasonable dose 
using a slow dispensing device.

Abnormal choline metabolism continues to be identified as 
one of the most consistent hallmarks of cancer (27). The molecular 
causes are being gradually unraveled and are providing potential 
novel targets in the treatment of cancer. Iorio et al. demonstrated 
that EOC possessed an altered MRS-choline profile, characterized 
by increased PC content (28). Several studies have demonstrated 
that targeting choline kinase resulted in a decrease of PC and a 
reduction of tumor growth (29, 30). Here, we observed a reduc-
tion of tumor progression that was associated with a decrease of 
PC and PtCho.

Several known properties of pantethine may explain these 
results. A previous study described the inhibition of PtCho 
synthesis in  vitro in rat liver microsomal preparations with 
pantetheine and CoA (31). Here, we observed an in vivo effect of 
pantethine on PtCho level in orthotopically implanted OVCAR3 
tumor. Pantethine inhibited fatty acid synthase (FAS), as demon-
strated in isolated rat hepatocytes by Bocos and Herrera (32). FAS 
synthesizes fatty acids using 4′-phospho-pantetheine, which acts 
as a universal mechanism of transport of intermediates (33–35). 
Pantethine may inhibit FAS activity through the alteration of the 
thiol group of the 4′- phospho-pantetheine arm, which covalently 
carries the pathway intermediates. High FAS activity has been 
observed in most ovarian cancers and is strongly associated with 
high aggressiveness and poor patient survival. Inhibition of FAS 
activity has been shown to be cytotoxic to human cancer cells 
in vitro and in vivo (36). Pantethine not only affects cellular fatty 
acid metabolism but also displays anti-inflammatory properties 
by maintaining the asymmetric distribution of cell membrane 
phosphatidylserine, resulting in the inhibition of cellular response 
to proinflammatory factors (15).

It was recently shown that pantethine affects lipid raft com-
position causing a decline of the proportion of saturated fatty 
acid, an increase in mono- and polyunsaturated fatty acid, and a 
decrease of cholesterol content (17). These changes in raft com-
position led to an impairment of CXCL12 to bind to its target 
(17). The CXCL12–CXCR4 axis promotes proliferation, migra-
tion, invasion, and metastasis in ovarian cancer (37), therefore its 
alteration by pantethine may be a mechanism for the reduction 
of metastases observed in our study.

Finally, it was recently shown that obesity contributes to ovarian 
cancer metastases formation (38). Adipose tissue is a key compo-
nent of the ovarian cancer metastatic microenvironment (39, 40). 
Increased body fat enhances tumor cell–mesothelial cell adhesion 
and promotes intraperitoneal metastatic dissemination (38).  

FigUre 7 | (a) Weight curves from control and treated mice. Serum levels of 
ALT, AST, (b) BUN, and creatinine (c) in treated and control mice. n = 5; 
mean ± SD are presented.
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