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Local and systemic factors have been shown to drive the growth of breast cancer cells in 
postmenopausal obese women, who have increased risk of estrogen receptor-positive 
breast cancer. Estrogens, produced locally in the breast fat by the enzyme aromatase, 
have an important role in promoting cancer cell proliferation. Ghrelin, a 28-amino acid 
peptide hormone, may also influence cancer growth. This peptide is produced in the 
stomach and acts centrally to regulate appetite and growth hormone release. Circulating 
levels of ghrelin, and its unacylated form, des-acyl ghrelin, are almost always inversely 
correlated with obesity, and these peptide hormones have recently been shown to inhibit 
adipose tissue aromatase expression. Ghrelin and des-acyl ghrelin have also been shown 
to be produced by some tumor cells and influence tumor growth. The ghrelin/des-acyl 
ghrelin–cancer axis is complex, one reason being that tumor cells have been shown to 
express splice variants of ghrelin, and ghrelin and des-acyl ghrelin might act at receptors 
other than the cognate ghrelin receptor, growth hormone secretagogue receptor 1a, in 
tumors. Effects of ghrelin and des-acyl ghrelin on energy homeostasis may also affect 
tumor development and growth. This review will summarize our current understanding 
of the role of ghrelin and des-acyl ghrelin in hormone-dependent cancers, breast cancer 
in particular.
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OBeSiTY, AROMATASe, AnD POSTMenOPAUSAL  
BReAST CAnCeR

Estrogens, including 17β-estradiol, play a crucial role in breast cancer. In premenopausal women, 
estrogens are mainly produced by the ovaries. After menopause when the ovaries stop producing 
measurable levels of estrogens, the stromal cells of adipose tissue, including the breast, become 
the main site of estrogen biosynthesis (1). In postmenopausal women, local estrogen production 
and circulating estrogens, suggested to be mainly adipose derived, are associated with driving the 
proliferation of breast tumor cells (2–7). Aromatase, encoded by the CYP19A1 gene, is the enzyme 
responsible for catalyzing the final and key step in estrogen biosynthesis by converting androgens into 
estrogens. It is expressed in steroidogenic tissues such as ovarian granulosa cells and the placenta, as 
well as in non-steroidogenic tissues such as bone and adipose tissue (8). The CYP19A1 gene is located 
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FiGURe 1 | Structure of human and rat ghrelin (31).
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on chromosome 15q21.2 and spans approximately 123 kb, with 
9 coding exons (II–X) and a 93-kb regulatory region. Tissue-
specific promoters are used to regulate aromatase expression by 
their interaction with promoter-specific first exons (9). Each of 
these promoters ensures a fine-tuned tissue-selective regulation 
of aromatase expression. For example, in normal breast adipose 
tissue, the majority of aromatase transcripts are derived from 
activation of the distal promoter, promoter I.4. This promoter is 
activated by glucocorticoids in the presence of class 1 cytokines 
such as interleukin 6, interleukin 11, leukemia inhibitory factor, 
and oncostatin M (OSM) via the Janus kinase-1/signal transducer 
and activator of transcription 3 pathway (10). Promoter I.4 is 
also activated by the inflammatory mediator, tumor necrosis 
factor alpha (TNFα), via the mitogen-activated protein kinase-
AP1 pathway (10). Interestingly, promoter I.4 is also utilized in 
bone, where aromatase expression is increased in response to 
dexamethasone and OSM (11). However, in breast adipose tissue 
of obese women and those with breast cancer, the majority of aro-
matase transcripts are derived from the coordinated activation 
of promoters I.3 and II. A number of obesity-associated factors, 
including inflammatory mediator PGE2 and the adipokine leptin, 
have been shown to stimulate aromatase expression via these pro-
moters (12, 13). More recently, the gut-derived hormone, ghrelin, 
and its unacylated form, des-acyl ghrelin, were shown to inhibit 
aromatase expression in adipose stromal cells (14, 15).

GHReLin AnD DeS-ACYL GHReLin

Ghrelin, first discovered in the rat stomach in 1999, is the only 
known peptide hormone to be acylated (16, 17). The human ghre-
lin peptide is characterized by the level of acylation at  serine-3, 
including non-acylated, octanoylated (C8:0), decanoylated 
(C10:0), and decenoylated (C10:1) (18). The rat and human 
ghrelin are generally acylated with an n-octanoyl group (C8:0). 
The structure of human and rat ghrelin differs at two amino acids 
(Figure 1) (16). In addition to the gut, ghrelin is also produced 
in small quantities by many tissues including the hypothalamus, 
pituitary, lung, heart, kidney, testis, pancreas, colon, ileum, 
jejunum, and duodenum (19–22). The ghrelin gene (GHRL) is 
located on chromosome 3p25-26 and encodes a mature mRNA 
that is 511  bp long (23–25). Ghrelin mRNA is then translated 
into preproghrelin, which contains 117 amino acids and can then 
be acylated and processed into ghrelin and obestatin (Figure 2). 
Ghrelin-O-acyl transferase (GOAT) is the only enzyme that has 
been molecularly identified to be able to acylate ghrelin (26–28). 

The ghrelin pro-peptide is cleaved by signal peptidase, prohor-
moneconvertase 1/3 (PC 1/3) (29), and carboxypeptidase-B like 
enzyme (18). Whereas the enzymes that cleave the obestatin 
peptide from the prohormone are still unknown. Preproghrelin 
can also be cleaved without first being acylated yielding des-acyl 
ghrelin and obestatin.

Previous studies have demonstrated that ghrelin is the major 
active form of the hormone acting through the well-characterized 
ghrelin receptor, growth hormone secretagogue receptor 1a 
(GHSR1a). GHSR1a is expressed in many tissues such as the 
pituitary, hypothalamus, stomach, adipose tissue, bone, and pros-
tate, as well as in numerous tumor types such as prostate, breast, 
and ovarian cancer. Ghrelin binding to GHSR1a leads to activa-
tion phospholipase C and generation of inositol triphosphate and 
diacylglycerol, leading to the stimulation of intracellular calcium 
release. However, studies have indicated that the mechanism of 
action of ghrelin in adipose stromal cells is different from the 
action of ghrelin via GHSR1a in the CNS (14, 32). Recent studies 
have demonstrated that des-acyl ghrelin is also biologically active 
(33) and likely acts though an unidentified alternative ghrelin 
receptor (14, 34, 35).

ROLeS OF GHReLin AnD DeS-ACYL 
GHReLin in ReGULATinG APPeTiTe, 
eneRGY HOMeOSTASiS, AnD OBeSiTY

Although it is an orexigenic hormone, levels of ghrelin are 
inversely correlated with BMI in Caucasians and Pima Indians 
and reduced in individuals with type II diabetes (36, 37). 
Moreover, obese individuals have low ghrelin levels before and 
after meals compared with normal weight individuals (38), a 
finding that is consistent in obese females (39) and teenagers 
(40). The role of ghrelin to stimulate growth hormone release 
also contributes to the regulation of energy homeostasis. Rats 
receiving subcutaneous ghrelin (200 µg) show stimulated glucose 
production in the liver, effects that are inhibited by des-acyl ghre-
lin (41). Consistently, GOAT knockout mice have been shown to 
have low glucose levels after a low calorie meal compared with 
ghrelin- or growth hormone-treated mice (33). Different effects 
of ghrelin and des-acyl ghrelin are largely attributable to differ-
ences in receptor usage. Beneficial effects of des-acyl ghrelin on 
glucose homeostasis have led to the evaluation of AZP531, a 
cyclic des-acyl ghrelin analog and mimetic, in clinical trials for 
the treatment of type II diabetes (42). AZP531 has no agonist 
activity at GHSR1a.

GHReLin, DeS-ACYL GHReLin,  
AnD AROMATASe

The effect of ghrelin and des-acyl ghrelin on aromatase expres-
sion in adipose stromal cells was recently examined (14, 15). In 
isolated adipose stromal cells in culture, ghrelin and des-acyl 
ghrelin were equipotent (picomolar doses) at suppressing both 
the basal and PGE2-stimulated expression and activity of aro-
matase. GHSR1a was undetectable in these cells. Ghrelin was 
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FiGURe 2 | Processing and acylation of the GHRL gene product to yield ghrelin and des-acyl ghrelin (30).
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found to inhibit cAMP formation, suggesting that ghrelin and 
des-acyl ghrelin act at a receptor other than GHSR1a, where 
ghrelin but not des-acyl ghrelin is an agonist. The expression of 
aromatase in obesity and breast cancer is dependent on cAMP. 
Hence, decreased levels of ghrelin in obesity provide a possible 
mechanism for the obesity-associated increase in aromatase 
within the breast. Obesity is also associated with chronic low 
grade inflammation and an increase in macrophage-derived 
inflammatory mediators including TNFα and PGE2 (43, 44). 
Both ghrelin and des-acyl ghrelin suppress macrophage-derived 
inflammatory factors (15, 45), including TNFα and the expres-
sion of COX-2, the rate-limiting enzyme in prostaglandin 
biosynthesis. Pretreatment of macrophages with des-acyl ghrelin 
reduced the effect of conditioned media to stimulate aromatase 
expression in breast adipose stromal cells (15).

GHReLin in CAnCeR

Ghrelin has been implicated in a multitude of cancers including 
colorectal, pituitary, head and neck, esophageal, liver, gastro-
intestinal, lung, neuroendocrine, non-Hodgkin lymphoma, 
pancreatic, thyroid, ovarian, prostate, and breast (46). Ligand-
binding assays performed on non-tumoral and neoplastic breast 
tissue confirmed that the ghrelin analog, hexarelin, was capable of 
binding to breast cancers, with highest affinity demonstrated for 
well-differentiated invasive breast carcinomas (47). Interestingly, 
the ligand was displaced by a number of ghrelin analogs, as well 
as des-acyl ghrelin, suggesting that ghrelin and des-acyl ghrelin 
may act on breast cancer cells. This provides further evidence for 
the presence of alternate ghrelin receptors.

In a study of 53 female patients, including women with 
benign ovarian tumors and those with ovarian cancer, plasma 
concentrations of acyl ghrelin were significantly higher com-
pared to the control population, whereas there was no difference 
between cancer and control groups when total ghrelin plasma 
levels were compared (48). Due to a lack of scientific evidence 
for the presence of GHSR1a in human ovaries, the authors 
suggested that there is likely no direct linkage between ghrelin 
levels and ovarian cancer development (48). However, now that 
other receptors for ghrelin are known to exist, this conclusion 
might be revised. In prostate cancer, a study of 30 patients with 
benign prostate hyperplasia and 50 controls found no associa-
tion between the levels of ghrelin and cancer development or 
progression (49). However, a study by Malendowicz et al. dem-
onstrated that acyl ghrelin and the ratio of acyl ghrelin to total 
ghrelin were significantly higher in 18 prostate cancer patients 
compared with 12 benign prostate hyperplasia controls. Total 
ghrelin plasma levels were similar between prostate cancer and 
the control group (50).

To date, few studies have examined circulating ghrelin levels 
in women with breast cancer or with a history of breast cancer 
(51, 52). However, these focused on effects of therapies, including 
chemotherapy and isoflavonoids, on circulating ghrelin levels as 
opposed to relating blood levels with cancer risk. Numerous stud-
ies have demonstrated that SNPs in the ghrelin gene are associ-
ated with breast cancer risk (53–57), and a study in women with 
low Native American ancestry also demonstrated that SNPs in the 
ghrelin gene are associated with breast cancer-specific mortality 
(58). However, in the absence of functional data, it is difficult to 
assign causality to these findings.
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In some hormone-dependent cancers, ghrelin has been shown 
to have pro-proliferative effects, whereas in others, it had anti-
proliferative effects. Thus, heterogeneity among cancers extends 
to their responses to ghrelin and des-acyl ghrelin.

COMPLeXiTY OF THe GHReLin AXiS in 
CAnCeR

In vitro studies have demonstrated that ghrelin can have both 
proliferative and anti-proliferative effects. Ghrelin stimulates the 
growth of various cancer cell lines derived from the endometrium 
(59), prostate (60, 61), and breast (62). Conversely, ghrelin has 
also been shown to inhibit the growth of small cell lung carci-
noma (63), prostate (64, 65), and breast cancer cell lines (47). 
In the estrogen receptor (ER) + human breast cancer cell line, 
MCF7, ghrelin at concentrations of 0–1,000 nM had no effect on 
cell proliferation (62), whereas Cassoni et al. demonstrated that 
ghrelin, des-acyl ghrelin, as well as a number of ghrelin mimetics, 
significantly inhibited cell proliferation (47). This effect was also 
seen in ER + T47D and the triple-negative breast cancer cell line 
MDA-MB-231, while other groups demonstrated that ghrelin at 
10 and 100 nM stimulates MDA-MB-231 cell proliferation (62, 
66). Differences in culture conditions or cell lines used may have 
contributed to these discrepancies. In particular, the addition 
of 4-(2-aminoethyl) benzene-sulphonyl fluoride hydrochloride 
(AEBSF) in the study by Jeffery et al. may have prevented the con-
version of ghrelin to des-acyl ghrelin, while the effects observed 
in response to ghrelin in the absence of AEBSF in the Cassoni 
et al. paper may have in fact been responses to des-acyl ghrelin.

In addition to its well-characterized expression in the stom-
ach, ghrelin is also produced at many other sites, including 
breast tumors. Breast cancer patients with tumors that express 
ghrelin have a 2.5 to 3 times lower risk of recurrence or breast 
cancer-associated death compared to those lacking expression of 
ghrelin (67). The ghrelin gene can also be alternatively spliced 
and the transcript variants have been described in breast and 
prostate cancer (68, 69). In breast, a variant of the ghrelin gene 
product that includes intron 1 (In1-variant) with a conserved 
first 12 amino acids and different C-terminus, was detected in 
tissues where GOAT was expressed and elevated in tumor tis-
sue compared to normal. Although GHSR1a mediates many of 
the endocrine functions of ghrelin, GHSR1a is absent in several 
breast cancer cell lines, including MCF7 and MDA-MB-231 cells, 
and these cells respond to des-acyl ghrelin in vitro (47). Moreover, 
we have recently shown that ghrelin and des-acyl ghrelin inhibit 
aromatase expression in the absence of GHSR1a, suggesting that 
ghrelin may act though an unidentified alternative receptor in the 
breast (14). Another GHSR isoform, GHSR1b, has been identi-
fied. It has a truncated, 5-transmembrane, structure and has been 
proposed to be a non-functional form of GHSR. GHSR1b has 
been found to be expressed in lung cancer cell lines, including 
LC319 and PC14 (70), in the epithelium of breast cancer tissues 
and in breast cancer cell lines, including MDA-MB-231, MCF7, 
T47D, and MDA-MB-435 (62, 68). It has also been detected 
in benign prostatic hyperplasia (65), human erythroleukemic 
cell lines (71), colorectal cancer cells (72), the human adrenal 

cortex (73), and in benign and malignant adrenocortical tumors 
(74). Interestingly, GHSR1a and GHSR1b are not expressed in 
all tissues and tumors where ghrelin is expressed. Therefore, the 
roles of ghrelin and des-acyl ghrelin differ between cancers. To 
exploit the potent inhibitory (anti-proliferative) effects that they 
sometimes exert will require characterization of individual can-
cers and a personalized approach to treatment with compounds 
that mimic ghrelin or des-acyl ghrelin’s tumor inhibiting effects.

OBeSTATin AnD CAnCeR

Obestatin has been implicated in numerous cancers including 
gastric, ovarian, thyroid, invasive breast, and prostate cancers.

Exogenous obestatin stimulates KATO-III gastric cancer cell 
proliferation via MAPK, ERK1/2-dependent pathways (75). In 
gastric cancer, obestatin binds to GPR39 leading to the formation 
of a GPR39/β-arresin/Src complex, which leads to the activation 
of AKT signaling via EGFR transactivation (76). Obestatin 
in GPR39-bearing gastric cancer cells stimulates epithelial–
mesenchymal transition and angiogenesis, as well as affecting 
morphology, migration, invasion, and proliferation of these cells 
(77). Furthermore, obestatin causes anti-proliferative effects in 
TT medullary thyroid carnicinoma cells as well as in pancreatic 
neuroendocrine tumor cells (78).

With regard to the relationship between circulating peptides 
and cancer, both obestatin and ghrelin levels were found to 
be elevated in benign and malignant ovarian cancers (48). No 
significant associations between circulating obestatin levels and 
prostate cancer were observed (50).

Expression of obestatin has also been examined in thyroid 
cancer where levels where found to be elevated in nodular goiter 
(benign thyroid tumor), but reduced in medullary cancer (malig-
nant thyroid tumor) (79). Conversely, ghrelin levels increased 
with malignancy. The authors suggested that the ghrelin gene may 
be alternatively spliced or that ghrelin peptide production may be 
independently regulated.

In invasive breast cancer and similar to findings relating to 
ghrelin, the expression of obestatin is weakly correlated with 
low histological grade, ER positivity, small tumor size, and low 
proliferative index (67). However, the expression of obestatin did 
not predict survival.

COnCLUSiOn

Obesity-related breast cancers are largely estrogen dependent. 
Increased expression of aromatase in obese/inflamed breast 
adipose tissue contributes to the cancers. In some cases, reduced 
levels of ghrelin and des-acyl ghrelin may release estrogen bio-
synthesis and proliferation from inhibition. The ability of ghrelin 
and des-acyl ghrelin to reduce estrogen production and breast 
cancer growth may support their use, or ghrelin/des-acyl ghrelin 
mimetics, as therapeutics for suitably characterized cancers in 
the future.
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